664 research outputs found

    Evolved modular epistasis in artificial organisms

    Get PDF
    This work was supported by the Spanish Ministerio de Ciencia e Innovacion grants BFU2009-06993 (SFE) and FIS2009-12365 (RVS), the James McDonnell Foundation (RVS), the Marcelino Botin Foundation (RVS), the John Templeton Foundation (SFE), and the Santa Fe Institute (RVS and SFE).Valverde, S.; Solé, RV.; Elena Fito, SF. (2012). Evolved modular epistasis in artificial organisms. En Artificial Life. Massachusetts Institute of Technology Press (MIT Press): STM Titles. 13:111-115. https://doi.org/10.7551/978-0-262-31050-5-ch016S1111151

    Associative memory in gene regulation networks

    No full text
    The pattern of gene expression in the phenotype of an organism is determined in part by the dynamical attractors of the organism’s gene regulation network. Changes to the connections in this network over evolutionary time alter the adult gene expression pattern and hence the fitness of the organism. However, the evolution of structure in gene expression networks (potentially reflecting past selective environments) and its affordances and limitations with respect to enhancing evolvability is poorly understood in general. In this paper we model the evolution of a gene regulation network in a controlled scenario. We show that selected changes to connections in the regulation network make the currently selected gene expression pattern more robust to environmental variation. Moreover, such changes to connections are necessarily ‘Hebbian’ – ‘genes that fire together wire together’ – i.e. genes whose expression is selected for in the same selective environments become co-regulated. Accordingly, in a manner formally equivalent to well-understood learning behaviour in artificial neural networks, a gene expression network will therefore develop a generalised associative memory of past selected phenotypes. This theoretical framework helps us to better understand the relationship between homeostasis and evolvability (i.e. selection to reduce variability facilitates structured variability), and shows that, in principle, a gene regulation network has the potential to develop ‘recall’ capabilities normally reserved for cognitive systems

    Information content of colored motifs in complex networks

    Full text link
    We study complex networks in which the nodes of the network are tagged with different colors depending on the functionality of the nodes (colored graphs), using information theory applied to the distribution of motifs in such networks. We find that colored motifs can be viewed as the building blocks of the networks (much more so than the uncolored structural motifs can be) and that the relative frequency with which these motifs appear in the network can be used to define the information content of the network. This information is defined in such a way that a network with random coloration (but keeping the relative number of nodes with different colors the same) has zero color information content. Thus, colored motif information captures the exceptionality of coloring in the motifs that is maintained via selection. We study the motif information content of the C. elegans brain as well as the evolution of colored motif information in networks that reflect the interaction between instructions in genomes of digital life organisms. While we find that colored motif information appears to capture essential functionality in the C. elegans brain (where the color assignment of nodes is straightforward) it is not obvious whether the colored motif information content always increases during evolution, as would be expected from a measure that captures network complexity. For a single choice of color assignment of instructions in the digital life form Avida, we find rather that colored motif information content increases or decreases during evolution, depending on how the genomes are organized, and therefore could be an interesting tool to dissect genomic rearrangements.Comment: 21 pages, 8 figures, to appear in Artificial Lif

