531 research outputs found

    Evolutionary Biclustering based on Expression Patterns

    Get PDF
    The majority of the biclustering approaches for microarray data analysis use the Mean Squared Residue (MSR) as the main evaluation measure for guiding the heuristic. MSR has been proven to be inefficient to recognize several kind of interesting patterns for biclusters. Transposed Virtual Error (VEt ) has recently been discovered to overcome MSR drawbacks, being able to recognize shifting and/or scaling patterns. In this work we propose a parallel evolutionary biclustering algorithm which uses VEt as the main part of the fitness function, which has been designed using the volume and overlapping as other objectives to optimize. The resulting algorithm has been tested on both synthetic and benchmark real data producing satisfactory results. These results has been compared to those of the most popular biclustering algorithm developed by Cheng and Church and based in the use of MSR.Ministerio de Ciencia y Tecnología TIN2007-68084-C02-0

    SUBIC: A Supervised Bi-Clustering Approach for Precision Medicine

    Full text link
    Traditional medicine typically applies one-size-fits-all treatment for the entire patient population whereas precision medicine develops tailored treatment schemes for different patient subgroups. The fact that some factors may be more significant for a specific patient subgroup motivates clinicians and medical researchers to develop new approaches to subgroup detection and analysis, which is an effective strategy to personalize treatment. In this study, we propose a novel patient subgroup detection method, called Supervised Biclustring (SUBIC) using convex optimization and apply our approach to detect patient subgroups and prioritize risk factors for hypertension (HTN) in a vulnerable demographic subgroup (African-American). Our approach not only finds patient subgroups with guidance of a clinically relevant target variable but also identifies and prioritizes risk factors by pursuing sparsity of the input variables and encouraging similarity among the input variables and between the input and target variable

    Pairwise gene GO-based measures for biclustering of high-dimensional expression data

    Get PDF
    Background: Biclustering algorithms search for groups of genes that share the same behavior under a subset of samples in gene expression data. Nowadays, the biological knowledge available in public repositories can be used to drive these algorithms to find biclusters composed of groups of genes functionally coherent. On the other hand, a distance among genes can be defined according to their information stored in Gene Ontology (GO). Gene pairwise GO semantic similarity measures report a value for each pair of genes which establishes their functional similarity. A scatter search-based algorithm that optimizes a merit function that integrates GO information is studied in this paper. This merit function uses a term that addresses the information through a GO measure. Results: The effect of two possible different gene pairwise GO measures on the performance of the algorithm is analyzed. Firstly, three well known yeast datasets with approximately one thousand of genes are studied. Secondly, a group of human datasets related to clinical data of cancer is also explored by the algorithm. Most of these data are high-dimensional datasets composed of a huge number of genes. The resultant biclusters reveal groups of genes linked by a same functionality when the search procedure is driven by one of the proposed GO measures. Furthermore, a qualitative biological study of a group of biclusters show their relevance from a cancer disease perspective. Conclusions: It can be concluded that the integration of biological information improves the performance of the biclustering process. The two different GO measures studied show an improvement in the results obtained for the yeast dataset. However, if datasets are composed of a huge number of genes, only one of them really improves the algorithm performance. This second case constitutes a clear option to explore interesting datasets from a clinical point of view.Ministerio de Economía y Competitividad TIN2014-55894-C2-

    Binary Particle Swarm Optimization based Biclustering of Web usage Data

    Full text link
    Web mining is the nontrivial process to discover valid, novel, potentially useful knowledge from web data using the data mining techniques or methods. It may give information that is useful for improving the services offered by web portals and information access and retrieval tools. With the rapid development of biclustering, more researchers have applied the biclustering technique to different fields in recent years. When biclustering approach is applied to the web usage data it automatically captures the hidden browsing patterns from it in the form of biclusters. In this work, swarm intelligent technique is combined with biclustering approach to propose an algorithm called Binary Particle Swarm Optimization (BPSO) based Biclustering for Web Usage Data. The main objective of this algorithm is to retrieve the global optimal bicluster from the web usage data. These biclusters contain relationships between web users and web pages which are useful for the E-Commerce applications like web advertising and marketing. Experiments are conducted on real dataset to prove the efficiency of the proposed algorithms

