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Efficient-robust routing for single commodity network flows
Yongxin Chen, Tryphon T. Georgiou, Fellow IEEE, Michele Pavon, and Allen Tannenbaum, Fellow IEEE

Abstract—We study single commodity network flows with
suitable robustness and efficiency specs. An original use of
a maximum entropy problem for distributions on the paths
of the graph turns this problem into a steering problem for
Markov chains with prescribed initial and final marginals. From
a computational standpoint, viewing scheduling this way is
especially attractive in light of the existence of an iterative
algorithm to compute the solution. The present paper builds on
[13] by introducing an index of efficiency of a transportation plan
and points, accordingly, to efficient-robust transport policies. In
developing the theory, we establish two new invariance properties
of the solution (called bridge) – an iterated bridge invariance
property and the invariance of the most probable paths. These
properties, which were tangentially mentioned in our previous
work, are fully developed here. We also show that the distribution
on paths of the optimal transport policy, which depends on
a “temperature” parameter, tends to the solution of the “most
economical” but possibly less robust optimal mass transport
problem as the temperature goes to zero. The relevance of all of
these properties for transport over networks is illustrated in an
example.

Index Terms— Transport over networks, maximum en-
tropy problem, most probable path, temperature parameter

I. INTRODUCTION

Consider a company owning a factory F and a warehouse
W . The company wants to ship a certain quantity of goods
from F so that they reach W in at most N time units. The
flow must occur on the available road network connecting the
two facilities. On the one hand, it is desirable that the transport
plan utilizes as many different routes as possible so that most
of the goods arrive within the prescribed time horizon even in
the presence of road congestion, roadwork, etc. On the other
hand, it is also important that shorter paths are used to keep
the vehicles fuel consumption within a budgetary constraint.

In this paper, continuing the research initiated in [13], we
provide a precise mathematical formulation of the above single
commodity network flow problem. Normalizing the mass of
goods to one, we formulate a maximum entropy problem for
Markovian distributions on the paths of the network. The
optimal feedback control suitably modifies a prior transition
mechanism thereby achieving robustness while limiting the
cost. This is accomplished through an appropriate choice of the
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prior transition involving the adjacency matrix of the graph.
The optimal scheduling, while spreading the mass over all
feasible paths, assigns maximum probability to all minimum
cost paths.

Differently from the standard literature on controlled
Markov chains, the optimal policy (Schrödinger bridge) is not
computed through dynamic programming. The constraint on
the final marginal (all the goods should be in the warehouse
by day N ) dictates a different approach. The solution is
computed by solving iteratively a Schrödinger-Bernstein linear
system with nonlinear coupling at the initial and final times.
This algorithm, whose convergence was established in [22],
is related to recent work in entropy regularization [16] and
equilibrium assignement in economics [23] as well as to
classical work in statistics [26].

Our straightforward approach also avoids altogether mod-
elling cascading failures which is a complex and controversial
task [42]. It is also worthwhile remarking that maximum
entropy problems [14] which constitute a powerful inference
method, find here an alternative use as a tool to produce a
desired flow in a network by exploiting the properties of the
prior transition mechanism.

Our intuitive notion of robustness of the routing policy
should not be confused with other notions of robustness
concerning networks which have been put forward and studied,
see e.g. [1], [5], [6], [7], [19], [42]. In particular, in [7], [19],
robustness has been defined through a fluctuation-dissipation
relation involving the entropy rate. This latter notion captures
relaxation of a process back to equilibrium after a perturbation
and has been used to study both financial and biological
networks [40], [41]. Our study, inspired by transportation
and data networks, does not concern equilibrium or near
equilibrium cases.

This paper features the following novel contributions: a)
it introduces an explicit index of efficiency of a transportation
plan; b) The choice of the adjacency matrix as prior transition
mechanism, which was justified in [13] on an intuitive basis, is
here further motivated trough a specific optimization problem;
c) we derive an iterated bridge invariance property; d) we
establish the invariance of the most probable paths. These
two invariance properties, which were only briefly mentioned
in [13] in some special cases, are here fully investigated.
Their relevance for transport over networks is also illustrated.
e) we study the dependence of the optimal transport on
a temperature parameter. The possibility of employing the
solution for near-zero temperature as an approximation of the
solution to Optimal Mass Transport (OMT) is also discussed
and illustrated through examples.

The outline of the paper is as follows. In Section II we
introduce generalized maximum entropy problems In Section
II-A we establish the iterated bridge property, and in Section
II-B the invariance of the most probable paths. Efficiency
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of a transport policy is introduced in Section III-A. In Sec-
tion III-B, we introduce robust transport with fixed average
path length. Section IV deals with efficient-robust transporta-
tion. In Section V, the dependence of the optimal transport on
the temperature parameter is investigated. The results are then
illustrated through academic examples in Section VI.

II. GENERALIZED MAXIMUM ENTROPY PROBLEMS

We are given a directed, strongly connected (i.e., with a
path in each direction between each pair of vertices), aperiodic
graph G = (X , E) with vertex set X = {1, 2, . . . , n} and edge
set E ⊆ X × X . We let time vary in T = {0, 1, . . . , N}, and
let FPN

0 ⊆ XN+1 denote the family of length N , feasible
paths x = (x0, . . . , xN ), namely paths such that xixi+1 ∈ E
for i = 0, 1, . . . , N − 1.

