19,940 research outputs found

    Canalization in the Critical States of Highly Connected Networks of Competing Boolean Nodes

    Full text link
    Canalization is a classic concept in Developmental Biology that is thought to be an important feature of evolving systems. In a Boolean network it is a form of network robustness in which a subset of the input signals control the behavior of a node regardless of the remaining input. It has been shown that Boolean networks can become canalized if they evolve through a frustrated competition between nodes. This was demonstrated for large networks in which each node had K=3 inputs. Those networks evolve to a critical steady-state at the boarder of two phases of dynamical behavior. Moreover, the evolution of these networks was shown to be associated with the symmetry of the evolutionary dynamics. We extend these results to the more highly connected K>3 cases and show that similar canalized critical steady states emerge with the same associated dynamical symmetry, but only if the evolutionary dynamics is biased toward homogeneous Boolean functions.Comment: 8 pages, 5 figure

    Evolving Gene Regulatory Networks with Mobile DNA Mechanisms

    Full text link
    This paper uses a recently presented abstract, tuneable Boolean regulatory network model extended to consider aspects of mobile DNA, such as transposons. The significant role of mobile DNA in the evolution of natural systems is becoming increasingly clear. This paper shows how dynamically controlling network node connectivity and function via transposon-inspired mechanisms can be selected for in computational intelligence tasks to give improved performance. The designs of dynamical networks intended for implementation within the slime mould Physarum polycephalum and for the distributed control of a smart surface are considered.Comment: 7 pages, 8 figures. arXiv admin note: substantial text overlap with arXiv:1303.722

    Canalizing Kauffman networks: non-ergodicity and its effect on their critical behavior

    Full text link
    Boolean Networks have been used to study numerous phenomena, including gene regulation, neural networks, social interactions, and biological evolution. Here, we propose a general method for determining the critical behavior of Boolean systems built from arbitrary ensembles of Boolean functions. In particular, we solve the critical condition for systems of units operating according to canalizing functions and present strong numerical evidence that our approach correctly predicts the phase transition from order to chaos in such systems.Comment: to be published in PR

    The effect of scale-free topology on the robustness and evolvability of genetic regulatory networks

    Full text link
    We investigate how scale-free (SF) and Erdos-Renyi (ER) topologies affect the interplay between evolvability and robustness of model gene regulatory networks with Boolean threshold dynamics. In agreement with Oikonomou and Cluzel (2006) we find that networks with SFin topologies, that is SF topology for incoming nodes and ER topology for outgoing nodes, are significantly more evolvable towards specific oscillatory targets than networks with ER topology for both incoming and outgoing nodes. Similar results are found for networks with SFboth and SFout topologies. The functionality of the SFout topology, which most closely resembles the structure of biological gene networks (Babu et al., 2004), is compared to the ER topology in further detail through an extension to multiple target outputs, with either an oscillatory or a non-oscillatory nature. For multiple oscillatory targets of the same length, the differences between SFout and ER networks are enhanced, but for non-oscillatory targets both types of networks show fairly similar evolvability. We find that SF networks generate oscillations much more easily than ER networks do, and this may explain why SF networks are more evolvable than ER networks are for oscillatory phenotypes. In spite of their greater evolvability, we find that networks with SFout topologies are also more robust to mutations than ER networks. Furthermore, the SFout topologies are more robust to changes in initial conditions (environmental robustness). For both topologies, we find that once a population of networks has reached the target state, further neutral evolution can lead to an increase in both the mutational robustness and the environmental robustness to changes in initial conditions.Comment: 16 pages, 15 figure

    Topological Evolution of Dynamical Networks: Global Criticality from Local Dynamics

    Full text link
    We evolve network topology of an asymmetrically connected threshold network by a simple local rewiring rule: quiet nodes grow links, active nodes lose links. This leads to convergence of the average connectivity of the network towards the critical value Kc=2K_c =2 in the limit of large system size NN. How this principle could generate self-organization in natural complex systems is discussed for two examples: neural networks and regulatory networks in the genome.Comment: 4 pages RevTeX, 4 figures PostScript, revised versio
    • …
    corecore