2 research outputs found

    Diagnosis of induction motor faults via gabor analysis of the current in transient regime

    Full text link
    © 2011 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Time-frequency analysis of the transient current in induction motors (IMs) is the basis of the transient motor current signature analysis diagnosis method. IM faults can be accurately identified by detecting the characteristic pattern that each type of fault produces in the time-frequency plane during a speed transient. Diverse transforms have been proposed to generate a 2-D time-frequency representation of the current, such as the short time Fourier transform (FT), the wavelet transform, or the Wigner-Ville distribution. However, a fine tuning of their parameters is needed in order to obtain a high-resolution image of the fault in the time-frequency domain, and they also require a much higher processing effort than traditional diagnosis techniques, such as the FT. The new method proposed in this paper addresses both problems using the Gabor analysis of the current via the chirp z-transform, which can be easily adapted to generate high-resolution time-frequency stamps of different types of faults. In this paper, it is used to diagnose broken bars and mixed eccentricity faults of an IM using the current during a startup transient. This new approach is theoretically introduced and experimentally validated with a 1.1-kW commercial motor in faulty and healthy conditions. © 2012 IEEE.This work was supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN) in the framework of the VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011. (Programa Nacional de proyectos de Investigacion Fundamental, project reference DPI2011-23740). The Associate Editor coordinating the review process for this paper was Dr. Subhas Mukhopadhyay.Riera-Guasp, M.; Pineda-Sanchez, M.; Pérez-Cruz, J.; Puche-Panadero, R.; Roger-Folch, J.; Antonino-Daviu, J. (2012). Diagnosis of induction motor faults via gabor analysis of the current in transient regime. IEEE Transactions on Instrumentation and Measurement. 61(6):1583-1596. doi:10.1109/TIM.2012.2186650S1583159661

    Evolutionary chirp representation of non-stationary signals via Gabor transform

    No full text
    In this paper, we propose a chirp time-frequency representation for non-stationary signals, and associate with it-via a multi-window Gabor expansion-the corresponding evolutionary spectra. Representations based on rectangular time-frequency plane tilings give poor time and frequency localization in the spectrum, especially when the signal is not modeled well by fixed bandwidth analysis. We propose a representation that uses scaled and translated windows modulated by chirps as bases. Considering a chirp-based Wold-Cramer model, the signal evolutionary spectrum with improved time and frequency resolutions is obtained from the kernel of the representation. The chirp representation optimally chooses scales and linear chirp slopes by maximizing a local energy concentration measure. Parsimonious signal representation and well-localized evolutionary spectrum are obtained simultaneously. As an application of our representation, we consider the excision of broad-band jammers in spread spectrum communications. Examples illustrating the improvement in the time and frequency resolution of the signal spectrum using our procedure are given. (C) 2001 Elsevier Science B.V. All rights reserved
    corecore