We seek a probability distribution P on FPN
0 with

prescribed initial and final marginal probability distributions
ν0(·) and νN (·), respectively, and such that the resulting
random evolution is closest to a “prior” measure M on FPN

0

in a suitable sense. The prior law M is induced by the
Markovian evolution

µt+1(xt+1) =
∑
xt∈X

µt(xt)mxtxt+1
(t) (1)

with nonnegative distributions µt(·) over X , t ∈ T , and
weights mij(t) ≥ 0 for all indices i, j ∈ X and all times.
Moreover, to respect the topology of the graph, mij(t) = 0
for all t whenever ij 6∈ E . Often, but not always, the matrix

M(t) = [mij(t)]
n
i,j=1 (2)

does not depend on t. The rows of the transition matrix
M(t) do not necessarily sum up to one, so that the “total
transported mass” is not necessarily preserved. It occurs, for
instance, when M simply encodes the topological structure
of the network with mij being zero or one, depending on
whether a certain link exists. The evolution (1) together with
the measure µ0(·), which we assume positive on X , i.e.,

µ0(x) > 0 for all x ∈ X , (3)

induces a measure M on FPN
0 as follows. It assigns to a path

x = (x0, x1, . . . , xN ) ∈ FPN
0 the value

M(x0, x1, . . . , xN ) = µ0(x0)mx0x1
· · ·mxN−1xN

, (4)

and gives rise to a flow of one-time marginals

µt(xt) =
∑
x` 6=t

M(x0, x1, . . . , xN ), t ∈ T .

Definition 1: We denote by P(ν0, νN ) the family of prob-
ability distributions on FPN

0 having the prescribed marginals
ν0(·) and νN (·).

We seek a distribution in this set which is closest to the
prior M in relative entropy where, for P and Q measures
on XN+1, the relative entropy (divergence, Kullback-Leibler
index) D(P‖Q) is

D(P‖Q) :=

{ ∑
x P (x) log P (x)

Q(x) , Supp(P ) ⊆ Supp(Q),

+∞, Supp(P ) 6⊆ Supp(Q),

Here, by definition, 0 · log 0 = 0. Naturally, while the value of
D(P‖Q) may turn out negative due to miss-match of scaling
(in case Q = M is not a probability measure), the relative
entropy is always jointly convex. We consider the Schrödinger
Bridge Problem (SBP):

Problem 1: Determine

M∗[ν0, νN ] := argmin{D(P‖M) | P ∈ P(ν0, νN )}. (5)

The following result is a slight generalization (to time inho-
mogeneous prior) of [13, Theorem 2.3].

Theorem 1: Assume that the product M(N − 1)M(N −
2) · · ·M(1)M(0) has all entries positive. Then there exist
nonnegative functions ϕ(·) and ϕ̂(·) on [0, N ]×X satisfying

ϕ(t, i) =
∑
j

mij(t)ϕ(t+ 1, j), (6a)

ϕ̂(t+ 1, j) =
∑
i

mij(t)ϕ̂(t, i), (6b)

for t ∈ [0, N − 1], along with the (nonlinear) boundary
conditions

ϕ(0, x0)ϕ̂(0, x0) = ν0(x0) (6c)
ϕ(N, xN )ϕ̂(N, xN ) = νN (xN ), (6d)

for x0, xN ∈ X . Moreover, the solution M∗[ν0, νN ] to
Problem 1 is unique and obtained by

M∗(x0, . . . , xN ) = ν0(x0)πx0x1(0) · · ·πxN−1xN
(N − 1),

where the one-step transition probabilities

πij(t) := mij(t)
ϕ(t+ 1, j)

ϕ(t, i)
(7)

are well defined.
The factors ϕ and ϕ̂ are unique up to multiplication of ϕ

by a positive constant and division of ϕ̂ by the same constant.
Let ϕ(t) and ϕ̂(t) denote the column vectors with components
ϕ(t, i) and ϕ̂(t, i), respectively, with i ∈ X . In matricial form,
(6a), (6b ) and (7) read

ϕ(t) = M(t)ϕ(t+ 1), ϕ̂(t+ 1) = M(t)T ϕ̂(t), (8)

and

Π(t) := [πij(t)] = diag(ϕ(t))−1M(t) diag(ϕ(t+ 1)). (9)

Historically, the SBP was posed in 1931 by Erwin
Schrödinger for Brownian particles with a large deviations
of the empirical distribution motivation [43], see [30] for a
survey. The problem was considered in the context of Markov
chains and studied in [36], [22], and some generalizations have
been discussed in [13]. Important connections between SBP
and OMT [45], [3], [46] have been discovered and developed
in [32], [33], [29], [30], [10], [11], [12].

