41,189 research outputs found

    Evolutionary Dilemmas in a Social Network

    Full text link
    We simulate the prisoner's dilemma and hawk-dove games on a real social acquaintance network. Using a discrete analogue of replicator dynamics, we show that surprisingly high levels of cooperation can be achieved, contrary to what happens in unstructured mixing populations. Moreover, we empirically show that cooperation in this network is stable with respect to invasion by defectors.Comment: 13 pages, 9 figures; to be published in Lecture Notes in Computer Science 200

    Metric clusters in evolutionary games on scale-free networks

    Full text link
    The evolution of cooperation in social dilemmas in structured populations has been studied extensively in recent years. Whereas many theoretical studies have found that a heterogeneous network of contacts favors cooperation, the impact of spatial effects in scale-free networks is still not well understood. In addition to being heterogeneous, real contact networks exhibit a high mean local clustering coefficient, which implies the existence of an underlying metric space. Here, we show that evolutionary dynamics in scale-free networks self-organize into spatial patterns in the underlying metric space. The resulting metric clusters of cooperators are able to survive in social dilemmas as their spatial organization shields them from surrounding defectors, similar to spatial selection in Euclidean space. We show that under certain conditions these metric clusters are more efficient than the most connected nodes at sustaining cooperation and that heterogeneity does not always favor--but can even hinder--cooperation in social dilemmas. Our findings provide a new perspective to understand the emergence of cooperation in evolutionary games in realistic structured populations

    Different perceptions of social dilemmas: Evolutionary multigames in structured populations

    Get PDF
    Motivated by the fact that the same social dilemma can be perceived differently by different players, we here study evolutionary multigames in structured populations. While the core game is the weak prisoner's dilemma, a fraction of the population adopts either a positive or a negative value of the sucker's payoff, thus playing either the traditional prisoner's dilemma or the snowdrift game. We show that the higher the fraction of the population adopting a different payoff matrix, the more the evolution of cooperation is promoted. The microscopic mechanism responsible for this outcome is unique to structured populations, and it is due to the payoff heterogeneity, which spontaneously introduces strong cooperative leaders that give rise to an asymmetric strategy imitation flow in favor of cooperation. We demonstrate that the reported evolutionary outcomes are robust against variations of the interaction network, and they also remain valid if players are allowed to vary which game they play over time. These results corroborate existing evidence in favor of heterogeneity-enhanced network reciprocity, and they reveal how different perceptions of social dilemmas may contribute to their resolution.Comment: 7 two-column pages, 5 figures; accepted for publication in Physical Review

    From degree-correlated to payoff-correlated activity for an optimal resolution of social dilemmas

    Get PDF
    An active participation of players in evolutionary games depends on several factors, ranging from personal stakes to the properties of the interaction network. Diverse activity patterns thus have to be taken into account when studying the evolution of cooperation in social dilemmas. Here we study the weak prisoner's dilemma game, where the activity of each player is determined in a probabilistic manner either by its degree or by its payoff. While degree-correlated activity introduces cascading failures of cooperation that are particularly severe on scale-free networks with frequently inactive hubs, payoff-correlated activity provides a more nuanced activity profile, which ultimately hinders systemic breakdowns of cooperation. To determine optimal conditions for the evolution of cooperation, we introduce an exponential decay to payoff-correlated activity that determines how fast the activity of a player returns to its default state. We show that there exists an intermediate decay rate, at which the resolution of the social dilemma is optimal. This can be explained by the emerging activity patterns of players, where the inactivity of hubs is compensated effectively by the increased activity of average-degree players, who through their collective influence in the network sustain a higher level of cooperation. The sudden drops in the fraction of cooperators observed with degree-correlated activity therefore vanish, and so does the need for the lengthy spatiotemporal reorganization of compact cooperative clusters. The absence of such asymmetric dynamic instabilities thus leads to an optimal resolution of social dilemmas, especially when the conditions for the evolution of cooperation are strongly adverse.Comment: 8 two-column pages, 6 figures; accepted for publication in Physical Review

