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Abstract 
In this paper we define a new transform on (generalized) Boolean functions, which gen
eralizes the Walsh-Hadamard, nega-Hadamard, 2k-Hadamard, consta-Hadamard and all 
H N-transforms. We describe the behavior of what we call the root-Hadamard transform 
for a generalized Boolean function f in terms of the binary components of f . Further, we 
define a notion of complementarity (in the spirit of the Golay sequences) with respect to 
this transform and furthermore, we describe the complementarity of a generalized Boolean 
set with respect to the binary components of the elements of that set. 
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1 (Generalized} Boolean functions 

Let lF2 be the vector space of then-tuples over lF2, and, for an integer q, let Zq be the ring of 
integers modulo q. By'+' and'-' we respectively denote addition and subtraction in lF2. 

A function F : lF2 • lF2, n > 0, is called a Boolean function inn variables, whose set 
will be denoted by Bn. A Boolean function can be regarded as a multivariate polynomial 
over lF2, called the algebraic normal form (ANF) 

f(x1, ... , Xn) = ao + L aiXi + L aijXiXj + · · · + a12 ... nx1x2 ... Xn, 
l~i~n l~i<j~n 

where the coefficients ao, aij, ... , a12 ... n E lF2. The maximum number of variables in a 
monomial is called the (algebraic) degree. The (Hamming) weight of x = (x1, ... , Xn) E lF2 
is denoted by wt(x) and equals I:7=1 Xi (the Hamming weight of a function is the weight of 
its truth table, that is, the weight of its output vector). The cardinality of a set Sis denoted 
by ISi. 

We order lFz lexicographically, and denote Vo = (0, ... , 0, 0), V1 = (0, ... , 0, 1), 
v2n-1 = (1, ... , 1, 1). The truth table of a Boolean function f E Bn is the binary string of 
length 2n, [f(vo), f(v1), ... , f(v2n_i)] (we will often disregard the commas). 

If X = (x1, ... , Xn) and y = (y1, ... , Yn) are two vectors in lFz we define the scalar (or 

inner) product, by x · y = x1 Yl + x2y2 + · · · + Xn Yn. The scalar/inner product x 0 y in C x C 
is similar, with the sum over C. The intersection of two vectors x and y in some vector 
space under discussion is x * y = (x1y1, x2y2, ... , XnYn). We write a = ffi(z), b = ~(z) for 
the real part, respectively, imaginary part of the complex number z = a + bi E C, where 
i 2 = -1, and a, b E JR. Further, lzl = ✓ a 2 + b2 is the absolute value of z, and z = a - bi 
denotes the complex conjugate of z. 

We call a function from lF2 to Zq (q :::: 2) a generalized Boolean function on n variables, 
and denote the set of all generalized Boolean functions by QB~ and, when q = 2, by Bn, 
as previously mentioned. If q = 2k for some k :::: 1, we can associate to any f E QB~ a 
unique sequence of Boolean functions ai E Bn (i = 0, 1, ... , k - l) such that 

f(x) = ao(x) + 2a1 (x) + · · · + 2k-lak-l (x), for all XE lFz. 

For a Boolean function f E Bn, we define its sign function j by j (x) = (-l)f(x). In 
A f(x) 2ni 

general, the sign function off E QB~ is f(x) = tq , where tq = e T is the q-complex 
root of 1 (for easy writing, we sometimes use t instead of tq, when q is fixed). 

For a generalized Boolean function f : lF2 • Zq we define the (normalized) generalized 
Walsh-Hadamard transform to be the complex valued function 

Ho/\u) = 2-n/2 L r/<x\-l)u•x. 

XElF2 

(we sometimes use 1l f, instead of Ht, when q is fixed.) 
For q = 2, we obtain the usual Walsh-Hadamard transform 

The sum 

~ Springer 

WJ(U) = 2-n/2 L (-l)f(x)+u•x. 

XElF2 

C f,g(Z) = L rf<x+z)-g(x) 

XElF2 
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is the crosscorrelation of f and g at z E lF2. The autocorrelation of f E g B~ at u E lF2 is 
C1,1(u) above, which we denote by C1(u). 