A. Iterated Bridges

In this section we explain a rather interesting property of
Schrödinger bridges which is the following. If, after solving
an SBP for a given set of marginals (ν0, νN ) and a Markovian
prior M to obtain M∗[ν0, νN ], we decided to update the data
(ν0, νN ) to another set of marginals (π0, πN ) then, whether
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we use as prior M or M∗[ν0, νN ] for the SBP with the
new marginals π0 and πN , we obtain precisely the same
solution M∗[π0, πN ]. The significance of this property will
be discussed later on in the context of robust transportation.

Indeed, take M∗[ν0, νN ] as prior and consider the corre-
sponding new Schrödinger system (in matrix form)

ψ(t) = Π(t)ψ(t+ 1), ψ̂(t+ 1) = Π(t)T ψ̂(t),

with boundary conditions

ψ(0, x0)ψ̂(0, x0) = π0(x0), (10a)

ψ(N, xN )ψ̂(N, xN ) = πN (xN ). (10b)

Note in the above Π(t) = diag(ϕ(t))−1M(t) diag(ϕ(t+ 1)),
therefore, it can be written as

diag(ϕ(t))ψ(t) = M(t) diag(ϕ(t+ 1))ψ(t+ 1), (11a)

diag(ϕ(t+ 1))−1ψ̂(t+ 1) = M(t)T diagϕ(t))
−1
ψ̂(t). (11b)

The new transition matrix Q∗ is given by

Q∗(t) = diag(ψ(t))−1Π(t) diag(ψ(t+ 1))

= diag(ψ(t))−1 diag(ϕ(t))−1

×M(t) diag(ϕ(t+ 1)) diag(ψ(t+ 1)).

Let ψ1(t) = diag(ϕ(t))ψ(t) and ψ̂1(t) = diag(ϕ(t))−1ψ̂(t),
then

Q∗(t) = diag(ψ1(t))−1M(t) diag(ψ1(t+ 1)).

By (11), ψ and ψ̂ are vectors with positive components
satisfying

ψ1(t) = M(t)ψ1(t+ 1), ψ̂1(t+ 1) = M(t)T ψ̂1(t).

Moreover, they satisfy the boundary conditions

ψ1(0, x0)ψ̂1(0, x0) = π0(x0) (12a)

ψ1(N, xN )ψ̂1(N, xN ) = πN (xN ). (12b)

Thus, (ψ1, ψ̂1) provide the solution to Problem 1 when M is
taken as prior.

Alternatively, observe the transition matrix Q∗(t) result-
ing from the two problems is the same and so is the initial
marginal. Hence, the solutions of the SBP with marginals π0
and πN and prior transitions Π(t) and M(t) are identical.

Thus, “the bridge over a bridge over a prior” is the same
as the “bridge over the prior,” i.e., iterated bridges produce
the same result. It is should be observed that this result for
probability distributions is not surprising since the solution
is in the same reciprocal class as the prior (namely, it has
the same three times transition probability), cf. [27], [31],
[49]. It could then be described as the fact that only the
reciprocal class of the prior matters; this is can be seen from
Schrödinger’s original construction [43], and also [22, Section
III-B] for the case of Markov chains. This result, however, is
more general since the prior is not necessarily a probability
measure.

In information theoretic terms, the bridge (i.e., probability
law on path spaces) corresponding to Q∗ is the I-projection
in the sense of Cziszar [15] of the prior onto the set of mea-
sures that are consistent with the initial-final marginals. The

above result, however, is not simply an “iterated information-
projection” property, since M∗[ν0, νN ] is the I-projection of
M onto P(ν0, νN ) which does not contain P(π0, πN ) being
in fact disjoint from it.

B. Invariance of most probable paths

Building on the logarithmic transformation of Fleming,
Holland, Mitter and others, the connection between SBP and
stochastic control was developed from the early nineties on
[17], [8], [18], [37]. More recently Brockett studied steering
of the Louiville equation [9]. In [17, Section 5], Dai Pra es-
tablished an interesting path-space property of the Schrödinger
bridge for diffusion processes, that the “most probable path”
[20], [44] of the prior and the solution are the same. Loosely
speaking, a most probable path is similar to a mode for the
path space measure P . More precisely, if both drift b(·, ·) and
diffusion coefficient σ(·, ·) of the Markov diffusion process

dXt = b(Xt, t)dt+ σ(Xt, t)dWt

are smooth and bounded, with σ(x, t)σ(x, t)T > ηI , η > 0,
and {x(t) | 0 ≤ t ≤ T} is a path of class C2, then there exists
an asymptotic estimate of the probability P of a small tube
around x(t) of radius ε. It follows from this estimate that the
most probable path is the minimizer in a deterministic calculus
of variations problem where the Lagrangian is an Onsager-
Machlup functional, see [25, p. 532] for the full story1.

The concept of most probable path is, of course, much
less delicate in our discrete setting. We define it for general
positive measures on paths. Given a positive measure M as in
Section II on the feasible paths of our graph G, we say that
x = (x0, . . . , xN ) ∈ FPN

0 is of maximal mass if for all other
feasible paths y ∈ FPN

0 we have M(y) ≤M(x). Likewise we
consider paths of maximal mass connecting particular nodes. It
is apparent that paths of maximal mass always exist but are,
in general, not unique. If M is a probability measure, then
the maximal mass paths - most probable paths are simply the
modes of the distribution. We establish below that the maximal
mass paths joining two given nodes under the solution of a
Schrödinger Bridge problem as in Section II are the same as
for the prior measure.

