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Abstract.

We study general discrete-types multidimensional screening without any noticeable

restrictions on valuations, using instead ε-relaxation of the incentive-compatibility con-

straints. Any active (becoming equality) constraint can be perceived as “envy” arc from

one type to another, so the set of active constraints is a digraph. We find that: (1) any

solution has an in-rooted acyclic graph (“river”); (2) for any logically feasible river there

exists a screening problem resulting in such river. Using these results, any solution is char-

acterized both through its spanning-tree and through its Lagrange multipliers, that can

help in finding solutions and their efficiency/distortion properties.

Keywords: incentive compatibility, multidimensional screening, second-degree price

discrimination, non-linear pricing, graphs.

JEL Codes: D42, D82, L10, L12, L40.

1 Introduction

Targets of modern screening theory are quite numerous: optimal taxation, optimal

hiring policy, and notably non-linear pricing or second-degree price discrimination. All eco-

nomic situations of this kind have essentially the same mathematical representation based

on discrete or continuous heterogeneous population of agents; screening means treating dif-

ferent types differently on self-selection basis. Recent screening literature (see reviews by

1We are grateful for the financial support from the University of Louisville and from the Economics

Education and Research Consortium, Inc. (EERC) grant No 06-056, with funds provided by the Eurasia

Foundation (with funding from the US Agency for International Development), the World Bank Institution,

the Global Development Network and the Government of Sweden. We are thankful for the assistance and

comments from Richard Ericson, Victor Polterovich, Alexei Savvateev and Jean-Charles Rochet.
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Rochet and Stole (2003), Armstrong (2005), Stole (2007)) leaves aside textbook cases sat-

isfying Spence-Mirrlees single-crossing condition (SCC) on agents’ types.2 New approaches

include into analysis many realistic situations when goods or services are multidimensional,

or just consumers’ valuations for the commodity are not ordered in any vertical or horizon-

tal sense. For instance, a teenager can consume a lot of Internet traffic, but cannot pay too

much for the first minute of connection, while a businessman would buy several minutes

a day very expensively for E-mail, but cannot consume a lot. That means that these two

demand curves do cross and SCC is violated. Moreover, when the commodity characteris-

tics are multidimensional, like power and color of a car, the SCC becomes just senseless.

Still, the producers do somehow design their product lines, i.e., menus of quantity/tariff

bundles. Therefore, the economists should understand what happens, notably, upward or

downward distortion of quantity/quality and ideas for diminishing the deadweight loss.

However, theory becomes complicated without SCC.

To explain the key ideas, we define the envy-graph of solution as the list of those

incentive-compatibility and participation constraints which are active, i.e., become equali-

ties; agent types are the nodes of the graph and the arcs (constraints) connect them. Each

equality means that one agent is indifferent between the two bundles and almost eager to

switch, or (almost) “envies” another bundle. Standardly, under SCC the solution graph is

linear, i.e., a path: The highest-demand consumer type envies the second-highest one, who

envies the third one, and so forth. This simple chain structure enables a textbook method

to obtain solutions and their important economic properties, notably informational rent

for all types except the lowest one, efficiency at-the-top and distortion below, that means

socially-optimal quantity for the highest-demand type and non-optimal quantities for oth-

ers.

We want to know, what are the feasible solution structures, and related distortion

properties without SCC? In answering these questions, we extensively apply notions from

graph theory (see Section 3 for all definitions and Fig.1 for illustration). In addition to

2When i’s consumer type has monetary valuation Vi(x) for quantity/quality x ≥ 0, SCC means “ver-

tical” order of types such that V ′
i+1(x) > V ′

i (x) ∀i, x, Vi(0) = 0, i.e., higher type likes the commodity

stronger. Another popular simplifying assumption originating from Hotelling’s linear-city model is ”hori-

zontal” order: all agents are identical except for locations of their bliss points in some unidimensional space

of quantity/quality.
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further elaboration of such methodology, the novelty applied in this paper is the formulation

of the screening model in a slightly generalized way: each constraint is relaxed by a small

parameter ρ ≥ 0. As explained in Section 3, such relaxation luckily overcomes several

technical obstacles for clear results, including dicycles, bunching and problematic existence

of the Lagrange multipliers (dicycle is a closed directed path in the graph, bunching means

same bundles for different types, see special sudy of this phenomenon in Rochet and Chone,

1998).

The background results on solution structures without SCC are formulated here

in terminology of this paper, since there are no standard terms for envy-graphs so far.