    Configurable Pattern-based Evolutionary Biclustering of Gene Expression Data

    Get PDF
    BACKGROUND: Biclustering algorithms for microarray data aim at discovering functionally related gene sets under different subsets of experimental conditions. Due to the problem complexity and the characteristics of microarray datasets, heuristic searches are usually used instead of exhaustive algorithms. Also, the comparison among different techniques is still a challenge. The obtained results vary in relevant features such as the number of genes or conditions, which makes it difficult to carry out a fair comparison. Moreover, existing approaches do not allow the user to specify any preferences on these properties. RESULTS: Here, we present the first biclustering algorithm in which it is possible to particularize several biclusters features in terms of different objectives. This can be done by tuning the specified features in the algorithm or also by incorporating new objectives into the search. Furthermore, our approach bases the bicluster evaluation in the use of expression patterns, being able to recognize both shifting and scaling patterns either simultaneously or not. Evolutionary computation has been chosen as the search strategy, naming thus our proposal Evo-Bexpa (Evolutionary Biclustering based in Expression Patterns). CONCLUSIONS: We have conducted experiments on both synthetic and real datasets demonstrating Evo-Bexpa abilities to obtain meaningful biclusters. Synthetic experiments have been designed in order to compare Evo-Bexpa performance with other approaches when looking for perfect patterns. Experiments with four different real datasets also confirm the proper performing of our algorithm, whose results have been biologically validated through Gene Ontology

    Coordinated functional divergence of genes after genome duplication in Arabidopsis thaliana

    Get PDF
    Gene and genome duplications have been rampant during the evolution of flowering plants. Unlike small-scale gene duplications, whole-genome duplications (WGDs) copy entire pathways or networks, and as such create the unique situation in which such duplicated pathways or networks could evolve novel functionality through the coordinated sub-or neofunctionalization of its constituent genes. Here, we describe a remarkable case of coordinated gene expression divergence following WGDs in Arabidopsis thaliana. We identified a set of 92 homoeologous gene pairs that all show a similar pattern of tissue-specific gene expression divergence following WGD, with one homoeolog showing predominant expression in aerial tissues and the other homoeolog showing biased expression in tip-growth tissues. We provide evidence that this pattern of gene expression divergence seems to involve genes with a role in cell polarity and that likely function in the maintenance of cell wall integrity. Following WGD, many of these duplicated genes evolved separate functions through subfunctionalization in growth/development and stress response. Uncoupling these processes through genome duplications likely provided important adaptations with respect to growth and morphogenesis and defense against biotic and abiotic stress

    Analysis of regulatory network involved in mechanical induction of embryonic stem cell differentiation

    Get PDF
    Embryonic stem cells are conventionally differentiated by modulating specific growth factors in the cell culture media. Recently the effect of cellular mechanical microenvironment in inducing phenotype specific differentiation has attracted considerable attention. We have shown the possibility of inducing endoderm differentiation by culturing the stem cells on fibrin substrates of specific stiffness [1]. Here, we analyze the regulatory network involved in such mechanically induced endoderm differentiation under two different experimental configurations of 2-dimensional and 3-dimensional culture, respectively. Mouse embryonic stem cells are differentiated on an array of substrates of varying mechanical properties and analyzed for relevant endoderm markers. The experimental data set is further analyzed for identification of co-regulated transcription factors across different substrate conditions using the technique of bi-clustering. Overlapped bi-clusters are identified following an optimization formulation, which is solved using an evolutionary algorithm. While typically such analysis is performed at the mean value of expression data across experimental repeats, the variability of stem cell systems reduces the confidence on such analysis of mean data. Bootstrapping technique is thus integrated with the bi-clustering algorithm to determine sets of robust bi-clusters, which is found to differ significantly from corresponding bi-clusters at the mean data value. Analysis of robust bi-clusters reveals an overall similar network interaction as has been reported for chemically induced endoderm or endodermal organs but with differences in patterning between 2-dimensional and 3-dimensional culture. Such analysis sheds light on the pathway of stem cell differentiation indicating the prospect of the two culture configurations for further maturation. © 2012 Zhang et al
    corecore