Given a generalized Boolean function f, the derivative Daf of f with respect to a 
vector a E lF2, is the generalized Boolean function defined by 

Daf(x) = f(x + a) - f(x), for all XE lFz. (1) 

A function f : JF2 • 'llq is called generalized bent (gbent) if 11-li(u)I = 2n/2 for all 
u E lF2. For descriptions of (generalized) bents, the reader can consult [10, 15, 18, 20]. 

The nega-Hadamard transfonn of f E g B~ at any vector u E lF2 is the complex valued 
function: 

N/)(u) = 2-~ I:sf(x)(-l)""x,wt(x)_ 

XEIF2 

As customary, we may drop (some of) the superscripts in all of our notations, if convenient. 
In [13], some of us considered generalized bent criteria for Boolean functions by analyz
ing Boolean functions which have flat spectrum with respect to one or more transforms 
chosen from a set of unitary transforms. The transforms chosen are n-fold tensor products 

of the identity mapping ( t ~), the Walsh-Hadamard transformation ,J2 ( ~ _ ~ ) , and 

the nega-Hadamard transform ,J2 ( ~ _:), where 12 = -1. That choice is motivated by 

local unitary transforms that play an important role in the structural analysis of pure n-qubit 
stabilizer quantum states. 

A function f : lF2 • Zq is said to be (generalized) negabent if the nega-Hadamard 

transform is flat in absolute value, namely IN/) ( u) I = 1 for all u E lF2. The sum 

en (z) = ~ Sf(x+z)-g(x\-1t·Z 
f,g L.t 

is the nega-crosscorrelation off and g at z. We define the nega-autocorrelation off at 
u E lF2 by 

C1(u) = Lsf<x+z)-f<x\-1t•z. 

XEIF2 
For more on (generalized) Boolean functions, the reader can consult [2, 3, 10, 14, 18, 20] 

and the references therein. 

2 The root-Hadamard transform 

Walsh-Hadamard, nega-Hadamard transforms, as well as, 2k-Hadamard [17], consta
Hadamard [11] and H N-transforms [13], can be generalized (thus, unifying under the 
same umbrella all of these transforms) into what we will call the root-Hadamard 
transform. 

Definition 1 Let f E QB~\ (2k a 2k-complex root of 1 (when convenient we drop the 
2rri 

index), A = {a1, ... , ar} a set of roots of unity a j = er;, K = {kj h:::j:::r and L = 
{Rs}sEK beapartitionoftheindex set{0, ... , n-1} = LJsEK Rs, ILi = r(forconvenience, 

~ Springer 
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we index the partition by the elements of K). For L = {Rs}sEK, we let XRs = (xj)jERs 

TI wt(XR) '"' and ).L(x) = as s , where wt(XRs) = ~Xj E N(observe that ).L(O) = 1, for any 
sEK jERs 

partition L ). We define the root-Hadamard transform of f at any vector u E lF2 as the 
complex valued function: 

If f is a Boolean function, we let 'TL,A,f := ut~,J· A function f on QB~k is said to be 
root-bent if the root-Hadamard transform is flat in absolute value, namely IUL,A,f (u)I = 1 
for all u E lF2. The sum 

CP (z) = '°' rf<x+z)-g(x) nµ;Rs0ZRs 
L,A,f,g ~ 

SEK 

is the root-crosscorrelation of f and g at z (recall that µs 
autocorrelation of f at u E lF2 by 

a;). We define the root-

When the sets L, A are understood from the context, to simplify the notation, we may write 

U Cp cP . i· f u<2k) rr<.2k) cP cP 
f, Tj' f,g' f lil ieu O L,A,f' I i ,A,f' L,A,f,g' L,A,J· 

Example 2 Consider A = { e 2l;, e~} and L = {(O, 2), (1, 3)}. The generalized Boolean 

function 

is root-bent, that is, IUL,A,f (u) I = 1 for all u E lF2. 

This transform is related to (but more general than) the concept of consta-Hadamard 
transform (see [1 1, 17]). First, we show that it is a proper kernel transform, so we 
show its invertibility by providing a simple proof of that (the proof also follows from 
the fact that the matrix corresponding to the root-Hadamard transform is an orthogonal 
matrix). 