Proposition 1: Consider marginals ν0 and ν1 in Problem
1. Assume that ν0(x) > 0 on all nodes x ∈ X and that the
product M(N − 1) ·M(N − 2) · · ·M(1) ·M(0) of transition
probability matrices of the prior has all positive elements
(cf. with M ’s as in (2)). Let x0 and xN be any two nodes.
Then, under the solution M∗[ν0, νN ] of the SBP, the family
of maximal mass paths joining x0 and xN in N steps is the
same as under the prior measure M.
Proof. Suppose path y = (y0 = x0, y1, . . . , yN−1, yN = xN )
has maximal mass under the prior M. In view of (4) and (7)
and assumption (3), we have

M∗[ν0, νN ](y) = ν0(y0)πy0y1
(0) · · ·πyN−1yN

(N − 1)

=
ν0(x0)

µ0(x0)

ϕ(N, xN )

ϕ(0, x0)
M(y0, y1, . . . , yN ).

1The Onsager-Machlup functional was introduced in [34] to develop a
theory of fluctuations in equilibrium and nonequilibrium thermodynamics.
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Since the quantity

ν0(x0)

µ0(x0)

ϕ(N, xN )

ϕ(0, x0)

is positive and does not depend on the particular path joining
x0 and xN , the conclusion follows. 2

The calculation in the above proof actually establishes the
following stronger result.

Proposition 2: Let x0 and xN be any two nodes in X .
Then, under the assumptions of Proposition 1, the measures
M and M∗[ν0, νN ], restricted on the set of paths that begin
at x0 at time 0 and end at xN at time N , are identical.

III. ROBUST TRANSPORT

In this section, we first discuss notions of efficiency of a
transportation plan and then introduce entropy as a surrogate
for robustness.

A. Efficiency of a transport plan

Inspired by the celebrated paper [48], we introduce below
a measure of efficiency of a transportation plan over a certain
finite-time horizon and a given network.

For the case of undirected and connected graphs, small-
world networks [48] were identified as networks being highly
clustered but with small characteristic path length L, where

L :=
1

n(n− 1)

∑
i 6=j

dij

and dij is the shortest path length between vertices i and j.
The inverse of the characteristic path length L−1 is an index of
efficiency of G. There are other such indexes, most noticeably
the global efficiency Eglob introduced in [28]. This is defined
as Eglob = E(G)/E(Gid) where

E(G) =
1

n(n− 1)

∑
i 6=j

1

dij

and Gid is the complete network with all possible edges in
place. Thus, 0 ≤ Eglob ≤ 1. However, as argued on [28,
p. 198701-2], it is 1/L which “measures the efficiency of a
sequential system (i.e., only one packet of information goes
along the network)”. Eglob, instead, measures the efficiency of
a parallel system, namely one in which all nodes concurrently
exchange packets of information. Since we are interested in
the efficiency of a specific transportation plan, we define below
efficiency by a suitable adaptation of the index L.

Consider a strongly connected, aperiodic, directed graph
G = (X , E) as in Section II. To each edge ij is now associated
a length lij ≥ 0. If ij 6∈ E , we set lij = +∞. The length
may represent distance, cost of transport/communication/etc.
Let T = {0, 1, . . . , N} be the time-indexing set. For a path
x = (x0, . . . , xN ) ∈ XN+1, we define the length of x to be

l(x) =

N−1∑
t=0

lxtxt+1 .

We consider the situation where initially at time t = 0 the
mass is distributed on X according to ν0(x) and needs to

be distributed according to νN (x) at the final time t = N .
These masses are normalized to sum to one, so that they are
probability distributions. A transportation plan P is a proba-
bility measure on the (feasible) paths of the network having
the prescribed marginals ν0 and νN at the initial and final
time, respectively. A natural adaptation of the characteristic
path length is to consider the average path length of the
transportation plan P , which we define as

L(P ) =
∑

x∈XN+1

l(x)P (x) (13)

with the usual convention +∞ × 0 = 0. This is entirely
analogous to a thermodynamic quantity, the internal energy,
which is defined as the expected value of the Hamiltonian
observable in state P . Clearly, L(P ) is finite if and only if the
transport takes place on actual, existing links of G. Moreover,
only the paths which are in the support of P enter in the
computation of L(P ). One of the goals of a transportation
plan is of course to have small average path length since,
for instance, cost might simply be proportional to length.
Determining the probability measure that minimizes (13) can
be seen to be an OMT problem.

B. Problem formulation

Besides efficiency, another desirable property of a trans-
port strategy is to ensure robustness with respect to links/nodes
failures, the latter being due possibly to malicious attacks. We
therefore seek a transport plan in which the mass spreads,
as much as it is allowed by the network topology, before
reconvening at time t = N in the sink nodes. We achieve
this by selecting a transportation plan P that has a suitably
high entropy S(P ), where

S(P ) = −
∑

x∈XN+1

P (x) lnP (x). (14)

Thus, in order to attain a level of robustness while guarantee-
ing a relatively low average path length (cost), we formulate
below a constrained optimization problem that weighs in both
S(P ) as well as L(P ).