    Evolutionary game selection creates cooperative environments

    Full text link
    The emergence of collective cooperation in competitive environments is a well-known phenomenon in biology, economics and social systems. While most evolutionary game models focus on the evolution of strategies for a fixed game, how strategic decisions co-evolve with the environment has so far mostly been overlooked. Here, we consider a game selection model where not only the strategies but also the game can change over time following evolutionary principles. Our results show that co-evolutionary dynamics of games and strategies can induce novel collective phenomena, fostering the emergence of cooperative environments. When the model is taken on structured populations the architecture of the interaction network can significantly amplify pro-social behaviour, with a critical role played by network heterogeneity and the presence of clustered groups, distinctive features observed in real-world populations. By unveiling the link between the evolution of strategies and games for different structured populations, our model sheds new light on the origin of social dilemmas ubiquitously observed in real-world social systems.Comment: 9 pages, 7 figure

    Self-organization towards optimally interdependent networks by means of coevolution

    Get PDF
    Coevolution between strategy and network structure is established as a means to arrive at the optimal conditions needed to resolve social dilemmas. Yet recent research has highlighted that the interdependence between networks may be just as important as the structure of an individual network. We therefore introduce the coevolution of strategy and network interdependence to see whether this can give rise to elevated levels of cooperation in the prisonerʼs dilemma game. We show that the interdependence between networks self-organizes so as to yield optimal conditions for the evolution of cooperation. Even under extremely adverse conditions, cooperators can prevail where on isolated networks they would perish. This is due to the spontaneous emergence of a two-class society, with only the upper class being allowed to control and take advantage of the interdependence. Spatial patterns reveal that cooperators, once arriving at the upper class, are much more competent than defectors in sustaining compact clusters of followers. Indeed, the asymmetric exploitation of interdependence confers to them a strong evolutionary advantage that may resolve even the toughest of social dilemmas

    Optimal interdependence between networks for the evolution of cooperation

    Get PDF
    Recent research has identified interactions between networks as crucial for the outcome of evolutionary games taking place on them. While the consensus is that interdependence does promote cooperation by means of organizational complexity and enhanced reciprocity that is out of reach on isolated networks, we here address the question just how much interdependence there should be. Intuitively, one might assume the more the better. However, we show that in fact only an intermediate density of sufficiently strong interactions between networks warrants an optimal resolution of social dilemmas. This is due to an intricate interplay between the heterogeneity that causes an asymmetric strategy flow because of the additional links between the networks, and the independent formation of cooperative patterns on each individual network. Presented results are robust to variations of the strategy updating rule, the topology of interdependent networks, and the governing social dilemma, thus suggesting a high degree of universality

    Conformity enhances network reciprocity in evolutionary social dilemmas

    Get PDF
    The pursuit of highest payoffs in evolutionary social dilemmas is risky and sometimes inferior to conformity. Choosing the most common strategy within the interaction range is safer because it ensures that the payoff of an individual will not be much lower than average. Herding instincts and crowd behavior in humans and social animals also compel to conformity on their own right. Motivated by these facts, we here study the impact of conformity on the evolution of cooperation in social dilemmas. We show that an appropriate fraction of conformists within the population introduces an effective surface tension around cooperative clusters and ensures smooth interfaces between different strategy domains. Payoff-driven players brake the symmetry in favor of cooperation and enable an expansion of clusters past the boundaries imposed by traditional network reciprocity. This mechanism works even under the most testing conditions, and it is robust against variations of the interaction network as long as degree-normalized payoffs are applied. Conformity may thus be beneficial for the resolution of social dilemmas.Comment: 8 two-column pages, 5 figures; accepted for publication in Journal of the Royal Society Interfac

    Evolution of emotions on networks leads to the evolution of cooperation in social dilemmas

    Get PDF
    We show that the resolution of social dilemmas in random graphs and scale-free networks is facilitated by imitating not the strategy of better-performing players but, rather, their emotions. We assume sympathy and envy to be the two emotions that determine the strategy of each player in any given interaction, and we define them as the probabilities of cooperating with players having a lower and a higher payoff, respectively. Starting with a population where all possible combinations of the two emotions are available, the evolutionary process leads to a spontaneous fixation to a single emotional profile that is eventually adopted by all players. However, this emotional profile depends not only on the payoffs but also on the heterogeneity of the interaction network. Homogeneous networks, such as lattices and regular random graphs, lead to fixations that are characterized by high sympathy and high envy, while heterogeneous networks lead to low or modest sympathy but also low envy. Our results thus suggest that public emotions and the propensity to cooperate at large depend, and are in fact determined by, the properties of the interaction network
    corecore