44 research outputs found

    Evolutionary History of Mammalian Transposons Determined by Genome-Wide Defragmentation

    Get PDF
    The constant bombardment of mammalian genomes by transposable elements (TEs) has resulted in TEs comprising at least 45% of the human genome. Because of their great age and abundance, TEs are important in comparative phylogenomics. However, estimates of TE age were previously based on divergence from derived consensus sequences or phylogenetic analysis, which can be unreliable, especially for older more diverged elements. Therefore, a novel genome-wide analysis of TE organization and fragmentation was performed to estimate TE age independently of sequence composition and divergence or the assumption of a constant molecular clock. Analysis of TEs in the human genome revealed ∼600,000 examples where TEs have transposed into and fragmented other TEs, covering >40% of all TEs or ∼542 Mbp of genomic sequence. The relative age of these TEs over evolutionary time is implicit in their organization, because newer TEs have necessarily transposed into older TEs that were already present. A matrix of the number of times that each TE has transposed into every other TE was constructed, and a novel objective function was developed that derived the chronological order and relative ages of human TEs spanning >100 million years. This method has been used to infer the relative ages across all four major TE classes, including the oldest, most diverged elements. Analysis of DNA transposons over the history of the human genome has revealed the early activity of some MER2 transposons, and the relatively recent activity of MER1 transposons during primate lineages. The TEs from six additional mammalian genomes were defragmented and analyzed. Pairwise comparison of the independent chronological orders of TEs in these mammalian genomes revealed species phylogeny, the fact that transposons shared between genomes are older than species-specific transposons, and a subset of TEs that were potentially active during periods of speciation

    Analysis of Transposon Interruptions Suggests Selection for L1 Elements on the X Chromosome

    Get PDF
    It has been hypothesised that the massive accumulation of L1 transposable elements on the X chromosome is due to their function in X inactivation, and that the accumulation of Alu elements near genes is adaptive. We tested the possible selective advantage of these two transposable element (TE) families with a novel method, interruption analysis. In mammalian genomes, a large number of TEs interrupt other TEs due to the high overall abundance and age of repeats, and these interruptions can be used to test whether TEs are selectively neutral. Interruptions of TEs, which are beneficial for the host, are expected to be deleterious and underrepresented compared with neutral ones. We found that L1 elements in the regions of the X chromosome that contain the majority of the inactivated genes are significantly less frequently interrupted than on the autosomes, while L1s near genes that escape inactivation are interrupted with higher frequency, supporting the hypothesis that L1s on the X chromosome play a role in its inactivation. In addition, we show that TEs are less frequently interrupted in introns than in intergenic regions, probably due to selection against the expansion of introns, but the insertion pattern of Alus is comparable to other repeats

    Conversion of DNA sequences: From a transposable element to a tandem repeat or to a gene

    Get PDF
    Eukaryotic genomes are rich in repetitive DNA sequences grouped in two classes regarding their genomic organization: Tandem repeats and dispersed repeats. In tandem repeats, copies of a short DNA sequence are positioned one after another within the genome, while in dispersed repeats, these copies are randomly distributed. In this review we provide evidence that both tandem and dispersed repeats can have a similar organization, which leads us to suggest an update to their classification based on the sequence features, concretely regarding the presence or absence of retrotransposons/transposon specific domains. In addition, we analyze several studies that show that a repetitive element can be remodeled into repetitive non-coding or coding sequences, suggesting (1) an evolutionary relationship among DNA sequences, and (2) that the evolution of the genomes involved frequent repetitive sequence reshuffling, a process that we have designated as a “DNA remodeling mechanism”. The alternative classification of the repetitive DNA sequences here proposed will provide a novel theoretical framework that recognizes the importance of DNA remodeling for the evolution and plasticity of eukaryotic genomes.This work was financially supported by a Newfelpro Post-doctoral grant (No. 82) from Republic of Croatia co-financed through the Marie Curie FP7-PEOPLE-2011-COFUND program

    The Role of DNA Methylation in Genome Defense in Cnidaria and Other Invertebrates

    Get PDF
    Considerable attention has recently been focused on the potential involvement of DNA methylation in regulating gene expression in cnidarians. Much of this work has been centered on corals, in the context of changes in methylation perhaps facilitating adaptation to higher seawater temperatures and other stressful conditions. Although first proposed more than 30 years ago, the possibility that DNA methylation systems function in protecting animal genomes against the harmful effects of transposon activity has largely been ignored since that time. Here, we show that transposons are specifically targeted by the DNA methylation system in cnidarians, and that the youngest transposons (i.e., those most likely to be active) are most highly methylated. Transposons in longer and highly active genes were preferentially methylated and, as transposons aged, methylation levels declined, reducing the potentially harmful side effects of CpG methylation. In Cnidaria and a range of other invertebrates, correlation between the overall extent of methylation and transposon content was strongly supported. Present transposon burden is the dominant factor in determining overall level of genomic methylation in a range of animals that diverged in or before the early Cambrian, suggesting that genome defense represents the ancestral role of CpG methylation

    Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements

    Get PDF
    Throughout evolution, eukaryotic genomes have been invaded by transposable elements (TEs). Little is known about the factors leading to genomic proliferation of TEs, their preferred integration sites and the molecular mechanisms underlying their insertion. We analyzed hundreds of thousands nested TEs in the human genome, i.e. insertions of TEs into existing ones. We first discovered that most TEs insert within specific ‘hotspots’ along the targeted TE. In particular, retrotransposed Alu elements contain a non-canonical single nucleotide hotspot for insertion of other Alu sequences. We next devised a method for identification of integration sequence motifs of inserted TEs that are conserved within the targeted TEs. This method revealed novel sequences motifs characterizing insertions of various important TE families: Alu, hAT, ERV1 and MaLR. Finally, we performed a global assessment to determine the extent to which young TEs tend to nest within older transposed elements and identified a 4-fold higher tendency of TEs to insert into existing TEs than to insert within non-TE intergenic regions. Our analysis demonstrates that TEs are highly biased to insert within certain TEs, in specific orientations and within specific targeted TE positions. TE nesting events also reveal new characteristics of the molecular mechanisms underlying transposition

    Using Transposable Elements as Tools to Better Understand Evolution at the Genomic Level

    Get PDF
    Transposable elements (TEs), also known as jumping genes, are DNA sequences capable of mobilizing and replicating within the genome. In mammals, it is not uncommon for 50% of the genome to be derived from TEs, yet they remain an underutilized tool for tracking evolutionary change. With the increasing number of publicly funded genome projects and affordable access to next-generation sequencing platforms, it is important to demonstrate the role TEs may play in helping us understand evolutionary patterns. The research presented herein utilizes TEs to investigate such patterns at the genomic, specific, and generic levels in three distinct ways. First at the genomic level, an analysis of the historical TE activity within the thirteen-lined ground squirrel (Spermophilus tridecemlineatus) shows that non-LTR retrotransposon activity has been declining for the past ~26 million years and appears to have ceased ~5 million years ago. Since most mammals, and all other rodents studied to date, have active TEs the extinction event in S. tridecemlineatus makes it a valuable model for understanding the factors driving TE activity and extinction. Second, we examined TEs as factors impacting genomic and species diversity. We found that DNA transposon insertions in Eptesicus fuscus, appear to have been exapted as miRNAs. When placed within a phylogenetic context a burst of transposon-driven, miRNA origination and the vespertilionid species radiation occurred simultaneously ~30 million years ago. This observation implies that lineage specific TEs could generate lineage specific regulatory pathways, and consequently lineage specific phenotypic differences. Finally, we utilized TEs to investigate their phylogenetic potential at the level of genus. In particular a method was developed that identified, over 670 thousand Ves SINE insertions in seven species of Myotis for use in future phylogenetic studies. Our method was able to accurately identify insertions in taxa for which no reference genome was available and was confirmed using traditional PCR and Sanger sequencing methods. By identifying polymorphic Ves insertions, it may be possible to resolve the phylogeny of one of the largest species radiations in mammals

    Retrotransposon mediated genomic variation in the human and chimpanzee lineages

    Get PDF
    LINE-1 (Long INterspersed Element-1 or L1) and Alu elements are important sources of structural variation in primate genomes because they are highly active retrotransposons with copy numbers of ~520,000 and \u3e1.2 million within the human genome, respectively. Although the bulk of these elements have resided in their respective host genomes for a long time, and have thus accumulated random mutations, overall these elements retain high levels of sequence identity among themselves. The presence of many nearly-identical retrotransposons located close to each other (e.g., Alu-Alu or L1-L1 pairs) disposes their host genomes to unequal homologous DNA recombination events that generate genomic deletions and inversions of varying sizes. Through computational comparisons of the human and chimpanzee genome sequences, and using rhesus macaque and orangutan genome sequences as outgroups, we have identified species-specific genomic variation. In the first analysis, we identified human and chimpanzee-specific L1s and examined their sequence evolution. We show that L1 retrotransposition activity is slightly higher in the human lineage, relative to the chimpanzee lineage, and that L1s have experienced different evolutionary fates in these two lineages, resulting from random variation or competition between L1 subfamily lineages. Next, we analyzed the magnitude of Alu recombination-mediated deletions (ARMDs) in the chimpanzee lineage subsequent to the human-chimpanzee divergence (~6 million years ago). We have identified 663 chimpanzee lineage-specific deletions (involving a total of ~771 kb of genomic sequence) attributable to this process. The RefSeq databases indicate that 13 exons in six genes are annotated as either demonstrably or putatively functional in the human genome, and 299 intronic regions have been deleted through ARMDs in the chimpanzee lineage. In the third analysis, we characterize chromosomal inversion events between the human and chimpanzee genomes caused by inverted L1-L1 or Alu-Alu pairs. We have identified 49 retrotransposon recombination-mediated inversion (RRMI) loci and, among them, three RRMI loci contain inverted exonic regions in known genes. Therefore, we suggest that L1 and Alu elements have contributed to the genomic and phenotypic diversity between humans and chimpanzees since the divergence of the two species
    corecore