Guesnerie and Seade (1982) show that under one-dimensional quality and strictly concave

utility functions dicycles in the solution structure cannot contain more than two different

nodes (bundles). Besides dicycles among non-bunched bundles either inexist or can be

eliminated without any loss in profit (see also Brito et al. (1990)). Rochet (1987) addresses

the opposite question: What kinds of structures do exist? He studies the implementation

problems using graph terms; these results are summarized in Rochet and Stole (2003) as

Lemmas 1 and 2 which, among other statements, state indirectly that any node is connected

by a path to the root of the solution graph (such graph is called in-rooted).

Our results include Lemma 1 in Section 4 which under weaker assumptions than in

Rochet and Stole states in-rooted property directly: Any solution has an in-rooted graph,

thereby it contains a spanning-tree (a tree containing all nodes). In addition, under strict

relaxation (ρ > 0) Proposition 1 states that envy-graph does not have dicycles, so it is a

river, which is an acyclic in-rooted graph. Therefore, bunching among predecessors and

successors in the graph is also formally excluded. It may remain only as an accident among

disconnected agent types, and there can be almost-bunching, that means ρ-close bundles.

Envy-graph being a river is, surprisingly, the only property of the solution structure

that holds without special assumptions on utilities, because our Proposition 2 states under

modest conditions that every river is a solution structure for some screening problem.3

Lemma 3 enumerates all possible rivers, i.e., different structures of screening. They are

quite numerous: 5 rivers for two consumers, 79 for three consumers, and so on. These

findings bury the hope for easy screening theory without SCC or similar restrictions, but

3We are thankful to Alexei Savvateev for posing this question and to Charles Rochet and for inspiring

us to publish the answer.
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something can be done.

Based on pervious statements, Proposition 3 characterizes any solution through its

spanning-tree without first-order conditions (FOC). In contrast, under differentiability

Proposition 4 characterizes any relaxed solution through its FOC, relying on the exis-

tence of Lagrange multipliers under rivers, and this class of graphs serves as a road-map to

find all solutions.

Extensions and economic fruits of our approach are postponed to our next paper,

but we mention them here to motivate extensive mathematics of this paper. First, even

without SCC we generally have efficiency at-the-top, distortion below and informational

rent for all types except the lowest one. Only “the top” means now any top (or “leaf”) in

the spanning-tree. Second, though algorithmic questions in non-convex optimization like

general screening are difficult, our propositions shows the way to practically find solutions

through solving FOC for all possible rivers and then comparing the resulting local optima

(this discovers the first practical solution method without SCC). Third, there is an econom-

ically meaningful tractable class of consumer populations – “spatial” populations – which

includes both textbook special classes: horizontal and vertical populations. In this class the

solution properties including distortion are more easy to describe than in general screen-

ing. This enables taxonomy of all possible regimes of screening, and predicting changes of

market outcomes with the population parameters. Finally, it is worth mentioning that our

approach can be valid not only in screening but also in broader mechanism-design or “im-

plementation” settings with incentive-compatibility, so when possible we make statements

in the form suitable for broad applications.

Section 2 formulates the model, Section 3 presents and motivates our approach to graph

theory in screening. Section 4 presents results on solution structures, Section 5 characterizes

solutions, and Section 6 concludes. Appendices contain proofs which are non-intuitive and

technical.

2 Model

Our model is almost standard in screening of discrete consumers, only restrictions on func-

tions are relaxed and a constraints-relaxation parameter added. We interpret the model

mostly in terms of a monopolistic seller and buyers, but have in mind all other usual inter-
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pretations and applications of screening, including principal-agent relations, Pareto-efficient

allocations, etc. (see Rochet and Chone (1998) and Rochet and Stole (2003)). Moreover,

we expect the structures of incentive-compatible solutions being similar in more general

areas of mechanism design than screening.