    The causes of epistasis

    Get PDF
    [EN] Since Bateson's discovery that genes can suppress the phenotypic effects of other genes, gene interactions-called epistasis-have been the topic of a vast research effort. Systems and developmental biologists study epistasis to understand the genotype-phenotype map, whereas evolutionary biologists recognize the fundamental importance of epistasis for evolution. Depending on its form, epistasis may lead to divergence and speciation, provide evolutionary benefits to sex and affect the robustness and evolvability of organisms. That epistasis can itself be shaped by evolution has only recently been realized. Here, we review the empirical pattern of epistasis, and some of the factors that may affect the form and extent of epistasis. Based on their divergent consequences, we distinguish between interactions with or without mean effect, and those affecting the magnitude of fitness effects or their sign. Empirical work has begun to quantify epistasis in multiple dimensions in the context of metabolic and fitness landscape models. We discuss possible proximate causes (such as protein function and metabolic networks) and ultimate factors (including mutation, recombination, and the importance of natural selection and genetic drift). We conclude that, in general, pleiotropy is an important prerequisite for epistasis, and that epistasis may evolve as an adaptive or intrinsic consequence of changes in genetic robustness and evolvability.We thank Fons Debets, Ryszard Korona, Alexey Kondrashov, Joachim Krug, Sijmen Schoustra and an anonymous reviewer for constructive comments, and funds from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 225167 (eFLUX), a visitor grant from Research School Production Ecology and Resource Conservation for S.F.E., and NSF grant DEB-0844355 for T.F.C.De Visser, JAGM.; Cooper, TF.; Elena Fito, SF. (2011). The causes of epistasis. Proceedings of the Royal Society B: Biological Sciences. 278(1725):3617-3624. https://doi.org/10.1098/rspb.2011.1537S361736242781725Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., … Mostafavi, S. (2010). The Genetic Landscape of a Cell. Science, 327(5964), 425-431. doi:10.1126/science.1180823Moore, J. H., & Williams, S. M. (2005). Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. BioEssays, 27(6), 637-646. doi:10.1002/bies.20236Phillips, P. C. (2008). Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems. Nature Reviews Genetics, 9(11), 855-867. doi:10.1038/nrg2452Azevedo, R. B. R., Lohaus, R., Srinivasan, S., Dang, K. K., & Burch, C. L. (2006). Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature, 440(7080), 87-90. doi:10.1038/nature04488Desai, M. M., Weissman, D., & Feldman, M. W. (2007). Evolution Can Favor Antagonistic Epistasis. Genetics, 177(2), 1001-1010. doi:10.1534/genetics.107.075812Gros, P.-A., Le Nagard, H., & Tenaillon, O. (2009). The Evolution of Epistasis and Its Links With Genetic Robustness, Complexity and Drift in a Phenotypic Model of Adaptation. Genetics, 182(1), 277-293. doi:10.1534/genetics.108.099127Liberman, U., & Feldman, M. (2008). On the evolution of epistasis III: The haploid case with mutation. Theoretical Population Biology, 73(2), 307-316. doi:10.1016/j.tpb.2007.11.010Liberman, U., & Feldman, M. W. (2005). On the evolution of epistasis I: diploids under selection. Theoretical Population Biology, 67(3), 141-160. doi:10.1016/j.tpb.2004.11.001Liberman, U., Puniyani, A., & Feldman, M. W. (2007). On the evolution of epistasis II: A generalized Wright–Kimura framework. Theoretical Population Biology, 71(2), 230-238. doi:10.1016/j.tpb.2006.10.002Martin, O. C., & Wagner, A. (2009). Effects of Recombination on Complex Regulatory Circuits. Genetics, 183(2), 673-684. doi:10.1534/genetics.109.104174Misevic, D., Ofria, C., & Lenski, R. E. (2005). Sexual reproduction reshapes the genetic architecture of digital organisms. Proceedings of the Royal Society B: Biological Sciences, 273(1585), 457-464. doi:10.1098/rspb.2005.3338Bateson W. Saunders E. R. Punnett R. C.