We begin by letting L̄ designate a suitable bound on the
average path length (cost) that we are willing accept. Clearly,
we need that

lm := min
x∈XN+1

l(x) ≤ L̄. (15a)

We will also assume that

L̄ ≤ 1

|FPN
0 |

∑
x∈FPN

0

l(x). (15b)

The rationale behind the latter, i.e., requiring an upper bound
as stated, will be explained in Proposition 3 below.

Let P denote the family of probability measures on
XN+1. The probability measure that maximizes the entropy
S(P ) subject to a path-length constraint L(P ) = L̄ is the
Boltzmann distribution

P ∗T (x) = Z(T )−1 exp[− l(x)

T
], Z(T ) =

∑
x

exp[− l(x)

T
], (16)
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where the parameter (temperature) T depends on L̄. To see
this, consider the Lagrangian

L(P, λ) := S(P ) + λ(L̄− L(P )), (17)

and observe that the Boltzman distribution (16) satisfies the
first order optimality condition of L with T = 1/λ. Clearly,
the Boltzmann distribution has support on the feasible paths
FPN

0 . Hence, we get a version of Gibbs’ variational principle
that the Boltzmann distribution P ∗T minimizes the free energy
functional

F (P, T ) := L(P )− TS(P ) (18)

over P . An alternative way to establish the minimizing prop-
erty of the Boltzmann’s distribution is to observe that

F (P, T ) = TD(P‖P ∗T )− T logZ, (19)

and therefore, minimizing the free energy over P is equivalent
to minimizing the relative entropy D(P‖P ∗T ) over P ∈ P ,
which ensures that the minimum is unique. The following
properties of P ∗T are noted, see e.g. [35, Chapter 2].

Proposition 3: The following hold:
i) For T ↗ +∞, P ∗T tends to the uniform distribution on

all feasible paths.
ii) For T ↘ 0, P ∗T tends to concentrate on the set of feasible

paths having minimal length.
iii) Assuming that l(·) is not constant over FPN

0 then, for
each value L̄ satisfying the bounds (15), there exists a
unique nonnegative value of T = λ−1 ∈ [0,∞] such that
P ∗T maximizes S(P ) subject to L(P ) = L̄.
We also observe the Markovian nature of the measure

P ∗T . Indeed, recall that a positive measure M on XN+1 is
Markovian if it can be expressed as in (4). Since

P ∗T (x0, x1, . . . , xN ) = Z(T )−1
N−1∏
t=0

exp[−
lxtxt+1

T
], (20)

which is exactly in the form (4), we conclude that P ∗T is
(time-homogeneous) Markovian with uniform initial measure
µ(x0) ≡ Z(T )−1 and time-invariant transition matrix given
by

MT =

[
exp

(
− lij
T

)]n
i,j=1

. (21)

Observe however that, in general, MT is not stochastic (rows
do not sum to one). Moreover, observe that, after suitable
normalization, MT represents the transition matrix of a chain
where probabilities of transition between nodes are inversely
proportional to the length of the links.

Consider now ν0 and νN distributions on X . These are
the “starting” and “ending” concentrations of resources for
which we seek a transportation plan. We denote by P(ν0, νN )
the family of probability distributions on paths x ∈ XN+1

having ν0 and νN as initial and final marginals, respectively,
and we consider the problem to maximize the entropy subject
to marginal and length constraints:

Problem 2: Maximize S(P ) subject to P ∈ P(ν0, νN )
and L(P ) = L̄.

Note that the solution to Problem 2 depends on L̄ as well
as the two marginals ν0, νN and that when L̄ is too close to
lm, the problem may be infeasible.

Once again, bringing in the Lagrangian (17), which now
needs to be minimized over P(ν0, νN ), we see that Problem
2 is equivalent to solving the following Schrödinger Bridge
problem for a suitable value of the parameter T .

Problem 3: minimize {D(P‖P ∗T ) | P ∈ P(ν0, νN )}.
Thus, employing path space entropy as a measure of

robustness, the solution to Problem 3, denoted by M∗T (ν0, νN )
and constructed in accordance with Theorem 1, minimizes a
suitable free energy functional with the temperature parameter
specifying the tradeoff between efficiency and robustness.
Thus, Problem 3 can be viewed as an SBP as in Section II
where the “prior” measure P ∗T is Markovian.

IV. STRUCTURE OF ROBUST TRANSPORT

We now address in detail Problem 3, namely, to identify
a probability distribution P on FPN

0 that minimizes D(·‖P ∗T )
over P(ν0, νN ) where P ∗T is the Boltzmann distribution (20)–
the minimizing law being denoted by M∗T [ν0, νN ] as before.
We show below that the two invariant properties discussed in
the previous two sessions can be used to determine an optimal
transport policy. We also show that the M∗T [ν0, νN ] inherits
from the Boltzmann distribution P ∗T properties as dictated by
Proposition 3.