Proposition 3 Let f E 9Bn, A be a set of complex roots of 1 and {RdkEK be a partition 
of {0, 1, ... , n - 1}, indexed by the elements in A. Then,for any y E lF2, we have that 

~ Springer 
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Proof We perform the following computation: 

2-~ L UL,A,f (W)(-1)Y·W 

WEIF2 
= 2-n L I::rf(x)(-l)W·X TTa:"(XRs\-1)Y·W 

_ rf(y) n wt(YRs) 
- '> as , 

sEK 

and the claim follows. • 

If a is a complex root of 1, we letµ = a2 (recall the scalar product x 0 z is computed 
over C). We will make use throughout of the well-known identity on binary vectors (see [9]) 

wt(x + y) = wt(x) + wt(y) - 2wt(x * y). 

The following result is a collection of facts from [18, 19]. 

Proposition 4 We have: 

(1) If f, gE QB7i, then 

LCJ,g(u)(-l)(u,x) = 1-l1(x)1-l8 (x), 

uEIF2 
C1,8 (u) = 2-n L1-lJ(x)1-l8 (x)(-l)(u,x)_ 

XEIF2 

In particular, if f = g, then C 1(u) = 2-n L 11-l 1(x)l2 (-l)(u,x). 

XEIF2 
(2) If f, g E Bn, then the nega-crosscorrelation equals 

C'},8 (z) = lwt(z) I:N1(u)N8 (u)(-l)".z. 

uEIF2 

(2) 

(3) 

We now prove a result similar to Proposition 4 for this newly defined transform. 

Theorem 5 Let f, g E Bt, A be a set of complex roots of I and { Rk} kEK be a partition of 
{O, 1, ... , n - 1} as before. The root-crosscorrelation off, g is 

Cf.J,/z) = ).L(z) L UL,A,f(u)UL,A,g(u)(-l)".z. 
uEIF2 

Furthermore, the root-Parseval identity holds 

L IUL,A,f(u)l 2 = 2n. 
uEIF2 

Moreover, f is root-bent if and only ifCf,A,f (u) = O,for all u f= 0. 

~ Springer 



Proof Using [3, Lemma 2.9] and identity (2), we write 

AL(z) L UL,A,f(U) UL,A,g(u)(-1)0 'z 

UEIF2 

x,yEIF2 SEK 

_ "'""' rf(x)-g(x+z) n 2wt(XR5 *ZR5 ) 

- ~ '>2k as 
x,yEIF2 sEK 

= L (-l)f(x)-g(x+z) n µ,:Rs0ZRs = C1},gCz). 
SEK 

If f = g, then we get 

Cryptography and Communications 

= AL(z) LUL,A,f(u)UL,A,f(u)(-l)0 •z, 

UEIF2 

and by replacing z = 0, then we get the root-Parseval identity. The last claim is also implied 
by the previous identity. • 

Example 6 The generalized Boolean function f (x) in Example 2 satisfies Cf,A,f (u) = 0 
for all u =fa O (as predicted by Theorem 5). 

3 Complementary sequences 

We next give a brief overview of Golay complementary pairs (CP) (see, for example, [4-8, 
16] or the reader's preferred reference on CP). Let a= {ai }~01 be a sequence of ±1 (bipo-

lar) and let the aperiodic autocorrelation of a at k be defined by Aa(k) = L~ok-laiai+k, 
0 ::'.S k :'.S N - l. The periodic autocorrelation of a at 0 ::'.S k :'.S N - l is defined by 
Ca(k) = L~o1aiai+k, 0 :'.S k :'.SN - l, where we take indices modulo N. The negaperiodic 

autocorrelation is C/(u) = L7:o1aiai+k(-l)L(k+i)/2nJ. 
Two bipolar sequences a, b form a (Golay) complementary pair if 

Aa(k) + Ab(k) = 0, fork =fa 0. 