& Hurst C. C.. 1905 Reports to the Evolution Committee of the Royal Society Report II. London UK: Harrison and Sons.Fisher, R. A. (1919). XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399-433. doi:10.1017/s0080456800012163Kondrashov, F. A., & Kondrashov, A. S. (2001). Multidimensional epistasis and the disadvantage of sex. Proceedings of the National Academy of Sciences, 98(21), 12089-12092. doi:10.1073/pnas.211214298Barton, N. H. (1995). A general model for the evolution of recombination. Genetical Research, 65(2), 123-144. doi:10.1017/s0016672300033140Kondrashov, A. S. (1988). Deleterious mutations and the evolution of sexual reproduction. Nature, 336(6198), 435-440. doi:10.1038/336435a0De Visser, J. A. G. M., & Elena, S. F. (2007). The evolution of sex: empirical insights into the roles of epistasis and drift. Nature Reviews Genetics, 8(2), 139-149. doi:10.1038/nrg1985Kouyos, R. D., Silander, O. K., & Bonhoeffer, S. (2007). Epistasis between deleterious mutations and the evolution of recombination. Trends in Ecology & Evolution, 22(6), 308-315. doi:10.1016/j.tree.2007.02.014The effect of sex and deleterious mutations on fitness in Chlamydomonas. (1996). Proceedings of the Royal Society of London. Series B: Biological Sciences, 263(1367), 193-200. doi:10.1098/rspb.1996.0031Salathe, P., & Ebert, D. (2003). The effects of parasitism and inbreeding on the competitive ability in Daphnia magna: evidence for synergistic epistasis. Journal of Evolutionary Biology, 16(5), 976-985. doi:10.1046/j.1420-9101.2003.00582.xJasnos, L., & Korona, R. (2007). Epistatic buffering of fitness loss in yeast double deletion strains. Nature Genetics, 39(4), 550-554. doi:10.1038/ng1986Lenski, R. E., Ofria, C., Collier, T. C., & Adami, C. (1999). Genome complexity, robustness and genetic interactions in digital organisms. Nature, 400(6745), 661-664. doi:10.1038/23245Maisnier-Patin, S., Roth, J. R., Fredriksson, Å., Nyström, T., Berg, O. G., & Andersson, D. I. (2005). Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nature Genetics, 37(12), 1376-1379. doi:10.1038/ng1676Sanjuan, R., Moya, A., & Elena, S. F. (2004). The contribution of epistasis to the architecture of fitness in an RNA virus. Proceedings of the National Academy of Sciences, 101(43), 15376-15379. doi:10.1073/pnas.0404125101Zeyl, C. (2005). The Number of Mutations Selected During Adaptation in a Laboratory Population of Saccharomyces cerevisiae. Genetics, 169(4), 1825-1831. doi:10.1534/genetics.104.027102Peña, M. de la, Elena, S. F., & Moya, A. (2000). EFFECT OF DELETERIOUS MUTATION-ACCUMULATION ON THE FITNESS OF RNA BACTERIOPHAGE MS2. Evolution, 54(2), 686. doi:10.1554/0014-3820(2000)054[0686:eodmao]2.0.co;2De Visser, J. A. G. M., Hoekstra, R. F., & van den Ende, H. (1997). Test of Interaction Between Genetic Markers That Affect Fitness in Aspergillus niger. Evolution, 51(5), 1499. doi:10.2307/2411202Elena, S. F. (1999). Little Evidence for Synergism Among Deleterious Mutations in a Nonsegmented RNA Virus. Journal of Molecular Evolution, 49(5), 703-707. doi:10.1007/pl00000082Elena, S. F., & Lenski, R. E. (1997). Test of synergistic interactions among deleterious mutations in bacteria. Nature, 390(6658), 395-398. doi:10.1038/37108Hall, D. W., Agan, M., & Pope, S. C. (2010). Fitness Epistasis among 6 Biosynthetic Loci in the Budding Yeast Saccharomyces cerevisiae. Journal of Heredity, 101(Supplement 1), S75-S84. doi:10.1093/jhered/esq007Kelly, J. K. (2005). Epistasis in Monkeyflowers. Genetics, 171(4), 1917-1931. doi:10.1534/genetics.105.041525Segrè, D., DeLuna, A., Church, G. M., & Kishony, R. (2004). Modular epistasis in yeast metabolism. Nature Genetics, 37(1), 77-83. doi:10.1038/ng1489He, X., Qian, W., Wang, Z., Li, Y., & Zhang, J. (2010). Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nature Genetics, 42(3), 272-276. doi:10.1038/ng.524Carneiro, M., & Hartl, D. L. (2009). Adaptive landscapes and protein evolution. Proceedings of the National Academy of Sciences, 107(suppl_1), 1747-1751. doi:10.1073/pnas.0906192106Franke, J., Klözer, A., de Visser, J. A. G. M., & Krug, J. (2011). Evolutionary Accessibility of Mutational Pathways. PLoS Computational Biology, 7(8), e1002134. doi:10.1371/journal.pcbi.1002134Weinreich, D. M. (2006). Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter Proteins. Science, 312(5770), 111-114. doi:10.1126/science.1123539Lunzer, M. (2005). The Biochemical Architecture of an Ancient Adaptive Landscape. Science, 310(5747), 499-501. doi:10.1126/science.1115649O’Maille, P. E., Malone, A., Dellas, N., Andes Hess, B., Smentek, L., Sheehan, I., … Noel, J. P. (2008). Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nature Chemical Biology, 4(10), 617-623. doi:10.1038/nchembio.113Lozovsky, E. R., Chookajorn, T., Brown, K. M., Imwong, M., Shaw, P. J., Kamchonwongpaisan, S., … Hartl, D. L. (2009). Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proceedings of the National Academy of Sciences, 106(29), 12025-12030. doi:10.1073/pnas.0905922106De Visser, J. A. G. M., Park, S., & Krug, J. (2009). Exploring the Effect of Sex on Empirical Fitness Landscapes. The American Naturalist, 174(S1), S15-S30. doi:10.1086/599081Khan, A. I., Dinh, D. M., Schneider, D., Lenski, R. E., & Cooper, T. F. (2011). Negative Epistasis Between Beneficial Mutations in an Evolving Bacterial Population. Science, 332(6034), 1193-1196. doi:10.1126/science.1203801Chou, H.