1,509 research outputs found

    Event-triggered Control For Semi-global Stabilisation Of Systems With Actuator Saturation

    Get PDF
    This paper investigates the problem of event-triggered control for semi-global stabilisation of null controllable systems subject to actuator saturation. First, for a continuous-time system, novel event-triggered low-gain control algorithms based on Riccati equations are proposed to achieve semi-global stabilisation. The algebraic Riccati equation with a low-gain parameter is utilised to design both the event-triggering condition and the linear controller; a minimum inter-event time based on the Riccati ordinary differential equation is set a priori to exclude the Zeno behaviour. In addition, the high-low-gain techniques are utilised to extend the semi-global results to event-based global stabilisation. Furthermore, for a discrete-time system, novel low-gain and high–low-gain control algorithms are proposed to achieve event-triggered stabilisation. Numerical examples are provided to illustrate the theoretical results.postprin

    Mittag–Leffler synchronization for impulsive fractional-order bidirectional associative memory neural networks via optimal linear feedback control

    Get PDF
    In this paper, we are concerned with the synchronization scheme for fractional-order bidirectional associative memory (BAM) neural networks, where both synaptic transmission delay and impulsive effect are considered. By constructing Lyapunov functional, sufficient conditions are established to ensure the Mittag–Leffler synchronization. Based on Pontryagin’s maximum principle with delay, time-dependent control gains are obtained, which minimize the accumulative errors within the limitation of actuator saturation during the Mittag–Leffler synchronization. Numerical simulations are carried out to illustrate the feasibility and effectiveness of theoretical results with the help of the modified predictor-corrector algorithm and the forward-backward sweep method

    Evaluation of Decentralized Event-Triggered Control Strategies for Cyber-Physical Systems

    No full text
    Energy constraint long-range wireless sensor/ actuator based solutions are theoretically the perfect choice to support the next generation of city-scale cyber-physical systems. Traditional systems adopt periodic control which increases network congestion and actuations while burdens the energy consumption. Recent control theory studies overcome these problems by introducing aperiodic strategies, such as event trigger control. In spite of the potential savings, these strategies assume actuator continuous listening while ignoring the sensing energy costs. In this paper, we fill this gap, by enabling sensing and actuator listening duty-cycling and proposing two innovative MAC protocols for three decentralized event trigger contro l approaches. A laboratory experimental testbed, which emulates a smart water network, was modelled and extended to evaluate the impact of system parameters and the performance of each approach. Experimental results reveal the predominance of the decentralized event-triggered control against the classic periodic control either in terms of communication or actuation by promising significant system lifetime extension

    Event-triggered synchronization of saturated lur’e type systems

    Get PDF
    This dissertation addresses the problem of master-slave synchronization of nonlinear discrete-time Lur’e systems subject to input saturation via event-triggered control (ETC) techniques. Synchronization, which is considered a remarkable property in the physics literature specially when chaotic systems are under investigation, is achieved through the stabilization of the error between the states of the master and the slave system. Regarding the Lur’e type nonlinearity, two different cases are studied along this work: generic slope-restricted state-dependent nonlinearity and piecewise-affine function. In the ETC paradigm, the control signal is updated aperiodically only after the occurrence of an event, which is generated according to a triggering criterion that depends on the evaluation of a triggering function. In the emulation-based design, a synchronization error feedback controller is given a priori and the task is to compute the event generator parameters ensuring performance and closed-loop stability. On the other hand, in the co-design approach the event generator and the control law are simultaneously designed. Theoretical results are obtained for three types of event-triggered mechanism (ETM), namely: static, dynamic and relaxed. In the last case, practical synchronization conditions are derived as form of ultimately boundedness stability. In order to tune the parameters of the event-based strategy, optimization problems are formulated aiming to reduce the number of control signal updates (number of events) with respect to a time-triggered implementation. Numerical simulations are presented to illustrate the application of the proposed methods.Esta dissertação aborda o problema de sincronização mestre-escravo de sistemas Lur’e não lineares de tempo discreto sujeitos à saturação de entrada via técnicas de controle baseado em eventos. A sincronização, que é considerada uma propriedade importante na literatura de Física especialmente quando sistemas caóticos são investigados, é alcançada através da estabilização do erro entre os estados do mestre e do sistema escravo. Em relação à não linearidade do tipo Lur’e, dois casos diferentes são estudados ao longo do trabalho: não linearidade genérica dependente do estado e restrita em inclinação e função afim por partes. No paradigma de controle baseado em eventos (ETC), o sinal de controle é atualizado aperiodicamente apenas após a ocorrência de um evento, que é gerado de acordo com um critério de disparo que depende da avaliação de uma função de disparo. No projeto baseado em emulação, um controlador por realimentação do erro de sincronização é dado a priori e a tarefa é calcular os parâmetros do gerador de eventos garantindo desempenho e estabilidade em malha fechada. Na abordagem de co-design, o gerador de eventos e a lei de controle são projetados simultaneamente. Resultados teóricos são obtidos para três tipos de mecanismo de geração de eventos (ETM), nomeadamente: estático, dinâmico e relaxado. Neste último caso, condições de sincronização prática são derivadas como uma forma de estabilidade ultimamente limitada. Para sintonizar os parâmetros da estratégia baseada em eventos, problemas de otimização são formulados visando reduzir o número de atualizações do sinal de controle (número de eventos) em relação a uma implementação time-triggered. Simulações numéricas são apresentadas para ilustrar a aplicação dos métodos propostos

    SATURATED AND ASYMMETRIC SATURATED IMPULSIVE CONTROL SYNCHRONIZATION OF COUPLED DELAYED INERTIAL NEURAL NETWORKS WITH TIME-VARYING DELAYS

    Get PDF
    This paper considers control systems with impulses that are saturated and asymmetrically saturated which are used to examine the synchronization of inertial neural networks (INNs) with time-varying delay and coupling delays. Under the theoretical discussions, mixed delays, such as transmission delay and coupling delay are presented for inertial neural networks. The addressed INNs are transformed into first order differential equations utilizing variable transformation on INNs and then certain adequate conditions are derived for the exponential synchronization of the addressed model by substituting saturation nonlinearity with a dead-zone function. In addition, an asymmetric saturated impulsive control approach is given to realize the exponential synchronization of addressed INNs in the leader-following synchronization pattern. Finally, simulation results are used to validate the theoretical research findings

    Event-triggered Synchronization of Multi-agent Systems with Partial Input Saturation

    Get PDF
    This paper is concerned with the distributed event/self-triggered synchronization problem for general linear multi-agent systems with partial input saturation. Both the event-based and self-triggered laws are designed using the local sampled, possibly saturated, state, which ensures the bounded synchronization of the multi-agent systems, and exclusion of the Zeno-behavior. The continuous communication between agents is avoided under these triggering protocols. Different from the existing related works, we show the fully distributed design for multi-agent systems, where the synchronization criteria, the designed input laws, and the proposed triggering protocols do not depend on any global information of the communication topology. In addition, the computation load of multi-agent systems is reduced significantly
    corecore