We call them a P-complementary pair if 

Ca(k) + Cb(k) = 0, fork =fa 0, 

and N -complementary pair if 

c:(k) + Cb(k) = 0, fork =fa 0, 

~ Springer 



Cryptography and Communications 

We associate a polynomial A to the sequence a by A(x) = ao + a1x + • • • + aN-IXN-I _ It 
is rather straightforward to show that two sequences a, b (with corresponding polynomials 
A, B) form a Golay complementary pair if and only if 

A(x)A(x-1) + B(x)B(x-1) = 2N. (4) 

Similarly, they form a P-complementary pair if 

A(x)A(x-1) + B(x)B(x-1) = 2N (mod xN - 1) 

and a N -complementary pair if 

A(x)A(x-1) + B(x)B(x-1) = 2N (mod xN + 1). 

Let U, V be the following N x N matrices, defined by 

U= 

010···00 
001·· · 00 

000···01 
100···00 

V= 

0 10···00 
0 0 1 · · · 0 0 

0 00···01 
-1 0 0 · · · 0 0 

(5) 

(6) 

We can quickly see that the periodic and negaperiodic autocorrelations satisfy Ca(k) 
a-auk and c; (k) = a-a yk. It is interesting to note that a pair of sequences is complementary 
if and only if it is P-complementary and N-complementary, which easily follows from the 
identities 

Pa(k) = Aa(k) + Aa(N - k), 

c:(k) = Aa(k) - Aa(N - k). 

All of the above concepts can be extended to a set of sequences S = {ad1:::i:::M by 
imposing the sum of autocorrelations to be zero at nonzero shift, and we shall such, a 
complementary set) (with respect to some fixed autocorrelation). For example, the set S 

M 

is P-complementary (respectively, N-complementary) if L Aa;(k) = 0 (respectively, 
i=l 

M 

L Ca; (k) = 0), fork -=I- 0. We shall also define the notion of pairwise complementary set 
i=l 
S, by assuming that any pair within the set is complementary with respect to some auto-
correlation (see [21] for a particular case of what we suggest here, and the reference to 
applications in signal multiplexing of acoustic surface-wave sequences - there are surely 
more recent references, and we simply added one of the earliest we know on the concept of 
complementary sets). 

The previous concepts take different forms for Boolean functions, since when we add 
vectors in the input of a function, we lose the circular permutation property (though, it can 
regarded as negacyclic permutation property). For two functions f, g E QB~, we let the 
periodic/negaperiodic correlation off, g to be 

2n-1 

Cj,g(U) = L sf(v)-g(v+u), 

i=O 

2n-l 

C1,gCu) = L sf(v)-g(v+u\-l)U·V. 

i=O 

~ Springer 
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We say that two Boolean functions are complementary if and only if they are both 
P-complementary and N -complementary. 

We will now define our new concept of (periodic and aperiodic) complementarity. 

Definition 7 We say that two pairs of functions (a1, a2), (b1, b2) are: 

(i) A-crosscomplementary if 

Aa1 ,a2 (k) + Ab1 ,b2 (k) = 0, fork =/= 0. 

(ii) P-crosscomplementary if 

Ca1 ,a2 (k) + Cb1 ,b2 (k) = 0, for k =/= 0. 

(iii) N -crosscomplementary if 

ci1,a/k) + C;_:1,b/k) = 0, fork=/= 0. 

4 Complementary pairs and components of generalized Boolean 
functions 

The following lemma from [10, 18, 20], provides a relationship between the generalized 
Walsh-Hadamard transform and the classical transform. Recall the "canonical bijection" 
t : lF~-l • Z2k- 1, which is defined by t(c) = I::,:~ Cj2j where c = (co, ci, ... , Ck-2). 

zk 
Lemma 8 For a generalized Boolean f E QBn , f(x) = ao(x) + 2a1 (x) + · · · + 
2k-Iak-I (x), ai E Bn, we have 

(7) 

where fc(x) = coao(x)EBcia1 (x)EB· · ·EBCk-2ak-2(x)EBak-l (x) are the component functions 
off. 

The next lemma is known and easy to show. 

Lemma 9 If b, care bits and z is a complex number, then 

2i = (1 + (-ll) + (1- (-l)b)z, 

( 1 + ( - 1 l z) ( -1 le = { 1 + z 
(1-z)(-lf 

ifb = 0 

if b = l. 