-H., Chiu, H.-C., Delaney, N. F., Segre, D., & Marx, C. J. (2011). Diminishing Returns Epistasis Among Beneficial Mutations Decelerates Adaptation. Science, 332(6034), 1190-1192. doi:10.1126/science.1203799Da Silva, J., Coetzer, M., Nedellec, R., Pastore, C., & Mosier, D. E. (2010). Fitness Epistasis and Constraints on Adaptation in a Human Immunodeficiency Virus Type 1 Protein Region. Genetics, 185(1), 293-303. doi:10.1534/genetics.109.112458Hinkley, T., Martins, J., Chappey, C., Haddad, M., Stawiski, E., Whitcomb, J. M., … Bonhoeffer, S. (2011). A systems analysis of mutational effects in HIV-1 protease and reverse transcriptase. Nature Genetics, 43(5), 487-489. doi:10.1038/ng.795Kvitek, D. J., & Sherlock, G. (2011). Reciprocal Sign Epistasis between Frequently Experimentally Evolved Adaptive Mutations Causes a Rugged Fitness Landscape. PLoS Genetics, 7(4), e1002056. doi:10.1371/journal.pgen.1002056MacLean, R. C., Perron, G. G., & Gardner, A. (2010). Diminishing Returns From Beneficial Mutations and Pervasive Epistasis Shape the Fitness Landscape for Rifampicin Resistance in Pseudomonas aeruginosa. Genetics, 186(4), 1345-1354. doi:10.1534/genetics.110.123083Rokyta, D. R., Joyce, P., Caudle, S. B., Miller, C., Beisel, C. J., & Wichman, H. A. (2011). Epistasis between Beneficial Mutations and the Phenotype-to-Fitness Map for a ssDNA Virus. PLoS Genetics, 7(6), e1002075. doi:10.1371/journal.pgen.1002075Salverda, M. L. M., Dellus, E., Gorter, F. A., Debets, A. J. M., van der Oost, J., Hoekstra, R. F., … de Visser, J. A. G. M. (2011). Initial Mutations Direct Alternative Pathways of Protein Evolution. PLoS Genetics, 7(3), e1001321. doi:10.1371/journal.pgen.1001321Hayashi, Y., Aita, T., Toyota, H., Husimi, Y., Urabe, I., & Yomo, T. (2006). Experimental Rugged Fitness Landscape in Protein Sequence Space. PLoS ONE, 1(1), e96. doi:10.1371/journal.pone.0000096De Visser, J. A. G., & Lenski, R. E. (2002). BMC Evolutionary Biology, 2(1), 19. doi:10.1186/1471-2148-2-19Kryazhimskiy, S., Tkacik, G., & Plotkin, J. B. (2009). The dynamics of adaptation on correlated fitness landscapes. Proceedings of the National Academy of Sciences, 106(44), 18638-18643. doi:10.1073/pnas.0905497106Lehner, B. (2011). Molecular mechanisms of epistasis within and between genes. Trends in Genetics, 27(8), 323-331. doi:10.1016/j.tig.2011.05.007Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D., … Palsson, B. Ø. (2007). A genome‐scale metabolic reconstruction for Escherichia coli K‐12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Molecular Systems Biology, 3(1), 121. doi:10.1038/msb4100155Szappanos, B., Kovács, K., Szamecz, B., Honti, F., Costanzo, M., Baryshnikova, A., … Papp, B. (2011). An integrated approach to characterize genetic interaction networks in yeast metabolism. Nature Genetics, 43(7), 656-662. doi:10.1038/ng.846Dean, A. M., Dykhuizen, D. E., & Hartl, D. L. (1986). Fitness as a function of β-galactosidase activity in Escherichia coli. Genetical Research, 48(1), 1-8. doi:10.1017/s0016672300024587Trindade, S., Sousa, A., Xavier, K. B., Dionisio, F., Ferreira, M. G., & Gordo, I. (2009). Positive Epistasis Drives the Acquisition of Multidrug Resistance. PLoS Genetics, 5(7), e1000578. doi:10.1371/journal.pgen.1000578Agrawal, A. F., & Whitlock, M. C. (2010). Environmental duress and epistasis: how does stress affect the strength of selection on new mutations? Trends in Ecology & Evolution, 25(8), 450-458. doi:10.1016/j.tree.2010.05.003Bonhoeffer, S. (2004). Evidence for Positive Epistasis in HIV-1. Science, 306(5701), 1547-1550. doi:10.1126/science.1101786Burch, C. L., & Chao, L. (2004). Epistasis and Its Relationship to Canalization in the RNA Virus φ6. Genetics, 167(2), 559-567. doi:10.1534/genetics.103.021196Martin, G., Elena, S. F., & Lenormand, T. (2007). Distributions of epistasis in microbes fit predictions from a fitness landscape model. Nature Genetics, 39(4), 555-560. doi:10.1038/ng1998DePristo, M. A., Weinreich, D. M., & Hartl, D. L. (2005). Missense meanderings in sequence space: a biophysical view of protein evolution. Nature Reviews Genetics, 6(9), 678-687. doi:10.1038/nrg1672Wang, X., Minasov, G., & Shoichet, B. K. (2002). Evolution of an Antibiotic Resistance Enzyme Constrained by Stability and Activity Trade-offs. Journal of Molecular Biology, 320(1), 85-95. doi:10.1016/s0022-2836(02)00400-xBjörkman, J. (2000). Effects of Environment on Compensatory Mutations to Ameliorate Costs of Antibiotic Resistance. Science, 287(5457), 