16,513 research outputs found

    Event-Triggered Observer-based Output-Feedback Stabilization of Linear System with Communication Delays in the Measurements

    No full text
    International audienceIn this paper, an original framework is proposed for the stabilization of a linear system with delays in the measurements: i) an observer estimates the full state information of the plant from a partial measurement, ii) an event-based control technique computes and updates the control signal only when a certain condition is satisfied and iii) an event-based corrector updates the model used to calculate the control law when it deviates from the estimated state. It is notably proved that such a proposal renders the closed-loop system stable for larger delays in the measurements than in the classical continuous-time control case. Simulation results are provided

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Observer-based networked control for continuous-time systems with random sensor delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper is concerned with the networked control system design for continuous-time systems with random measurement, where the measurement channel is assumed to subject to random sensor delay. A design scheme for the observer-based output feedback controller is proposed to render the closed-loop networked system exponentially mean-square stable with H∞ performance requirement. The technique employed is based on appropriate delay systems approach combined with a matrix variable decoupling technique. The design method is fulfilled through solving linear matrix inequalities. A numerical example is used to verify the effectiveness and the merits of the present results.This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor George Yin under the direction of Editor Ian R. Petersen. This work was supported in part by the Royal Society of the UK, the National Natural Science Foundation of China (60774047, 60674055) and the Taishan Scholar Programs Foundation of Shandong Province, China

    On general systems with network-enhanced complexities

    Get PDF
    In recent years, the study of networked control systems (NCSs) has gradually become an active research area due to the advantages of using networked media in many aspects such as the ease of maintenance and installation, the large flexibility and the low cost. It is well known that the devices in networks are mutually connected via communication cables that are of limited capacity. Therefore, some network-induced phenomena have inevitably emerged in the areas of signal processing and control engineering. These phenomena include, but are not limited to, network-induced communication delays, missing data, signal quantization, saturations, and channel fading. It is of great importance to understand how these phenomena influence the closed-loop stability and performance properties

    Decentralized Event-Triggered Consensus of Linear Multi-agent Systems under Directed Graphs

    Full text link
    An event-triggered control technique for consensus of multi-agent systems with general linear dynamics is presented. This paper extends previous work to consider agents that are connected using directed graphs. Additionally, the approach shown here provides asymptotic consensus with guaranteed positive inter-event time intervals. This event-triggered control method is also used in the case where communication delays are present. For the communication delay case we also show that the agents achieve consensus asymptotically and that, for every agent, the time intervals between consecutive transmissions is lower-bounded by a positive constant.Comment: 9 pages, 5 figures, A preliminary version of this manuscript has been submitted to the 2015 American Control Conferenc

    Exploiting timing information in event-triggered stabilization of linear systems with disturbances

    Get PDF
    In the same way that subsequent pauses in spoken language are used to convey information, it is also possible to transmit information in communication networks not only by message content, but also with its timing. This paper presents an event-triggering strategy that utilizes timing information by transmitting in a state-dependent fashion. We consider the stabilization of a continuous-time, time-invariant, linear plant over a digital communication channel with bounded delay and subject to bounded plant disturbances and establish two main results. On the one hand, we design an encoding-decoding scheme that guarantees a sufficient information transmission rate for stabilization. On the other hand, we determine a lower bound on the information transmission rate necessary for stabilization by any control policy
    corecore