In the next theorem, we generalize Lemma 8 with respect to our root-Hadamard trans
forms. The proof is interestingly enough, similar to the proof of Lemma 8, with some 
appropriate changes. 

Theorem 10 For a generalized Boolean f E g B~k, A and L as in Definition l, and f (x) = 
ao(x) + 2a1 (x) + · · · + 2k-Iak-I (x), ai E Bn, we have 

1 
UL,A,f(U) = 2k-l L (-lf-dt~t)TL ,A,Jc(u), (8) 

(c,d)ElF~-I xlF~-I 

~ Springer 
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where fc(x) = coao(x)EBc1a1 (x)EB· · ·EBCk-2ak-2(x)EBak-l (x) are the component functions 
off. 

k-2 

Proof Denoting Ye 

compute 

n (1 + (-lt; S2k-i ), where c 
i=O 

(co, ci, ... , Ck-2) E lF~-1, we 

k-2 2L1 L (-1/k- J(X)+U·XAL(x) n ( 1 + S2k-i + (1 - S2k-i) (-1).fi(x)) 
XEF2 i=O 

2L1 L(-l/k- 1(x)+u-x>-.L(x) 

XEF2 
k-2 

· L (-l)L~~Jc;J;(x) n (1 + (-lti{2k-i) (byLemma9) 

The theorem follows after easily expressing Ye as a sum of powers of the complex roots of 
1 ( or simply using [20, Lemma 5]). • 

The next lemma will be used later. 

Lemma 11 (Inversion Lemma) We let Fu : lF2 --+ (C be a class of complex-valued functions 

indexed by u E lF~-1. Then,for every c E lF~-1, we have 

Fc(a) = 2k~l L (-l)(u+c)•v Fu (a). 

U VElFk-l 
' 2 

Proof Observe that 

L (-l)(u+e)-v Fu(a) = L Fu(a) L (-l)(u+e)•v = 2k-l Fe(a), 

by [3, Lemma 2.9], and our result follows. • 

In the spirit of the Hadamard and nega-Hadamard complementary notions, we define a 
root-transform complementarity notion next. For L = {Rj }jEK, a partition of {O, 1, ... , n-

~ Springer 
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1} and A= {aj }jEK, a set of complex roots of 1, we say that a set S = {gd:'!,1 of functions 
in QB~ (q may be 2) is LA-complementary if 

M 

L Cf ,A ,g; (u) = 0, for all u -=/= 0. 
i=l 

Moreover, two tuples S1 = Ui ):'!,1, S2 = (gi ):'!,1 of (generalized or not) Boolean functions 
are LA-crosscomplementary if 

M 

L cf,A,f; ,g; (u) = 0, for all u-=/= 0. 
i=l 

We give such an example below. 

Example 12 Let A = { e 21;, e 2i;} and L = {{0, 2}, {1, 3}}. Consider the generalized 

Boolean function f E QB!, defined by f (x) = x1 + xz + x3 + x4 + 2fi (x) where Ji is any 
Boolean function in the set SF(see Table 1). Then, 

U=O 
{ 

16, 

Cf ,A,f (u) = -Si, u = (0, 1, 0, 1) . 

0, otherwise 

Furthermore, let gE QB!, defined by g(x) = x1x2 + x3 + x4 + x1x4 + 2g1 (x), where g1 is 
a Boolean function in the set SG(see Table 2). Then, 

U=O 
{ 

16, 

Cf ,A,/u) = Si, u = (0, 1, 0, 1) . 

0, otherwise 

Clearly, Cf,A,1(0) + Cf,A,/u) = 0, for all u-=/= 0. In other words, the generalized Boolean 
functions f, g are LA-complementary. 

Theorem 13 Let S = Ui} i El, ,t E Q B~k, be a set of generalized Boolean functions and 
A, L as in Definition l. Then S forms an LA-complementary set if and only if for all a, c E 

lF~-1, Sa= Ua}fES, Sc= Uc}fES form a binary LA-crosscomplementary set. 