Consumer types are indexed by i ∈ IN = {1, ..., N}; and mi > 0 is the frequency of

type i, which can be either the probability to appear in the market, or the total number

or mass of such agents (consumers). Multiple agents of the same type can also mean

multiple purchases of one individual. The quantity- or quality-tariff bundles are (xi, ti),

where xi ∈ X denotes the l-dimensional vector of attributes of the bundle purchased by

i. Here X ⊂ Rl denotes a consumption set, which can be discrete or continuous, and the

product of such sets is XN = X ×X × ...×X ⊂ RNl. When 0 ∈ X, this zero bundle may

denote the common outside option which is non-participation, otherwise outside options

may be multiple. Tariff ti is the monetary transfer from consumer i to the firm. We assume

quasi-linear utility functions

Ui(xi, ti) = Vi(xi) + ti,

where Vi is monetary valuation of a purchase. In most usual particular case of common

outside option 0 ∈ X, valuations can be normalized as Vi(0) = 0, but in a more general

case non-participation level Vi(ai) = 0 relates to any outside option ai. For Proposition 4,

we additionally assume differentiability, but otherwise do not restrict Vi, X.4

A monopolist selects a subset In ⊆ IN of n ≤ N types to be served and offers a

product or service using a menu of several packages of different quantities or qualities

at some fixed tariffs on take-it-or-leave-it basis (under 0 ∈ X the monopolist can set

n ≡ N and just assign xi = 0 to agents not served). Afterwards the agents self-select.

The seller knows the possible characteristics of types and their probabilies but cannot

discriminate personally. We generalize the usual linear cost to a more general-form cost

function C(m,x) : Rn+nl →R, but in Propositions 2 and 4 it takes a special fixed -plus-

separable form

C(m,x) = f0 +
∑
i∈In

mic(xi),

4Weak restrictions on X and V allow to model many interesting and realistic situations, say, satiable

demands and/or discrete characteristics. Positivity of consumption and tariffs can be modelled through

positivity restrictions on X, V , whereas decreasing Vi or negative xi are appropriate for modelling effort

spent in a principal-agent setting.
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where f0 ≥ 0 stands for some fixed cost and c(·) : Rl →R is cost function per-package.5

We use the standard assumption that the producer designs only one package for each type,

thereby planning an assignment, (x, t) = {(xi, ti)}i∈In and from equivalent choices an agent

selects whatever the principal prefers (friendly behavior). The profit π is the difference

between total tariffs and total costs. After introducing a constraint-relaxation parameter

ρ ≥ 0 for technical reasons, we can formulate the seller’s relaxed assignment-optimization

program as follows.

π(x, t, ρ) =
∑
i∈In

miti−C(m,x) → max
In⊂IN ,(x,t)∈(Xn,Rn)

, s.t. (1)

∀i ∈ In ⇒ Vi(xi) − ti + ρ ≥ Vi(xk)− tk ∀k ∈ In \ {i}, (2)

∀i ∈ In ⇒ Vi(xi)− ti ≥ 0 . (3)

Here (2) represent the incentive-compatibility (IC) constraints, and participation con-

straints are (3). A plan (x, t) satisfying (2)–(3) is called feasible. The admissible set for

(x, t) defined by these constraints is denoted as Z(ρ) ⊂ (Xn,Rn).

A solution (x̄, t̄) to the problem (1)–(3) under ρ = 0 is the standard screening solution.

More generally, under ρ ≥ 0 a solution (x̄, t̄) to (1)–(3) is a called here a relaxed ρ-specific

solution, or just relaxed solution or ρ-solution.

Though Propositions 1 and 3 cover general case ρ ≥ 0, the main focus of our study is on

ρ-solutions with small ρ > 0, because such relaxation implies acyclic solutions without sac-

rificing appropriate modelling of reality.6 Moreover, we have found in numerous examples

that generally a relaxed solution converges under ρ → 0 to related non-relaxed solution,

though proof of such convergence remains an open question.

To complete the setting, it should be added that under fixed-and-separable costs C(m,x) =

f0+
∑n

i=1 mic(xi), it is possible and standard to normalize the model. It means considering

5However, too general cost functions, including convex ones (decreasing returns), sometimes can under-

mine the applicability of the screening setting, as shown in Kokovin et al. (2010).
6Economically speaking, a relaxation parameter ρ can be interpreted as the “cost of switching” for agent

i from her usual package (xi, ti) to some new package k. One could try to make ρ negative instead of our

ρ ≥ 0, for modelling a premium to the agent for non-switching and designing a strictly incentive-compatible

menu that ensures strictly-dominant-strategy implementation of solutions. Unfortunately, ρ < 0 does not

exclude dicycles, and often undermine existence of solutions.
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normalized, i.e., net-of-cost valuations vi(xi) = Vi(xi)− c(xi) or social surpluses instead of

initial valuations, and seek for net-of-cost tariffs τ i = ti− c(xi), named also as per-package

profits τ i. Then initial screening problem (1)-(3), obviously, amounts to the relaxed nor-

malized screening program allowing for strongest results in the sequel:7

π̃(x, τ , ρ) = −f0 +
n∑

i=1

miτ i → max
In⊂IN ,(x,τ)∈(Xn,Rn)

, s.t. (4)

∀i ∈ In ⇒ vi(xi) − τ i + ρ ≥ vi(xk)− τ k ∀k ∈ In \ {i}, (5)

∀i ∈ In ⇒ vi(xi)− τ i ≥ 0 . (6)

3 Graph notions for incentive compatible structures

Now we introduce some notions from graph theory and suggest our way of applying such

notions to screening or, more generally, to incentive-compatibility. The terminology and

methodology in such applications has not been standard so far. For example, Brito et al.