1479-1482. doi:10.1126/science.287.5457.1479Lenski, R. E. (1988). Experimental Studies of Pleiotropy and Epistasis in Escherichia coli. II. Compensation for Maldaptive Effects Associated with Resistance to Virus T4. Evolution, 42(3), 433. doi:10.2307/2409029Schoustra, S. E., Debets, A. J. M., Slakhorst, M., & Hoekstra, R. F. (2007). Mitotic Recombination Accelerates Adaptation in the Fungus Aspergillus nidulans. PLoS Genetics, 3(4), e68. doi:10.1371/journal.pgen.0030068MacLean, R. C., Bell, G., & Rainey, P. B. (2004). The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proceedings of the National Academy of Sciences, 101(21), 8072-8077. doi:10.1073/pnas.0307195101Cooper, T. F., Ostrowski, E. A., & Travisano, M. (2007). A NEGATIVE RELATIONSHIP BETWEEN MUTATION PLEIOTROPY AND FITNESS EFFECT IN YEAST. Evolution, 61(6), 1495-1499. doi:10.1111/j.1558-5646.2007.00109.xPoon, A., & Chao, L. (2005). The Rate of Compensatory Mutation in the DNA Bacteriophage φX174. Genetics, 170(3), 989-999. doi:10.1534/genetics.104.039438Remold, S. K., & Lenski, R. E. (2004). Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli. Nature Genetics, 36(4), 423-426. doi:10.1038/ng1324Crow, J. F., & Kimura, M. (1979). Efficiency of truncation selection. Proceedings of the National Academy of Sciences, 76(1), 396-399. doi:10.1073/pnas.76.1.396Hamilton, W. D., Axelrod, R., & Tanese, R. (1990). Sexual reproduction as an adaptation to resist parasites (a review). Proceedings of the National Academy of Sciences, 87(9), 3566-3573. doi:10.1073/pnas.87.9.3566Jasnos, L., Tomala, K., Paczesniak, D., & Korona, R. (2008). Interactions Between Stressful Environment and Gene Deletions Alleviate the Expected Average Loss of Fitness in Yeast. Genetics, 178(4), 2105-2111. doi:10.1534/genetics.107.084533Kishony, R., & Leibler, S. (2003). Journal of Biology, 2(2), 14. doi:10.1186/1475-4924-2-14Yeh, P. J., Hegreness, M. J., Aiden, A. P., & Kishony, R. (2009). Drug interactions and the evolution of antibiotic resistance. Nature Reviews Microbiology, 7(6), 460-466. doi:10.1038/nrmicro2133Cooper, T. F., & Lenski, R. E. (2010). Experimental evolution with E. coli in diverse resource environments. I. Fluctuating environments promote divergence of replicate populations. BMC Evolutionary Biology, 10(1), 11. doi:10.1186/1471-2148-10-11Korona, R., Nakatsu, C. H., Forney, L. J., & Lenski, R. E. (1994). Evidence for multiple adaptive peaks from populations of bacteria evolving in a structured habitat. Proceedings of the National Academy of Sciences, 91(19), 9037-9041. doi:10.1073/pnas.91.19.9037Rozen, D. E., Habets, M. G. J. L., Handel, A., & de Visser, J. A. G. M. (2008). Heterogeneous Adaptive Trajectories of Small Populations on Complex Fitness Landscapes. PLoS ONE, 3(3), e1715. doi:10.1371/journal.pone.0001715Kashtan, N., & Alon, U. (2005). Spontaneous evolution of modularity and network motifs. Proceedings of the National Academy of Sciences, 102(39), 13773-13778. doi:10.1073/pnas.0503610102De Visser, J. A. G. M., Hermisson, J., Wagner, G. P., Meyers, L. A., Bagheri-Chaichian, H., Blanchard, J. L., … Whitlock, M. C. (2003). PERSPECTIVE:EVOLUTION AND DETECTION OF GENETIC ROBUSTNESS. Evolution, 57(9), 1959. doi:10.1554/02-750rWilke, C. O., & Christoph, A. (2001). Interaction between directional epistasis and average mutational effects. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1475), 1469-1474. doi:10.1098/rspb.2001.1690Sanjuan, R., & Elena, S. F. (2006). Epistasis correlates to genomic complexity. Proceedings of the National Academy of Sciences, 103(39), 14402-14405. doi:10.1073/pnas.0604543103Sanjuán, R., & Nebot, M. R. (2008). A Network Model for the Correlation between Epistasis and Genomic Complexity. PLoS ONE, 3(7), e2663. doi:10.1371/journal.pone.0002663Lynch, M., & Conery, J. S. (2003). The Origins of Genome Complexity. Science, 302(5649), 1401-1404. doi:10.1126/science.1089370Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E., & Adami, C. (2001). Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature, 412(6844), 331-333. doi:10.1038/35085569Weinreich, D. M., & Chao, L. (2005). RAPID EVOLUTIONARY ESCAPE BY LARGE POPULATIONS FROM LOCAL FITNESS PEAKS IS LIKELY IN NATURE. Evolution, 59(6), 1175-1182. doi:10.1111/j.0014-3820.2005.tb01769.xWagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics, 8(12), 921-931. doi:10.1038/nrg2267Watson, R. A., Weinreich, D. M., & Wakeley, J. (2010). GENOME STRUCTURE AND THE BENEFIT OF SEX. Evolution, 65(2), 523-536. doi:10.1111/j.1558-5646.2010.01144.xHayden, E. J., Ferrada, E., & Wagner, A. (2011). Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme. Nature, 474(7349), 92-95. doi:10.1038/nature1008