Table 1 Set of Boolean functions 
SF 

~ Springer 

XiX2 + X3X2 + XiX4 + X3X4 + X4 

XiX2 + X3 + XiX4 + X4 

XiX2 + X3X2 + X3 + XiX4 + X3X4 + X4 

Xi + x2x3 + X3X4 + X4 

X2Xi + X4Xi + Xi + x2x3 + X3X4 + X4 

X2Xi + X4Xi + Xi + X3 + X4 

X2Xi + X4Xi + Xi + x2x3 + X3 + X3X4 + X4 

Xi + x2 + x2x3 + x3x4 

x2xi + X4Xi + Xi + x2 + x2x3 + x3x4 

Xi + x2 + x2x3 + X3 + X3X4 

X2Xi + X4Xi + Xi + x2 + X3 

x2x1 + X4Xi + X] + x2 + x2x3 + X3 + X3X4 
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Table 2 Set of Boolean functions SG 

x1x2 + X1X3X2 + X3X2 + X1X3 + X1X4 + XiX3X4 

XiX2 + XiX3X2 + X4X2 + XiX3 + XiX4 + XiX3X4 + X3X4 + X4 

XiX2 + XiX3X2 + X3X2 + XiX3 + X3 + XiX4 + XiX3X4 

x1x2 + XiX3X2 + X4X2 + XiX3 + X3 + XiX4 + XJX3X4 + X3X4 + X4 

X2Xi + X2X3Xi + X3Xi + X3X4Xi + X4Xi + Xi + x2x3 

X2Xi + x2X3X1 + X3X1 + X3X4Xi + X4Xi + Xi + x2x4 + X3X4 + X4 

X2Xi + X2X3Xi + X3Xi + X3X4Xi + X4Xi + Xi + x2x3 + X3 

X2Xi + x2x3x1 + X3Xi + X3X4Xi + X4Xi + Xi + X3 + X2X4 + X3X4 + X4 

X2X3Xi + X3Xi + X3X4X1 + Xi + x2 + x2x4 + X3X4 

X2Xi + X2X3Xi + X3Xi + X3X4X1 + X4Xi + Xi + x2 + x2x4 + X3X4 

X2X3Xi + X3X1 + X3X4Xi + XJ + x2 + x2x3 + X4 

X2Xi + x2x3x1 + X3Xi + X3X4Xi + X4Xi + Xi + x2 + x2x3 + X4 

X2X3Xi + X3X1 + X3X4X1 + XI + x2 + X3 + x2x4 + X3X4 

x2x1 + x2x3x1 + X3X1 + X3X4X1 + X4X1 + Xt + x2 + X3 + x2x4 + X3X4 

X2X3Xi + X3X1 + X3X4Xi + Xt + x2 + x2x3 + X3 + X4 

x2x1 + x2x3x1 + X3X1 + X3X4X1 + X4X1 + XJ + x2 + x2x3 + X3 + X4 

Proof We first assume that S forms an LA-complementary set. Then I::cf,A,f(v) = 0, for 
/ES 

v =fa 0. From Theorem 5, we know thatCf,A,f(v) = .11.L(v) LuEIF2 IUL,A,f(u)l2(-l)v•u, and 
using our assumption along with Theorem 10 we obtain (we divide throughout by AL(v)) 

0 = L LIUL,A,f(u)l2(-l)v-u 
UElF2f ES 

UEJF2 
a,b,c,dElF~-I 

( -l)(a,c)-(b,d) ,,_i(b)+i(d) '°'T, (u)T, (u)(-l)v-u 
'>2k L L,A,f8 L,A,Jc 

/ES 

( -l)(a,c)-(b,d) ,,_i(b)+i(d) '°' '°'T, (u)T, (u)(-l)v-u 
'>2k LL L,A,f8 L,A,Jc 

'°' (- l)(a,c)-(b,d) ,,_i(b)+i(d) '°' CP (v) 
L '>2k L L,A,Ja,Jc 

a,b,c,dElF~-l f ES 

" ( " (-l)(a,c)-(b,d) ,,_i(b) "Cp (v)) ,,_i(d) 
L L '>2k L L,A,fa,Jc '>2k ' 

dElF~- l a,b,cElF~- l /ES 

and since { s~id)}dEIF~-1 is a basis of (Q((2k), then, for all d E lF~-1, 

O = " (-l)(a,c)-(b,d)St(b)'°'Cp (v) 
L 2k L L ,A , fa,Jc 

b ]Fk- 1 a, ,CE 2 /ES 

= " ( " (-l)(a,c)-(b,d)'°'Cp (v)) St(b)' L L L L,A,Ja,Jc 2k 

hElF~-l a,cElF~-l /ES 
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which, by the same reason as above, renders, for all b, d E IF~-1, 

