1,446 research outputs found

    Event-triggered distributed model predictive control for resilient voltage control of an islanded microgrid

    Get PDF
    This article addresses the problem of distributed secondary voltage control of an islanded microgrid (MG) from a cyber‐physical perspective. An event‐triggered distributed model predictive control (DMPC) scheme is designed to regulate the voltage magnitude of each distributed generators (DGs) in order to achieve a better trade‐off between the control performance and communication and computation burdens. By using two novel event triggering conditions that can be easily embedded into the DMPC for the application of MG control, the computation and communication burdens are significantly reduced with negligible compromise of control performance. In addition, to reduce the sensor cost and to eliminate the negative effects of nonlinearity, an adaptive nonasymptotic observer is utilized to estimate the internal and output signals of each DG. Thanks to the deadbeat observation property, the observer can be applied periodically to cooperate with the DMPC‐based voltage regulator. Finally, the effectiveness of the proposed control method has been tested on a simple configuration with four DGs and the modified IEEE‐13 test system through several representative scenarios

    On the Control of Microgrids Against Cyber-Attacks: A Review of Methods and Applications

    Get PDF
    Nowadays, the use of renewable generations, energy storage systems (ESSs) and microgrids (MGs) has been developed due to better controllability of distributed energy resources (DERs) as well as their cost-effective and emission-aware operation. The development of MGs as well as the use of hierarchical control has led to data transmission in the communication platform. As a result, the expansion of communication infrastructure has made MGs as cyber-physical systems (CPSs) vulnerable to cyber-attacks (CAs). Accordingly, prevention, detection and isolation of CAs during proper control of MGs is essential. In this paper, a comprehensive review on the control strategies of microgrids against CAs and its defense mechanisms has been done. The general structure of the paper is as follows: firstly, MGs operational conditions, i.e., the secure or insecure mode of the physical and cyber layers are investigated and the appropriate control to return to a safer mode are presented. Then, the common MGs communication system is described which is generally used for multi-agent systems (MASs). Also, classification of CAs in MGs has been reviewed. Afterwards, a comprehensive survey of available researches in the field of prevention, detection and isolation of CA and MG control against CA are summarized. Finally, future trends in this context are clarified
    corecore