195,661 research outputs found

    Environmental engineering for quantum energy transport

    Full text link
    Transport phenomena are ubiquitous throughout the science, engineering and technology disciplines as it concerns energy, mass, charge and information exchange between systems. In particular, energy transport in the nanoscale regime has attracted significant attention within the physical science community due to its potential to explain complex phenomena like the electronic energy transfer in molecular crystals or the Fenna-Matthews-Olson / light harvesting complexes in photosynthetic bacteria with long time coherences. Energy transport in these systems is highly affected by environmental noise but surprisingly not always in a detrimental way. It was recently found that situations exist where noise actually enhances the transport phenomena. Such noise can take many forms, but can be characterised in three basic behaviours: quantum, coloured or nonlocal. All have been shown potential to offer an energy transport enhancement. The focus of this work is on quantum transport caused by stochastic environment with spatio-temporal correlation. We consider a multi-site nearest neighbour interaction model with pure dephasing environmental noise with coloured and nonlocal character and show how an accelerated rate for the energy transfer results especially under anti-correlation. Negative spatial correlations provide another control parameter to help one establish the most efficient transfer of energy and may provide new insights into the working of exciton transport in photosynthetic complexes. Further the usage of spatio-temporal correlated noise may be a beneficial resource for efficient transport in large scale quantum networks.Comment: 11 pages 5 figure

    Efficient robust routing for single commodity network flows

    Get PDF
    We study single commodity network flows with suitable robustness and efficiency specs. An original use of a maximum entropy problem for distributions on the paths of the graph turns this problem into a steering problem for Markov chains with prescribed initial and final marginals. From a computational standpoint, viewing scheduling this way is especially attractive in light of the existence of an iterative algorithm to compute the solution. The present paper builds on [13] by introducing an index of efficiency of a transportation plan and points, accordingly, to efficient-robust transport policies. In developing the theory, we establish two new invariance properties of the solution (called bridge) \u2013 an iterated bridge invariance property and the invariance of the most probable paths. These properties, which were tangentially mentioned in our previous work, are fully developed here. We also show that the distribution on paths of the optimal transport policy, which depends on a \u201ctemperature\u201d parameter, tends to the solution of the \u201cmost economical\u201d but possibly less robust optimal mass transport problem as the temperature goes to zero. The relevance of all of these properties for transport over networks is illustrated in an example

    Efficient quantum state transfer in spin chains via adiabatic passage

    Get PDF
    We propose a method for quantum state transfer in spin chains using an adiabatic passage technique. Modifying even and odd nearest-neighbour couplings in time allows to achieve transfer fidelities arbitrarily close to one, without the need for a precise control of coupling strengths and timing. We study in detail transfer by adiabatic passage in a spin-1 chain governed by a generalized Heisenberg Hamiltonian. We consider optimization of the transfer process applying optimal control techniques. We discuss a realistic experimental implementation using cold atomic gases confined in deep optical lattices.Comment: 14 pages, 6 figures, to be published in New J. Phy

    Functional optimization of the arterial network

    Full text link
    We build an evolutionary scenario that explains how some crucial physiological constraints in the arterial network of mammals - i.e. hematocrit, vessels diameters and arterial pressure drops - could have been selected by evolution. We propose that the arterial network evolved while being constrained by its function as an organ. To support this hypothesis, we focus our study on one of the main function of blood network: oxygen supply to the organs. We consider an idealized organ with a given oxygen need and we optimize blood network geometry and hematocrit with the constraint that it must fulfill the organ oxygen need. Our model accounts for the non-Newtonian behavior of blood, its maintenance cost and F\aa hr\ae us effects (decrease in average concentration of red blood cells as the vessel diameters decrease). We show that the mean shear rates (relative velocities of fluid layers) in the tree vessels follow a scaling law related to the multi-scale property of the tree network, and we show that this scaling law drives the behavior of the optimal hematocrit in the tree. We apply our scenario to physiological data and reach results fully compatible with the physiology: we found an optimal hematocrit of 0.43 and an optimal ratio for diameter decrease of about 0.79. Moreover our results show that pressure drops in the arterial network should be regulated in order for oxygen supply to remain optimal, suggesting that the amplitude of the arterial pressure drop may have co-evolved with oxygen needs.Comment: Shorter version, misspelling correctio

    Quantum Ratchets for Quantum Communication with Optical Superlattices

    Full text link
    We propose to use a quantum ratchet to transport quantum information in a chain of atoms trapped in an optical superlattice. The quantum ratchet is created by a continuous modulation of the optical superlattice which is periodic in time and in space. Though there is zero average force acting on the atoms, we show that indeed the ratchet effect permits atoms on even and odd sites to move along opposite directions. By loading the optical lattice with two-level bosonic atoms, this scheme permits to perfectly transport a qubit or entangled state imprinted in one or more atoms to any desired position in the lattice. From the quantum computation point of view, the transport is achieved by a smooth concatenation of perfect swap gates. We analyze setups with noninteracting and interacting particles and in the latter case we use the tools of optimal control to design optimal modulations. We also discuss the feasibility of this method in current experiments.Comment: Published version, 9 pages, 5 figure
    • …
    corecore