'°' (-l/a,c)-(b,d)'°'CP (v) = 0. 
~ ~ L,A,Ja,Jc 

a,cElF~-l /ES 

Inverting the previous equation using Lemma 11, we obtain 1:Cf,A,Ja,J/v) 
/ES 

reciprocal follows easily from the identity 

I:cf,A,f(v) = AL(v) L LIUL,A,f(u)l2(-l?"u 
/ES uElF2fES 

= AL(v) '°' (-l)(a,C)·(b,d) ri(b)+i(d) '°'Cp (v). 
~ 2t ~ L,A,h,~ 

a,b,c,dElF~- l /ES 

The theorem is shown. 

0. The 

• 
Corollary 14 Let {f, g} be two generalized Boolean functions in QBt Then {f, g} 
forms an P-complementary (respectively, N -complementary) pair if and only if for all 
a, c E IF~-1, Ua, Jc} and {g0 , gc} form a (binary)P-crosscomplementary (respectively, 
N -crosscomplementary) pair. 

5 Transforms and complementary constructions 

It is well known [12] that a Boolean function f has flat spectrum with respect to the nega
Hadamard spectrum if f + s2 (where s2 is the quadratic elementary symmetric polynomial) 
has flat spectrum with respect to the Walsh-Hadamard transform. Thus, it is natural to 
ask whether some connection exists between the Walsh-Hadamard and the nega-Hadamard 
transforms defined on generalized Boolean functions. To that effect, we show the first 
claim of our next result (see [1] for the particular case of k = 1). We can also relate the 
root-Hadamard transform and the generalized Hadamard transform. 

2ni 

We let A= {a1, ... , ar} be a set of roots of unity aj = e --r; such that kj = 2mi, mj ~ 
k, K = {kjh.:::J:'.Sr and L = {RslsEK be a partition of the index set {0, ... , n - 1} = 
LJsEK Rs, ILi = IKI = r. For J s; K, we let A1 be A with as replaced by 1 for alls E J. 

n 

Let s1(x) = EBxj, s2(x) = EB XjXk, and in general sr(x) = EB xh · · ·Xh 
j=l l-S.j <k-S.n 1-S.h < ... < j1 -s_n 

be the symmetric polynomials of degree 1, 2, t, respectively, all reduced modulo 2. We will 
use here Lemma 5 from [ 17]: 

Lemma 15 ([17]) Letx E Vn. Then, 

wt(x) (mod 4) = s1 (x) + 2s2(x) 

wt (x) (mod 2k) = wt (x) (mod 2k-I) + 2k-I s2t-1 (x) 

Theorem 16 We have: 

(i) Letn 2'.: 1, k 2:: 1, f E QB~k andg E QBt+i definedbyg(x) =2f(x)+2k-ls1(x)+ 
k k+I N(2k) (2k+I) 2 s2(x)(the sum is taken modulo 2 ). Then, f (u) = Hg (u),forall u E IF'.!-
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(ii) Let n ~ l, k ~ l, f, hK, h1 E QB~k defined by hK(x) = f(x) -

LsEK2k-msI;j:is2j(XRs), h1(x) = f(x) - LsEJ 2k-msI;j:is2j(XRs)(the sum is 

taken modulo 2k), where XRs is the restriction ofx to the indices in R5 • Then, 

(2k) (2k) (2k) (2k) n 
UL,A,hK (u) = 1i f (u) and UL,A,h/u) = UL ,AJ,f(u), for all U E JF2 . 

Proof We compute 

Ht+l\u) = 2-n/l I:rfk~?(-l)"'x 

XElF2 
= 2-n/2 L rt<x\-l)"'XiSJ (x)+2s2(x) 

XElF2 
= 2-n/2 L rt<x) (-l)"'xiwt(x) = N?k) (u). 