    The Emergence of Canalization and Evolvability in an Open-Ended, Interactive Evolutionary System

    Full text link
    Natural evolution has produced a tremendous diversity of functional organisms. Many believe an essential component of this process was the evolution of evolvability, whereby evolution speeds up its ability to innovate by generating a more adaptive pool of offspring. One hypothesized mechanism for evolvability is developmental canalization, wherein certain dimensions of variation become more likely to be traversed and others are prevented from being explored (e.g. offspring tend to have similarly sized legs, and mutations affect the length of both legs, not each leg individually). While ubiquitous in nature, canalization almost never evolves in computational simulations of evolution. Not only does that deprive us of in silico models in which to study the evolution of evolvability, but it also raises the question of which conditions give rise to this form of evolvability. Answering this question would shed light on why such evolvability emerged naturally and could accelerate engineering efforts to harness evolution to solve important engineering challenges. In this paper we reveal a unique system in which canalization did emerge in computational evolution. We document that genomes entrench certain dimensions of variation that were frequently explored during their evolutionary history. The genetic representation of these organisms also evolved to be highly modular and hierarchical, and we show that these organizational properties correlate with increased fitness. Interestingly, the type of computational evolutionary experiment that produced this evolvability was very different from traditional digital evolution in that there was no objective, suggesting that open-ended, divergent evolutionary processes may be necessary for the evolution of evolvability.Comment: SI can be found at: http://www.evolvingai.org/files/SI_0.zi

    Are there laws of genome evolution?