Initially, for simplicity, we consider the situation where at
time t = 0 the whole mass is concentrated on node 1 (source)
and at time t = N it is concentrated on node n (sink), i.e.,
ν0(x) = δ1(x) and νN (x) = δn(x). We want to allow (part
of) the mass to reach the end-point “sink” node, if this is
possible, in less than N steps and then remain there until
t = N . In order to ensure that is possible, we assume that
there exists a self-loop at node n, i.e., MTnn > 0. Clearly,
M∗T (δ1, δn)(·) = P ∗T [·|Y0 = 1, YN = n]. The Schrödinger
bridge theory provides transition probabilities so that, for a
path y = (y0, y1, . . . , yN ),

M∗T (δ1, δn)(y) = δ1(y0)

N−1∏
t=1

exp

(
−
lytyt+1

T

)
ϕT (t+ 1, yt+1)

ϕT (t, yt)

= δ1(y0)
ϕT (N, yN )

ϕT (0, y0)

[
exp

(
−
l(y)

T

)]
, (22)

cf. (4) and (7). Here l(y) =
∑N−1

t=0 lytyt+1 is the length of path
y and ϕT satisfies together with ϕ̂T the Schrödinger system
(6) with mij(t) = exp

(
− lij

T

)
and ν0(x) = δ1(x), νN (x) =

δn(x).
In [13, Section VI], Problem 3 was first studied with

a prior measure Ml having certain special properties. To
introduce this particular measure, we first recall (part of) a
fundamental result from linear algebra [24].

Theorem 2 (Perron-Frobenius): Let A = (aij) be an
n × n matrix with nonnegative entries. Suppose there exists
N such that AN has only positive entries, and let λA be its
spectral radius. Then

i) λA > 0 is an eigenvalue of A;
ii) λA is a simple eigenvalue;

iii) there exists an eigenvector v corresponding to λA with
strictly positive entries.

Consider now the weighted adjacency matrix B = MT

in (21) (where we dropped the subscript T as it will be fixed
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throughout this section). Assume that BN has all positive
elements so that we can apply the Perron-Frobenius theorem.
Let u and v be the left and right eigenvectors with positive
components of the matrix B corresponding to the spectral
radius λB . We have

BTu = λBu, Bv = λBv. (23)

We assume throughout that u and v are chosen so that∑
i uivi = 1. Then, for y0 = i and yt = j, define

Ml(i, y1, . . . , x0t−1, j) := λ−tB uivje
−

∑t−1
k=0 lykyk+1 . (24)

The corresponding transition matrix is

Rl = λ−1B diag(v)−1B diag(v). (25)

It admits the invariant measure

µl(i) = uivi. (26)

Note that Ml and the Boltzmann distribution P ∗T have the same
transition matrix but different initial distributions. In [13], to
which we refer for motivation and more details, the following
problem was studied.

Problem 4: minimize {D(P‖Ml) | P ∈ P(ν0, νN )}.
Under the assumption that BN has all positive entries,

this Schrödinger bridge problem has a unique solution M∗l .
In [13, Theorem 3.4], it was also shown that Ml is itself the
solution of a Schrödinger bridge problem with equal marginals
and the Boltzmann distribution (16) as prior. Thus, by the
iterated bridge property of Section II-A, M∗l coincides with
the solution of Problem 3 for any choice of the initial-final
marginals ν0 and νN .

We recall the following rather surprising result [13, The-
orem 6.1] which includes the invariance of the most probable
paths in Problem 3 (Proposition 1).

Theorem 3: M∗l gives equal probability to paths y ∈
XN+1 of equal length between any two given nodes. In par-
ticular, it assigns maximum and equal probability to minimum
length paths.

This result is relevant when the solution of Problem 3
for low temperature is used as an approximation to OMT, see
Remark 1 in the next section. Finally, an important special
case occurs when lij = 0 for existing links and +∞ for
non-existing. Then the matrix B reduces to the unweighted
adjacency matrix A and the measure Ml to the so-called
Ruelle-Bowen random walk MRB . The only concern in the
transport policy is in maximizing path family entropy to
achieve robustness, see [13, Sections 4 and 5] for details.

V. DEPENDENCE OF ROBUST TRANSPORT ON T

Below we study how the solution M∗T [δx0
, δxN

] to Prob-
lem 3 varies with the temperature parameter T . Here, x0, xN
are specified nodes where mass is concentrated at the start and
end times, and δx′(x) = 1 when x = x′ and zero otherwise. It
should be noted that similar results hold for general marginal
distributions as well, which are not necessarily Dirac.

