28,436 research outputs found

    Improved User Tracking in 5G Millimeter Wave Mobile Networks via Refinement Operations

    Full text link
    The millimeter wave (mmWave) frequencies offer the availability of huge bandwidths to provide unprecedented data rates to next-generation cellular mobile terminals. However, directional mmWave links are highly susceptible to rapid channel variations and suffer from severe isotropic pathloss. To face these impairments, this paper addresses the issue of tracking the channel quality of a moving user, an essential procedure for rate prediction, efficient handover and periodic monitoring and adaptation of the user's transmission configuration. The performance of an innovative tracking scheme, in which periodic refinements of the optimal steering direction are alternated to sparser refresh events, are analyzed in terms of both achievable data rate and energy consumption, and compared to those of a state-of-the-art approach. We aim at understanding in which circumstances the proposed scheme is a valid option to provide a robust and efficient mobility management solution. We show that our procedure is particularly well suited to highly variant and unstable mmWave environments.Comment: Accepted for publication to the 16th IEEE Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET), Jun. 201

    High efficiency gaseous tracking detector for cosmic muon radiography

    Get PDF
    A tracking detector system has been constructed with an innovative approach to the classical multi-wire proportional chamber concept, using contemporary technologies. The detectors, covering an area of 0.58 square meters each, are optimized for the application of muon radiography. The main features are high (>99.5%) and uniform detection efficiency, 9 mm FWHM position resolution, filling gas consumption below 2 liters per hour for the non toxic, non flammable argon and carbon dioxide mixture. These parameters, along with the simplicity of the construction and the tolerance for mechanical effects, make the detectors to be a viable option for a large area muography observation system.Comment: 15 pages, 15 figure

    Decentralized Sliding Mode Control for Output Tracking of Large-Scale Interconnected Systems

    Get PDF
    In this paper, a class of nonlinear interconnected systems with matched and unmatched uncertainties is considered. The isolated subsystem dynamics are described by linear systems and a nonlinear component. The matched uncertainties and unmatched unknown interconnection terms are assumed to be bounded by known functions. Based on sliding mode techniques, a state feedback decentralized control scheme is proposed such that the outputs of the controlled interconnected system track given desired signals uniformly ultimately. The desired reference signals are allowed to be time-varying. Using multiple transformations, the considered system is transferred to a new interconnected system with an appropriate structure to facilitate the sliding surface design and the design of a decentralized controller. A set of conditions is proposed to guarantee that the designed controller drives the tracking errors onto the sliding surface. The sliding motion exhibited by the error dynamics is uniformly ultimately bounded. The developed results are applied to a river quality control problem. Simulation results show that the proposed decentralized control strategy is effective and feasible

    A study of event traffic during the shared manipulation of objects within a collaborative virtual environment

    Get PDF
    Event management must balance consistency and responsiveness above the requirements of shared object interaction within a Collaborative Virtual Environment (CVE) system. An understanding of the event traffic during collaborative tasks helps in the design of all aspects of a CVE system. The application, user activity, the display interface, and the network resources, all play a part in determining the characteristics of event management. Linked cubic displays lend themselves well to supporting natural social human communication between remote users. To allow users to communicate naturally and subconsciously, continuous and detailed tracking is necessary. This, however, is hard to balance with the real-time consistency constraints of general shared object interaction. This paper aims to explain these issues through a detailed examination of event traffic produced by a typical CVE, using both immersive and desktop displays, while supporting a variety of collaborative activities. We analyze event traffic during a highly collaborative task requiring various forms of shared object manipulation, including the concurrent manipulation of a shared object. Event sources are categorized and the influence of the form of object sharing as well as the display device interface are detailed. With the presented findings the paper wishes to aid the design of future systems

    Causal Inference in Disease Spread across a Heterogeneous Social System

    Full text link
    Diffusion processes are governed by external triggers and internal dynamics in complex systems. Timely and cost-effective control of infectious disease spread critically relies on uncovering the underlying diffusion mechanisms, which is challenging due to invisible causality between events and their time-evolving intensity. We infer causal relationships between infections and quantify the reflexivity of a meta-population, the level of feedback on event occurrences by its internal dynamics (likelihood of a regional outbreak triggered by previous cases). These are enabled by our new proposed model, the Latent Influence Point Process (LIPP) which models disease spread by incorporating macro-level internal dynamics of meta-populations based on human mobility. We analyse 15-year dengue cases in Queensland, Australia. From our causal inference, outbreaks are more likely driven by statewide global diffusion over time, leading to complex behavior of disease spread. In terms of reflexivity, precursory growth and symmetric decline in populous regions is attributed to slow but persistent feedback on preceding outbreaks via inter-group dynamics, while abrupt growth but sharp decline in peripheral areas is led by rapid but inconstant feedback via intra-group dynamics. Our proposed model reveals probabilistic causal relationships between discrete events based on intra- and inter-group dynamics and also covers direct and indirect diffusion processes (contact-based and vector-borne disease transmissions).Comment: arXiv admin note: substantial text overlap with arXiv:1711.0635

    Event-triggering architectures for adaptive control of uncertain dynamical systems

    Get PDF
    In this dissertation, new approaches are presented for the design and implementation of networked adaptive control systems to reduce the wireless network utilization while guaranteeing system stability in the presence of system uncertainties. Specifically, the design and analysis of state feedback adaptive control systems over wireless networks using event-triggering control theory is first presented. The state feedback adaptive control results are then generalized to the output feedback case for dynamical systems with unmeasurable state vectors. This event-triggering approach is then adopted for large-scale uncertain dynamical systems. In particular, decentralized and distributed adaptive control methodologies are proposed with reduced wireless network utilization with stability guarantees. In addition, for systems in the absence of uncertainties, a new observer-free output feedback cooperative control architecture is developed. Specifically, the proposed architecture is predicated on a nonminimal state-space realization that generates an expanded set of states only using the filtered input and filtered output and their derivatives for each vehicle, without the need for designing an observer for each vehicle. Building on the results of this new observer-free output feedback cooperative control architecture, an event-triggering methodology is next proposed for the output feedback cooperative control to schedule the exchanged output measurements information between the agents in order to reduce wireless network utilization. Finally, the output feedback cooperative control architecture is generalized to adaptive control for handling exogenous disturbances in the follower vehicles. For each methodology, the closed-loop system stability properties are rigorously analyzed, the effect of the user-defined event-triggering thresholds and the controller design parameters on the overall system performance are characterized, and Zeno behavior is shown not to occur with the proposed algorithms --Abstract, page iv
    corecore