4 research outputs found

    Content-aware resource allocation model for IPTV delivery networks

    Get PDF
    Nowadays, with the evolution of digital video broadcasting, as well as, the advent of high speed broadband networks, a new era of TV services has emerged known as IPTV. IPTV is a system that employs the high speed broadband networks to deliver TV services to the subscribers. From the service provider viewpoint, the challenge in IPTV systems is how to build delivery networks that exploits the resources efficiently and reduces the service cost, as well. However, designing such delivery networks affected by many factors including choosing the suitable network architecture, load balancing, resources waste, and cost reduction. Furthermore, IPTV contents characteristics, particularly; size, popularity, and interactivity play an important role in balancing the load and avoiding the resources waste for delivery networks. In this paper, we investigate the problem of resource allocation for IPTV delivery networks over the recent architecture, peer-service area architecture. The Genetic Algorithm as an optimization tool has been used to find the optimal provisioning parameters including storage, bandwidth, and CPU consumption. The experiments have been conducted on two data sets with different popularity distributions. The experiments have been conducted on two popularity distributions. The experimental results showed the impact of content status on the resource allocation process

    Evolutionary Optimization of File Assignment for a Large-Scale Video-on-Demand System

    Full text link
    We present a genetic algorithm to tackle a file assignment problem for a large scale video-on-demand system. The file assignment problem is to find the optimal replication and allocation of movie files to disks, so that the request blocking probability is minimized subject to capacity constraints. We adopt a divide-and-conquer strategy, where the entire solution space of file assignments is divided into subspaces. Each subspace is an exclusive set of solutions sharing a common file replication instance. This allows us to utilize a greedy file allocation method to find a sufficiently good quality heuristic solution within each subspace. Two performance indices are further designed to measure the quality of the heuristic solution on 1) its assignment of multi-copy movies and 2) its assignment of single-copy movies. We demonstrate that these techniques together with ad hoc population handling methods enable genetic algorithms to operate in a significantly reduced search space, and achieve good quality file assignments in a computationally efficient way

    Evolutionary optimization of file assignment for a large-scale video-on-demand system

    No full text
    We present a genetic algorithm for tackling a file assignment problem for a large-scale video-on-demand system. The file assignment problem is to find the optimal replication and allocation of movie files to disks so that the request blocking probability is minimized subject to capacity constraints. We adopt a divide-and-conquer strategy, where the entire solution space of file assignments is divided into subspaces. Each subspace is an exclusive set of solutions sharing a common file replication instance. This allows us to utilize a greedy file allocation method for finding a good-quality heuristic solution within each subspace. We further design two performance indices to measure the quality of the heuristic solution on 1.) its assignment of multicopy movies and 2.) its assignment of single-copy movies. We demonstrate that these techniques, together with ad hoc population handling methods, enable genetic algorithms to operate in a significantly reduced search space and achieve good-quality file assignments in a computationally efficient way

    Evolutionary Optimization of File Assignment for a Large-Scale Video-on-Demand System

    No full text
    corecore