XElF2 
The two claims of (ii) are similar so we will show only the first part. Note that, by 

Lemma 15, wt(x) (mod 25 ) = I:j:is2j (x). We compute 

u<2k) (u) - 2-n/2" ,..g(x) (- l)U·X ).._ (x) 
L,A,hK - L.,; '>2k L 

XElFz 

= 2-n/2 L r;(x)-I:seK 2k- ms L1~iS2j (XRs) (-l)U·X n a:t(XRs) 

= 2-n/2 L rt<x) (-l)U·X = 11,<:f) (u), 

XElF2 
and the theorem is shown. • 

Two of us introduced the next concept in [14]. We call a function f E Q B7t a landscape 
function if there exist t ~ l, mi E No, li E 2No + 1, 1 ~ i ~ t, such that 

m1 mi 
{l1i1(n)l}uEsupp(1-lf) = {2 2 l1, ... , 2T li}. 

We call the set of pairs {(m1,l1), (m2, l2), ... }, the levels off, and t + l (if O belongs to 
the Walsh-Hadamard spectrum), or t (if O is not in the spectrum) the length off. 

We can deduce this corollary (the second claim of the next result was also shown in [1]). 

Corollary 17 Let f, h E Bn, where h(x) = f(x) + s2(x). If n is even, then f is negabent 
if and only if h is bent. Furthermore, f is negaplateaued if and only if h is plateaued. In 
general, f is negalandscape (defined as above, via the nega-Hadamard transform) if and 
only if h is landscape. 

Proof By Theorem 16 (i), fork= l, we have that if f E Bn and gE QB! defined by g(x) = 

2f (x) + s1 (x) + 2s2 (x), then, N;2) (u) = H14) (u), for all u E lF2. Since the decomposition 
of g is g(x) = ao(x) + 2a1 (x), where ao(x) = s1 (x), and a1 (x) = f (x) +s2(x), this implies, 
by [10], that, when n is even, g is gbent if and only if a 1 and ao + a1 are bent Boolean 
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functions. This implies that g is gbent if and only if f + s2 and SJ + f + s2 are bent Boolean 
functions. Since SJ is a linear Boolean function, this implies that f is negabent if and only 
if h = f + s2 is bent, giving yet another proof to this known result [12]. 

Further, by Corollary I of [14], we see that, if g : IF2 • Z 2k is a function given by g(x) = 
ao(x) + 2aJ (x) + • • • + 2k-J ak-J, ands 2::: 0 is an integer, then, g is s-gplateaued if and only 
if, for each c E IF~-J, the Boolean function gc defined as gc(x) = c • (ao(x), ... , ak-2(x)) + 
ak-J (x) is ans-plateaued (if n + s is even), respectively, an (s + !)-plateaued function (if 
n +sis odd), with some extra conditions on the Walsh-Hadamard coefficients. In particular, 
taldng k = l, this implies that f is negaplateaued if and only if f +SJ+ s2 is plateaued (no 
extra conditions on the Walsh-Hadamard coefficients), which again implies that f + s2 is 
plateaued. 

Using Theorem 3.2 of [14], this argument can be also extended to landscape functions, 
in a similar way as in the plateaued case. • 

6 Further comments 

In this paper we defined a class of transforms which generalize many others, like general
izes the Walsh-Hadamard, nega-Hadamard, 2k-Hadamard [17], consta-Hadamard [11] and 
H N -transforms. For generalized Boolean functions, we describe its behavior on the binary 
components. Further, we define a notion of complementarity (in the spirit of the Golay 
sequences) with respect to this transform and furthermore, we describe the complementar
ity of a generalized Boolean set with respect to the binary components of the elements of 
that set. Some concrete examples are provided. 

There are many questions one can ask on the new transforms. For example, it would be 
interesting to provide more constructions of root-bent and more generally, root-plateaued 
functions (surely, Theorem 16 may help). Certainly, finding connections between these 
transforms, their values, and (relative) difference sets would be quite interesting, as well. 
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