    Get PDF
    Research in quantitative evolutionary genomics and systems biology led to the discovery of several universal regularities connecting genomic and molecular phenomic variables. These universals include the log-normal distribution of the evolutionary rates of orthologous genes; the power law-like distributions of paralogous family size and node degree in various biological networks; the negative correlation between a gene's sequence evolution rate and expression level; and differential scaling of functional classes of genes with genome size. The universals of genome evolution can be accounted for by simple mathematical models similar to those used in statistical physics, such as the birth-death-innovation model. These models do not explicitly incorporate selection, therefore the observed universal regularities do not appear to be shaped by selection but rather are emergent properties of gene ensembles. Although a complete physical theory of evolutionary biology is inconceivable, the universals of genome evolution might qualify as 'laws of evolutionary genomics' in the same sense 'law' is understood in modern physics.Comment: 17 pages, 2 figure

    Global adaptation in networks of selfish components: emergent associative memory at the system scale

    No full text
    In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organise into structures that enhance global adaptation, efficiency or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalisation and optimisation, are well-understood. Such global functions within a single agent or organism are not wholly surprising since the mechanisms (e.g. Hebbian learning) that create these neural organisations may be selected for this purpose, but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviours when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully-distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g. when they can influence which other agents they interact with) then, in adapting these inter-agent relationships to maximise their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviours as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalise by idealising stored patterns and/or creating new combinations of sub-patterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviours in the same sense, and by the same mechanism, as the organisational principles familiar in connectionist models of organismic learning

    Evolution of complex modular biological networks

    Get PDF
    Biological networks have evolved to be highly functional within uncertain environments while remaining extremely adaptable. One of the main contributors to the robustness and evolvability of biological networks is believed to be their modularity of function, with modules defined as sets of genes that are strongly interconnected but whose function is separable from those of other modules. Here, we investigate the in silico evolution of modularity and robustness in complex artificial metabolic networks that encode an increasing amount of information about their environment while acquiring ubiquitous features of biological, social, and engineering networks, such as scale-free edge distribution, small-world property, and fault-tolerance. These networks evolve in environments that differ in their predictability, and allow us to study modularity from topological, information-theoretic, and gene-epistatic points of view using new tools that do not depend on any preconceived notion of modularity. We find that for our evolved complex networks as well as for the yeast protein-protein interaction network, synthetic lethal pairs consist mostly of redundant genes that lie close to each other and therefore within modules, while knockdown suppressor pairs are farther apart and often straddle modules, suggesting that knockdown rescue is mediated by alternative pathways or modules. The combination of network modularity tools together with genetic interaction data constitutes a powerful approach to study and dissect the role of modularity in the evolution and function of biological networks.Comment: 28 pages, 10 figures, 8 supplemental figures, and one supplementary table. Final version to appear in PLoS Comp Bi

    Evolutionary Constraints to Viroid Evolution

    Get PDF
    We suggest that viroids are trapped into adaptive peaks as the result of adaptive constraints. The first one is imposed by the necessity to fold into packed structures to escape from RNA silencing. This creates antagonistic epistases, which make future adaptive trajectories contingent upon the first mutation and slow down the rate of adaptation. This second constraint can only be surpassed by increasing genetic redundancy or by recombination. Eigen’s paradox imposes a limit to the increase in genome complexity in the absence of mechanisms reducing mutation rate. Therefore, recombination appears as the only possible route to evolutionary innovation in viroids

    What Evolutionary Biologists Can Learn from Artificial Life

    Get PDF
    Big questions in Evolutionary Biology and experimental limitations - The evolution of complex traits. - The role of neutral variation in adaptive evolution. - Selection for fitness vs selection for robustness. - The topography of adaptive landscapes and the evolution of landscapes. - Eco-evolutionary dynamics: how evolution changes ecology and how ecology modulates evolution. - Evolution of phenotype-genotype maps. - The evolution of genetic systems (sex, speciation, genome architecture). The advantages of microbial Experimental Evolution - They are easy to propagate and enumerate. - They reproduce quickly, which allows experiments to run for many generations. - They allow large populations in small spaces, which facilitates experimental replication. -They can be stored in suspended animation and later revived, which allows the direct comparison of ancestral and evolved types. -Many microbes reproduce asexually and the resulting clonality enhances the precision of experimental replication. -Asexuality also maintains linkage between a genetic marker and the genomic background into which it is placed, which facilitates fitness measurements. -It is easy to manipulate environmental variables, such as resources, as well as the genetic composition of founding populations. - There are abundant molecular and genomic data for many species, as well as techniques for their precise genetic analysis and manipulation.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. BitLab (http://www.bitlab-es.com) Universidad de Málag
    corecore