(1990) speak of eliminating “cycles of binding incentive constraints among separated types,”

which is different from our terminology below (see also other terminologies in Guesnerie and

Seade (1982), and in Vohra (2008)). Importantly, mixing binding with active constraints is

rather common in the screening literature (see Brito et al. (1990), Rochet and Stole (2003)

and Andersson (2005)), even though the distinction matters as we show in this section.

We mainly follow Rochet and Stole’s terminology but for limited use of term “binding”,

reversed direction of arcs and some new notions.

First we reiterate standard terms for graphs and add some new terms, followed by

relating graphs to screening problems and motivate our approach.

Standard terms for digraphs. A directed graph or digraph G (hereafter just “graph”)

is a collection of nodes (vertices) denoted here i ∈ G and of arcs (oriented edges) (i, j) ∈ G.

Each arc, denoted as i → j or equivalently (i, j), describes an active constraint of our

screening problem so that multiple arcs in direction i, j and loops (i, i) are excluded. In

7It is worth recalling here that welfare-maximizing screening under such restriction on total costs is an

equivalent problem, reciprocal to profit-maximization (see e.g. Brito et al., 1990, Rochet and Stole, 2003).

So, our results can be transferred to welfare-maximization .
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each i → j the arc’s tail i is the adjacent predecessor of j, and the arc’s head j is the

adjacent successor of i. A source is a connected node (connected to some other nodes)

without predecessors, while a connected node without successors is a sink ; if the sink is

unique, it is called an in-root or, hereafter just root. A node without adjacent arcs is

disconnected. A walk is a sequence of adjacent nodes and edges i1, e12, i2, e23, i3...; a path

is a directed nonempty walk with distinct nodes, i.e., not a loop (not i → i). When there

is a unique directed path from any node to the root, then this graph is called an in-tree,

hereafter just a tree. A spanning-tree of graph G is a subgraph—a tree containing all nodes

of G. An (in-)rooted graph is a digraph with a unique sink (in-root) when this root is

reachable from every node through a path. Obviously, any in-rooted graph contains one or

more spanning-trees. A closed directed path i1 → i2 → i3... → i1 is a dicycle, and a digraph

is acyclic if there are no dicycles. A partial order among nodes i1, ..., in can be viewed as

an acyclic digraph when order relation i Â j is equivalent to arc i → j (in Appendix 1 see

more explanations, together with the preorder º definition).

New terms. An in-rooted acyclic digraph is called hereafter a river. Obviously, all

trees are rivers but the latter may have bypasses, defined as two directed paths (i1 → i2 →
... → ik), ( i1 → i3 → ... → ik) with the same source and the same sink (see Fig.1 below

for illustration).

Envy-graphs in screening. In applying graphs to screening, all types’ identities

#1,...,#n are treated as nodes, whereas constraints are interpreted as envy arcs within

related envy graph. In this graph, common or individual non-participation option is con-

sidered as an additional common node with label #0. More precisely, our optimization

program (1)–(3) has n× (n−1)+n = n2 inequalities that can become active, i.e, becoming

equalities. For any feasible or incentive-compatible plan (x, t) we define its envy A-graph

¯̄G(x, t) as the list ¯̄G(x, t) = {(i1, j1), (i2, j2), ...} of all constraints active at (x, t) (double-bar

over G highlights equalities as the basis of definition and j = 0 means non-participation

option). For a non-feasible plan (x, t) we can similarly define the strict-envy graph G<(x, t)

representing the list of all violated constraints and the list G≥(x, t) = G>(x, t)∪ ¯̄G(x, t) of

satisfied constraints. The direction of any active constraint (i, k): Vi(xi)− ti ≥ Vi(xk)− tk

is represented as an arc (i → k) going from i to k, in the direction of possible switching. It

means that type i (weakly) envies package #k, being indifferent between her package and

#k, almost eager to switch to #k. The opposite direction of arcs, chosen in Rochet and
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Stole (2003), seems inconvenient in this respect.

