31,162 research outputs found

    Social Dilemmas and Cooperation in Complex Networks

    Get PDF
    In this paper we extend the investigation of cooperation in some classical evolutionary games on populations were the network of interactions among individuals is of the scale-free type. We show that the update rule, the payoff computation and, to some extent the timing of the operations, have a marked influence on the transient dynamics and on the amount of cooperation that can be established at equilibrium. We also study the dynamical behavior of the populations and their evolutionary stability.Comment: 12 pages, 7 figures. to appea

    Applications of Evolutionary Computation

    Get PDF
    This book constitutes the refereed conference proceedings of the 18th International Conference on the Applications of Evolutionary Computation, EvoApplications 2015, held in Copenhagen, Spain, in April 2015, colocated with the Evo* 2015 events EuroGP, EvoCOP, and EvoMUSART. The 72 revised full papers presented were carefully reviewed and selected from 125 submissions. EvoApplications 2015 consisted of the following 13 tracks: EvoBIO (evolutionary computation, machine learning and data mining in computational biology), EvoCOMNET (nature-inspired techniques for telecommunication networks and other parallel and distributed systems), EvoCOMPLEX (evolutionary algorithms and complex systems), EvoENERGY (evolutionary computation in energy applications), EvoFIN (evolutionary and natural computation in finance and economics), EvoGAMES (bio-inspired algorithms in games), EvoIASP (evolutionary computation in image analysis, signal processing, and pattern recognition), EvoINDUSTRY (nature-inspired techniques in industrial settings), EvoNUM (bio-inspired algorithms for continuous parameter optimization), EvoPAR (parallel implementation of evolutionary algorithms), EvoRISK (computational intelligence for risk management, security and defence applications), EvoROBOT (evolutionary computation in robotics), and EvoSTOC (evolutionary algorithms in stochastic and dynamic environments)

    Ms Pac-Man versus Ghost Team CEC 2011 competition

    Get PDF
    Games provide an ideal test bed for computational intelligence and significant progress has been made in recent years, most notably in games such as Go, where the level of play is now competitive with expert human play on smaller boards. Recently, a significantly more complex class of games has received increasing attention: real-time video games. These games pose many new challenges, including strict time constraints, simultaneous moves and open-endedness. Unlike in traditional board games, computational play is generally unable to compete with human players. One driving force in improving the overall performance of artificial intelligence players are game competitions where practitioners may evaluate and compare their methods against those submitted by others and possibly human players as well. In this paper we introduce a new competition based on the popular arcade video game Ms Pac-Man: Ms Pac-Man versus Ghost Team. The competition, to be held at the Congress on Evolutionary Computation 2011 for the first time, allows participants to develop controllers for either the Ms Pac-Man agent or for the Ghost Team and unlike previous Ms Pac-Man competitions that relied on screen capture, the players now interface directly with the game engine. In this paper we introduce the competition, including a review of previous work as well as a discussion of several aspects regarding the setting up of the game competition itself. © 2011 IEEE

    Dynamically adjusting game-play in 2D platformers using procedural level generation

    Get PDF
    The rapid growth of the entertainment industry has presented the requirement for more efficient development of computerized games. Importantly, the diversity of audiences that participate in playing games has called for the development of new technologies that allow games to address users with differing levels of skills and preferences. This research presents a systematic study that explored the concept of dynamic difficulty using procedural level generation with interactive evolutionary computation. Additionally, the design, development and trial of computerized agents the play game levels in the place of a human player is detailed. The work presented in this thesis provides a solution to the rapid growth of the entertainment industry whilst providing a more effective means for developing computerized games

    Computation and analysis of evolutionary game dynamics

    Get PDF
    Biological processes are usually defined based on the principles of replication, mutation, competition, adaption, and evolution. In evolutionary game theory, such a process is modeled as a so-called evolutionary game, which not only provides an alternative interpretation of dynamical equilibrium in terms of the game nature of the process, but also bridges the stability of the biological process with the Nash equilibrium of the evolutionary game. Computationally, the evolutionary game models are described in terms of inverse and direct games, which are estimating the payoff matrix from data and computing the Nash equilibrium of a given payoff matrix respectively. We discuss the necessary and sufficient conditions for the Nash equilibrium states, and derive the methods for both inverse and direct games in this thesis. The inverse game is solved by a non-parametric smoothing method and penalized least squares method, while different schemes for the computation of the direct game are proposed including a specialized Snow-Shapley algorithm, a specialized Lemke-Howson algorithm, and an algorithm based on the solution of a complementarity problem on a simplex. Computation for the sparsest and densest Nash equilibria is investigated. We develop a new algorithm called dual method with better performance than the traditional Snow-Shapley method on the sparse and dense Nash equilibrium searching. Computational results are presented based on examples. The package incorporating all the schemes, the Toolbox of Evolution Dynamics Analysis (TEDA), is described

    Multi-agent evolutionary systems for the generation of complex virtual worlds

    Full text link
    Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex models are a requirement for the successful delivery of many scenes and environments. While workflows such as rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm (IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer's intent through interaction, and encourages playful discovery

    Evolving a rule system controller for automatic driving in a car racing competition

    Get PDF
    IEEE Symposium on Computational Intelligence and Games. Perth, Australia, 15-18 December 2008.The techniques and the technologies supporting Automatic Vehicle Guidance are important issues. Automobile manufacturers view automatic driving as a very interesting product with motivating key features which allow improvement of the car safety, reduction in emission or fuel consumption or optimization of driver comfort during long journeys. Car racing is an active research field where new advances in aerodynamics, consumption and engine power are critical each season. Our proposal is to research how evolutionary computation techniques can help in this field. For this work we have designed an automatic controller that learns rules with a genetic algorithm. This paper is a report of the results obtained by this controller during the car racing competition held in Hong Kong during the IEEE World Congress on Computational Intelligence (WCCI 2008).Publicad
    • 

    corecore