16 research outputs found

    Value of Information in Feedback Control

    Get PDF
    In this article, we investigate the impact of information on networked control systems, and illustrate how to quantify a fundamental property of stochastic processes that can enrich our understanding about such systems. To that end, we develop a theoretical framework for the joint design of an event trigger and a controller in optimal event-triggered control. We cover two distinct information patterns: perfect information and imperfect information. In both cases, observations are available at the event trigger instantly, but are transmitted to the controller sporadically with one-step delay. For each information pattern, we characterize the optimal triggering policy and optimal control policy such that the corresponding policy profile represents a Nash equilibrium. Accordingly, we quantify the value of information VoIk\operatorname{VoI}_k as the variation in the cost-to-go of the system given an observation at time kk. Finally, we provide an algorithm for approximation of the value of information, and synthesize a closed-form suboptimal triggering policy with a performance guarantee that can readily be implemented

    Design of Event-Triggered Fault-Tolerant Control for Stochastic Systems with Time-Delays

    Get PDF
    This paper proposes two novel, event-triggered fault-tolerant control strategies for a class of stochastic systems with state delays. The plant is disturbed by a Gaussian process, actuator faults, and unknown disturbances. First, a special case about fault signals that are coupled to the unknown disturbances is discussed, and then a fault-tolerant strategy is designed based on an event condition on system states. Subsequently, a send-on-delta transmission framework is established to deal with the problem of fault-tolerant control strategy against fault signals separated from the external disturbances. Two criteria are provided to design feedback controllers in order to guarantee that the systems are exponentially mean-square stable, and the corresponding H∞-norm disturbance attenuation levels are achieved. Two theorems were obtained by synthesizing the feedback control gains and the desired event conditions in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are provided to illustrate the effectiveness of the proposed theoretical results

    Data filtering-based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition

    Get PDF
    This paper focuses on the iterative identification problems for a class of Hammerstein nonlinear systems. By decomposing the system into two fictitious subsystems, a decomposition-based least squares iterative algorithm is presented for estimating the parameter vector in each subsystem. Moreover, a data filtering-based decomposition least squares iterative algorithm is proposed. The simulation results indicate that the data filtering-based least squares iterative algorithm can generate more accurate parameter estimates than the least squares iterative algorithm
    corecore