137 research outputs found

    Vertices with the Second Neighborhood Property in Eulerian Digraphs

    Full text link
    The Second Neighborhood Conjecture states that every simple digraph has a vertex whose second out-neighborhood is at least as large as its first out-neighborhood, i.e. a vertex with the Second Neighborhood Property. A cycle intersection graph of an even graph is a new graph whose vertices are the cycles in a cycle decomposition of the original graph and whose edges represent vertex intersections of the cycles. By using a digraph variant of this concept, we prove that Eulerian digraphs which admit a simple dicycle intersection graph have not only adhere to the Second Neighborhood Conjecture, but have a vertex of minimum outdegree that has the Second Neighborhood Property.Comment: fixed an error in an earlier version and made structural change

    Vertices with the Second Neighborhood Property in Eulerian Digraphs

    Full text link
    The Second Neighborhood Conjecture states that every simple digraph has a vertex whose second out-neighborhood is at least as large as its first out-neighborhood, i.e. a vertex with the Second Neighborhood Property. A cycle intersection graph of an even graph is a new graph whose vertices are the cycles in a cycle decomposition of the original graph and whose edges represent vertex intersections of the cycles. By using a digraph variant of this concept, we prove that Eulerian digraphs which admit a simple cycle intersection graph have not only adhere to the Second Neighborhood Conjecture, but that local simplicity can, in some cases, also imply the existence of a Seymour vertex in the original digraph.Comment: This is the version accepted for publication in Opuscula Mathematic

    All solution graphs in multidimensional screening

    Get PDF
    We study general discrete-types multidimensional screening without any noticeable restrictions on valuations, using instead epsilon-relaxation of the incentive-compatibility constraints. Any active (becoming equality) constraint can be perceived as "envy" arc from one type to another, so the set of active constraints is a digraph. We find that: (1) any solution has an in-rooted acyclic graph ("river"); (2) for any logically feasible river there exists a screening problem resulting in such river. Using these results, any solution is characterized both through its spanning-tree and through its Lagrange multipliers, that can help in finding solutions and their efficiency/distortion properties.incentive compatibility; multidimensional screening; second-degree price discrimination; non-linear pricing; graphs

    A connection between circular colorings and periodic schedules

    Get PDF
    AbstractWe show that there is a curious connection between circular colorings of edge-weighted digraphs and periodic schedules of timed marked graphs. Circular coloring of an edge-weighted digraph was introduced by Mohar [B. Mohar, Circular colorings of edge-weighted graphs, J. Graph Theory 43 (2003) 107–116]. This kind of coloring is a very natural generalization of several well-known graph coloring problems including the usual circular coloring [X. Zhu, Circular chromatic number: A survey, Discrete Math. 229 (2001) 371–410] and the circular coloring of vertex-weighted graphs [W. Deuber, X. Zhu, Circular coloring of weighted graphs, J. Graph Theory 23 (1996) 365–376]. Timed marked graphs G→ [R.M. Karp, R.E. Miller, Properties of a model for parallel computations: Determinancy, termination, queuing, SIAM J. Appl. Math. 14 (1966) 1390–1411] are used, in computer science, to model the data movement in parallel computations, where a vertex represents a task, an arc uv with weight cuv represents a data channel with communication cost, and tokens on arc uv represent the input data of task vertex v. Dynamically, if vertex u operates at time t, then u removes one token from each of its in-arc; if uv is an out-arc of u, then at time t+cuv vertex u places one token on arc uv. Computer scientists are interested in designing, for each vertex u, a sequence of time instants {fu(1),fu(2),fu(3),…} such that vertex u starts its kth operation at time fu(k) and each in-arc of u contains at least one token at that time. The set of functions {fu:u∈V(G→)} is called a schedule of G→. Computer scientists are particularly interested in periodic schedules. Given a timed marked graph G→, they ask if there exist a period p>0 and real numbers xu such that G→ has a periodic schedule of the form fu(k)=xu+p(k−1) for each vertex u and any positive integer k. In this note we demonstrate an unexpected connection between circular colorings and periodic schedules. The aim of this note is to provide a possibility of translating problems and methods from one area of graph coloring to another area of computer science
    • …
    corecore