Theorem 4: Consider the solution M∗T [δx0 , δxN
] =: M∗T

to Problem 3 with ν0(x) = δx0
(x) and νN (x) = δxN

(x).
Let lm(x0, xN ) = miny∈XN+1(x0,xN ) l(y), i.e., the minimum

length of N -step paths originating in x0 and terminating in
xN . Then

i) For T ↘ 0, M∗T tends to concentrate itself on the set of
feasible, minimum length paths joining x0 and xN in N
steps. Namely, if y = (y0 = x0, y1, . . . , yN−1, yN = xN )
is such that l(y) > lm(x0, xN ), then M∗T (y) ↘ 0 as
T ↘ 0.

ii) For T ↗ +∞, M∗T tends to the uniform distribution on
all feasible paths joining x0 and xN in N steps.

iii) Suppose XN+1(x0, xN ) is not a singleton and that l(·)
is not constant over it. Then, for each value L̄ satisfying
the bounds

lm(x0, xN ) ≤ L̄ ≤ 1

|XN+1(x0, xN )|
∑

y∈XN+1(x0,xN )

l(y)

there exists a unique value of T ∈ [0,+∞] such that M∗T
satisfies the constraint L(M∗T ) = L̄ and therefore solves
Problem 2.

Proof. Observe first that, since M∗T is a probability measure
on XN+1, it must satisfy by (22)

1 =
∑

y∈XN+1

M∗T (y) =
∑

y∈XN+1

δ1(y0)
ϕT (N, yN )

ϕT (0, y0)

[
exp

(
−
l(y)

T

)]

=
∑

y∈XN+1(x0,xN )

δ1(y0)
ϕT (N, xN )

ϕT (0, x0)

[
exp

(
−
l(y)

T

)]
, (27)

where we have used the fact that the initial and final marginals
of M∗T are δ1 and δn, respectively. It follows that

ϕT (0, x0)

ϕT (N, xN )
=

∑
y∈XN+1(x0,xN )

δ1(y0)

[
exp

(
−
l(y)

T

)]

=
∑

y∈XN+1(x0,xN )

[
exp

(
−
l(y)

T

)]
, (28)

where again XN+1(x0, xN ) denotes the family of paths
joining x0 and xN in N time periods.
Proof of i): Let y = (y0 = x0, y1, . . . , yN−1, yN = xN ) be
such that l(y) > lm(x0, xN ). Then

M∗T (y) =
ϕT (N, xN )

ϕT (0, x0)

[
exp

(
− l(y)

T

)]
.

By (28), we have ϕT (0,x0)
ϕT (N,xN ) ≥ exp

(
− lm(x0,xN )

T

)
. Hence,

M∗T (y) =
ϕT (N, xN )

ϕT (0, x0)
e−

l(y)
T ≤ e−

l(y)−lm(x0,xN )

T .

Since l(y)− lm(x0, xN ) > 0, the right-hand side tends to zero
as T ↘ 0.
Proof of ii): For T ↗ +∞, exp

(
− l(y)

T

)
tends to 1 for

all paths y ∈ XN+1(x0, xN ). Since ϕT (N,xN )
ϕT (0,x0)

does not
depend on the specific path in XN+1(x0, xN ) (it is just a
normalization like the partition function), we conclude that as
T tends to infinity, M∗T tends to the uniform distribution on
XN+1(x0, xN ).
Proof of iii): Note that Problem 2 is feasible when
lm(x0, xN ) ≤ L̄ holds. By standard Lagrangian duality theory,
there exists a Lagrangian multiplier λ ∈ [0,∞] such that
the maximizer of the corresponding Lagrangian (17) over
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P(ν0, νN ) is the solution of Problem 22. On the other hand,
maximizing (17) over P(ν0, νN ) is equivalent to solving
Problem 3 with T = 1/λ. This completes the proof. 2

Remark 1: Let us interpret lij as the cost of transporting
a unit mass over the link ij. Then L(P ) is the expected cost
corresponding to the transport plan P . For T = 0, the free
energy functional reduces to L(P ) as our problem amounts to
a discrete OMT problem [38]. In this, one seeks minimum cost
paths –a combinatorial problem which can also be formulated
as a linear programming problem [4]. Precisely as in the
diffusion case [10], [11], [12], we also see that when the “heat
bath” temperature is close to 0, the solution of the Schrödinger
bridge problem is close to the solution of the discrete OMT
problem (claim i) of Theorem 4). Since for the former an
efficient iterative algorithm is available [22], we see that also in
this discrete setting the SBP provides a valuable computational
approach to solving OMT problems. This is illustrated in the
next section through an academic example. It should also be
observed that the measure M∗T (δ1, δn) is just a “Boltzmann
measure” on the subset of XN+1 of paths originating in x0
and terminating in xN . Thus the above proof is analogous to
the classical one for P ∗T .

