7,345 research outputs found

    Multi-objective optimization of spatial sampling

    Get PDF
    The optimization of spatial sampling by simulated annealing has been demonstrated and applied for a range of objective functions. In practice more than one objective function may be important for sampling, and there may be complex trade-offs between them. In this paper it is shown how a multi-objective optimization algorithm can be applied to a spatial sampling problem. This generates a set of solutions which is non-dominated (no one solution does better than any other on all objective functions). These solutions represent different feasible trade-offs between the objective functions, and a subset might be practically acceptable. The algorithm is applied to a hypothetical example of sampling for a regional mean with the variance of the mean and the total distance travelled between sample points as the two objective functions. The solutions represent a transition of sample arrays from a loose grid to a tight loop. The potential to develop this approach and apply it to other spatial sampling problems is discussed

    Gaussian process hyper-parameter estimation using parallel asymptotically independent Markov sampling

    Get PDF
    Gaussian process emulators of computationally expensive computer codes provide fast statistical approximations to model physical processes. The training of these surrogates depends on the set of design points chosen to run the simulator. Due to computational cost, such training set is bound to be limited and quantifying the resulting uncertainty in the hyper-parameters of the emulator by uni-modal distributions is likely to induce bias. In order to quantify this uncertainty, this paper proposes a computationally efficient sampler based on an extension of Asymptotically Independent Markov Sampling, a recently developed algorithm for Bayesian inference. Structural uncertainty of the emulator is obtained as a by-product of the Bayesian treatment of the hyper-parameters. Additionally, the user can choose to perform stochastic optimisation to sample from a neighbourhood of the Maximum a Posteriori estimate, even in the presence of multimodality. Model uncertainty is also acknowledged through numerical stabilisation measures by including a nugget term in the formulation of the probability model. The efficiency of the proposed sampler is illustrated in examples where multi-modal distributions are encountered. For the purpose of reproducibility, further development, and use in other applications the code used to generate the examples is freely available for download at https://github.com/agarbuno/paims_codesComment: Computational Statistics \& Data Analysis, Volume 103, November 201

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Inhibitory geostatistical designs for spatial prediction taking account of uncertain covariance structure

    Get PDF
    The problem of choosing spatial sampling designs for investigating an unobserved spatial phenomenon S arises in many contexts, for example in identifying households to select for a prevalence survey to study disease burden and heterogeneity in a study region D. We studied randomised inhibitory spatial sampling designs to address the problem of spatial prediction whilst taking account of the need to estimate covariance structure. Two specific classes of design are inhibitory designs and inhibitory designs plus close pairs. In an inhibitory design, any pair of sample locations must be separated by at least an inhibition distance δ. In an inhibitory plus close pairs design, n − k sample locations in an inhibitory design with inhibition distance δ are augmented by k locations each positioned close to one of the randomly selected n − k locations in the inhibitory design, uniformly distributed within a disc of radius ζ. We present simulation results for the Mat´ern class of covariance structures. When the nugget variance is non-negligible, inhibitory plus close pairs designs demonstrate improved predictive efficiency over designs without close pairs. We illustrate how these findings can be applied to the design of a rolling Malaria Indicator Survey that forms part of an ongoing large-scale, five-year malaria transmission reduction project in Malawi

    Optimal Stratification and Allocation for the June Agricultural Survey

    Get PDF
    A computational approach to optimal multivariate designs with respect to stratification and allocation is investigated under the assumptions of fixed total allocation, known number of strata, and the availability of administrative data correlated with thevariables of interest under coefficient-of-variation constraints. This approach uses a penalized objective function that is optimized by simulated annealing through exchanging sampling units and sample allocations among strata. Computational speed is improved through the use of a computationally efficient machine learning method such as K-means to create an initial stratification close to the optimal stratification. The numeric stability of the algorithm has been investigated and parallel processing has been employed where appropriate. Results are presented for both simulated data and USDA’s June Agricultural Survey. An R package has also been made available for evaluation

    Optimal design for correlated processes with input-dependent noise

    Get PDF
    Optimal design for parameter estimation in Gaussian process regression models with input-dependent noise is examined. The motivation stems from the area of computer experiments, where computationally demanding simulators are approximated using Gaussian process emulators to act as statistical surrogates. In the case of stochastic simulators, which produce a random output for a given set of model inputs, repeated evaluations are useful, supporting the use of replicate observations in the experimental design. The findings are also applicable to the wider context of experimental design for Gaussian process regression and kriging. Designs are proposed with the aim of minimising the variance of the Gaussian process parameter estimates. A heteroscedastic Gaussian process model is presented which allows for an experimental design technique based on an extension of Fisher information to heteroscedastic models. It is empirically shown that the error of the approximation of the parameter variance by the inverse of the Fisher information is reduced as the number of replicated points is increased. Through a series of simulation experiments on both synthetic data and a systems biology stochastic simulator, optimal designs with replicate observations are shown to outperform space-filling designs both with and without replicate observations. Guidance is provided on best practice for optimal experimental design for stochastic response models
    • …
    corecore