1,551 research outputs found

    Root-Hadamard transforms and complementary sequences

    Get PDF
    In this paper we define a new transform on (generalized) Boolean functions, which generalizes the Walsh-Hadamard, nega-Hadamard, 2k2^k-Hadamard, consta-Hadamard and all HNHN-transforms. We describe the behavior of what we call the root- Hadamard transform for a generalized Boolean function ff in terms of the binary components of ff. Further, we define a notion of complementarity (in the spirit of the Golay sequences) with respect to this transform and furthermore, we describe the complementarity of a generalized Boolean set with respect to the binary components of the elements of that set.Comment: 19 page

    New Sets of Optimal Odd-length Binary Z-Complementary Pairs

    Get PDF
    A pair of sequences is called a Z-complementary pair (ZCP) if it has zero aperiodic autocorrelation sums (AACSs) for time-shifts within a certain region, called zero correlation zone (ZCZ). Optimal odd-length binary ZCPs (OB-ZCPs) display closest correlation properties to Golay complementary pairs (GCPs) in that each OB-ZCP achieves maximum ZCZ of width (N+1)/2 (where N is the sequence length) and every out-of-zone AACSs reaches the minimum magnitude value, i.e. 2. Till date, systematic constructions of optimal OB-ZCPs exist only for lengths 2α±12^{\alpha} \pm 1, where α\alpha is a positive integer. In this paper, we construct optimal OB-ZCPs of generic lengths 2α10β26γ+12^\alpha 10^\beta 26^\gamma +1 (where α, β, γ\alpha,~ \beta, ~ \gamma are non-negative integers and α≥1\alpha \geq 1) from inserted versions of binary GCPs. The key leading to the proposed constructions is several newly identified structure properties of binary GCPs obtained from Turyn's method. This key also allows us to construct OB-ZCPs with possible ZCZ widths of 4×10β−1+14 \times 10^{\beta-1} +1, 12×26γ−1+112 \times 26^{\gamma -1}+1 and 12×10β26γ−1+112 \times 10^\beta 26^{\gamma -1}+1 through proper insertions of GCPs of lengths 10β, 26γ,and 10β26γ10^\beta,~ 26^\gamma, \text{and } 10^\beta 26^\gamma, respectively. Our proposed OB-ZCPs have applications in communications and radar (as an alternative to GCPs)

    Dynamical Algebraic Combinatorics, Asynchronous Cellular Automata, and Toggling Independent Sets

    Get PDF
    Though iterated maps and dynamical systems are not new to combinatorics, they have enjoyed a renewed prominence over the past decade through the elevation of the subfield that has become known as dynamical algebraic combinatorics. Some of the problems that have gained popularity can also be cast and analyzed as finite asynchronous cellular automata (CA). However, these two fields are fairly separate, and while there are some individuals who work in both, that is the exception rather than the norm. In this article, we will describe our ongoing work on toggling independent sets on graphs. This will be preceded by an overview of how this project arose from new combinatorial problems involving homomesy, toggling, and resonance. Though the techniques that we explore are directly applicable to ECA rule 1, many of them can be generalized to other cellular automata. Moreover, some of the ideas that we borrow from cellular automata can be adapted to problems in dynamical algebraic combinatorics. It is our hope that this article will inspire new problems in both fields and connections between them

    Two-Dimensional Z-Complementary Array Quads with Low Column Sequence PMEPRs

    Full text link
    In this paper, we first propose a new design strategy of 2D ZZ-complementary array quads (2D-ZCAQs) with feasible array sizes. A 2D-ZCAQ consists of four distinct unimodular arrays satisfying zero 2D auto-correlation sums for non-trivial 2D time-shifts within certain zone. Then, we obtain the upper bounds on the column sequence peak-to-mean envelope power ratio (PMEPR) of the constructed 2D-ZCAQs by using specific auto-correlation properties of some seed sequences. The constructed 2D-ZCAQs with bounded column sequence PMEPR can be used as a potential alternative to 2D Golay complementary array sets for practical applicationsComment: This work has been presented in 2023 IEEE International Symposium on Information Theory (ISIT), Taipei, Taiwa
    • …
    corecore