VI. EXAMPLES

Fig. 1. Network topology

Consider the graph in Figure 1. We seek to transport a
unit mass from node 1 to node 9 in N = 3 and 4 steps. We first
consider the case where the costs of all the edges are equal
to 1. Here we add a zero cost self-loop at 9, i.e., l99 = 0.
The shortest path from node 1 to 9 is of length 3 and there
are three such paths, which are 1− 2− 7− 9, 1− 3− 8− 9
and 1 − 4 − 8 − 9. If we want to transport the mass with a
minimum number of steps, we may end up using one of these
three paths. To achieve robustness, we apply the Schrödinger

2Actually, using (28), it is easy to see that L(M∗T ) = EM∗
T
[l(Y )] is a

strictly increasing function of T . Indeed,

∂EM∗
T
[l(Y )]

∂T
=

1

T 2
VarM∗

T
[l(Y )]

where l(Y ) =
∑N−1

t=0 lYtYt+1
and Y = (Y0, Y1, . . . , YN ) is the Markov

chain. In view of Points 1 and 2, we conclude that EM∗
T
[l(Y )] bijectively

maps [0,+∞] onto

[lm(x0, xN ),
1

|XN+1(x0, xN )|
∑

y∈XN+1(x0,xN )

l(y)].

bridge framework. Since all the three feasible paths have equal
length, we get a transport plan with equal probabilities using
all these three paths, regardless of the choice of temperature
T . The evolution of mass distribution is given by[

1 0 0 0 0 0 0 0 0
0 1/3 1/3 1/3 0 0 0 0 0
0 0 0 0 0 0 1/3 2/3 0
0 0 0 0 0 0 0 0 1

]
,

where the four rows of the matrix show the mass distribution at
time step t = 0, 1, 2, 3 respectively. As we can see, the mass
spreads out first and then goes to node 9. When we allow
for more steps N = 4, the mass spreads even more before
reassembling at node 9, as shown below, for T = 1,[

1 0 0 0 0 0 0 0 0
0 0.4705 0.3059 0.2236 0 0 0 0 0
0 0 0.0823 0.0823 0.1645 0 0.2236 0.4473 0
0 0 0 0 0 0.0823 0.0823 0.1645 0.6709
0 0 0 0 0 0 0 0 1

]
.

There are 7 feasible paths of length 4, which are 1−2−7−9−9,
1−3−8−9−9, 1−4−8−9−9, 1−2−5−6−9, 1−2−5−7−9,
1− 3− 4− 8− 9 and 1− 2− 3− 8− 9. The amount of mass
traveling along these paths are

0.2236, 0.2236, 0.2236, 0.0823, 0.0823, 0.0823, 0.0823.

The first three are the most probable paths. This is consistent
with Proposition 1 since they are the paths with minimum
length. If we change the temperature T , the flow changes.
The set of most probable paths, however, remains invariant. In
particular, when T = 0.1, the flow concentrates on the most
probable set (effecting OMT-like transport), as shown below[

1 0 0 0 0 0 0 0 0
0 0.3334 0.3333 0.3333 0 0 0 0 0
0 0 0 0 0 0 0.3334 0.6666 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1

]
.

Now we change the graph by setting the length of edge
(7, 9) as 2, that is, l79 = 2. When N = 3 steps are allowed
to transport a unit mass from node 1 to node 9, the evolution
of mass distribution for the optimal transport plan, for T = 1,
is given by[

1 0 0 0 0 0 0 0 0
0 0.1554 0.4223 0.4223 0 0 0 0 0
0 0 0 0 0 0 0.1554 0.8446 0
0 0 0 0 0 0 0 0 1

]
.

The mass travels through paths 1−2−7−9, 1−3−8−9 and
1−4−8−9, but unlike the first case, the transport plan doesn’t
take equal probability for these three paths. Since the length of
the edge (7, 9) is larger, the probability that the mass takes this
path becomes smaller. The plan does, however, assign equal
probability to the two paths 1− 3− 8− 9 and 1− 4− 8− 9
with minimum length, that is, these are the most probable
paths. The evolutions of mass for T = 0.1 and T = 100 are[

1 0 0 0 0 0 0 0 0
0 0 1/2 1/2 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

]
and [

1 0 0 0 0 0 0 0 0
0 0.3311 0.3344 0.3344 0 0 0 0 0
0 0 0 0 0 0 0.3311 0.6689 0
0 0 0 0 0 0 0 0 1

]
respectively. We observe that, when T = 0.1 the flow assigns
almost equal mass to the three available paths, while, when
T = 100, the flow concentrate on the most probable paths
1− 3− 8− 9 and 1− 4− 8− 9. This is clearly a consequence
of Theorem 4.
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VII. CONCLUSIONS AND OUTLOOK

In the present paper, we considered transportation over
strongly connected, directed graphs. The development built on
our earlier work [13]. More specifically, we introduced as mea-
sure of efficiency for a given transportation plan the average
path length (cost) in e.g., (13), and as a measure of robustness
the entropy (14). This allowed us to explore efficient-robust
transport plans via solving corresponding optimization prob-
lems. Important insights gained in the present work include
the results on certain invariances of the Schrödinger’s bridges
– the “iterated bridge” invariance property and the invariance
of the “most probable path”. We explained their relevance for
efficient-robust transport over networks. We also considered
the dependence of the optimal transportation schedule on the
temperature parameter following similar ideas from statistical
physics. In this, we highlighted the connection between the
Schrödinger’s bridge problem and OMT. Specifically, the solu-
tion of the Schrödinger bridge problem near-zero temperature
is an approximation to the solution of the corresponding
OMT problem. The relevance of the conceptual framework
developed here for assessing robustness of real world networks
(e.g., communication networks [47], biological [2], [40], and
financial [41]) will be the subject of future work.
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