Fig. 1 illustrates these notions and ideas in the case of three agent types. Sample

profiles of three valuations shown in the upper panel generate all four possible classes of

spanning-trees: star, spider, fork and chain. The star cannot have bypasses. However,

adding or not various bypasses (shown by dash lines) to other trees can make 4 different

unlabelled rivers from a spider, 3 rivers from a fork and 9 rivers from a chain. Thereby, 17

qualitatively different screening regimes are possible when three types are served; distortion

or inefficiency means that the equilibrium bundles are not the summits of the net valuations

(here such distorted bundles are empty dots). Among these 17 regimes only star structure

guarantees social efficiency, as we show in another paper, but incidental efficiency may

occur. Further, when labelling these 17 graphs, various permutations of labels increase the

number of possible solution structures under three given types to 79, as Lemma 3 ensures.
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Figure 1: Possible configurations of net valuations and 4 resulting classes of envy-graphs.

LA-graphs, B-graphs and motivation for ρ-relaxation. First note that a screen-

ing problem (1)-(2) is quite often non-convex, even under concave valuations V . It happens

because concave functions enter both sides of the inequalities. Then, as for any non-convex

optimization, a distinction becomes important between an active constraint and a binding

constraint (one which influences the optimal value when relaxed or eliminated). Generally,
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a binding constraint need not be active and an active one need not be binding, see equation

(7) below. So, a B-graph representing all binding constraints may be needed.

Besides, there could also be a need for a LA-graph, which is defined as the list of all

LA constraints, i.e, those having strictly positive Lagrange multipliers (see our Proposition

4). This LA-graph generally may differ from A-graph and B-graph, and even from their

intersection. The typical reason for the discrepancy among A-,B- and LA-graphs is the

so-called bunching situation. Bunching means identical packages (xi, ti) = (xj, tj) = ...

assigned to different agent types i, j,... at the optimum. Such an outcome is known to

be quite a regular case in standard screening with ρ = 0; see Rochet and Chone (1998)

for a thorough treatment of bunching. In such cases, naturally, all bunched agents do

envy each other, thereby creating a dicycle in A-graph ¯̄G(x, t) and “over-constrained”

situation. Bunching and other dicycles create substantial hardships in characterizing and

finding solutions, mainly because constraint-qualification conditions fail. Then existence

and finding the Lagrange multipliers become problematic.

In contrast, under positive relaxation (ρ > 0), dicycles and bunching among predeces-

sors and successors are excluded in A-graphs as shown in Lemma 2 below, the Lagrange

multipliers do exist and most often become unique. Additionally, based on our experience

with solutions, under positive relaxation A-graph generally coincides with LA-graph. The

latter is most useful one for solution characterization, whereas the former is more easily

observable at any admissible plan.

To appreciate the difference between A, B, LA constraints and related hardships with

characterizing optima, consider the most simple over-constrained non-convex example,

where the constraints display all three kinds of importance:

max x ∈ R s.t. (i) : x2≥ 1, (ii) : x4 ≥ 1, (iii) : x ≤ 0. (7)

Clearly, the optimum here is x̄ = −1, and the constraint (iii) is binding, because it

cannot be dropped keeping the optimum intact, but (iii) is not active or LA. In contrast,

the two constraints (i) and (ii) are active but not binding, because any one of these two

constraints can be removed without changing the solution. Each can either be LA or

not, because any Lagrange multipliers λA, λB ≥ 0 such that λA + λB = 1 are admissible.

Unfortunately, none of these multipliers λi reflects the sensitivity of the objective function

10



to related constraint, as it should. However, for a small price in accuracy, we can exclude

this indeterminacy and weakness of λi. We can remove the over-constrained situation by

slightly relaxing one of the constraints, (i) or (ii). Such harmless trick with data is common

in linear programming to exclude cycles.

In screening, like in linear programming, our ρ-relaxation helps to overcome all over-

constrained situations and cycles. This discussion motivates our focus mainly on the relaxed

screening problems and on envy A-graphs ¯̄G (x, t). From now we have in mind this kind of

graphs when we drop “A” and mention just envy-graphs. Only in Proposition 4 and some

proofs we use LA-graphs Gλ
+ (x, t) ⊆ ¯̄G (x, t).

4 Solution structures: all essential envy-graphs are

rivers and vice versa

In this Section we show which types of solution structures are possible and which are not.

This helps in characterizing the solutions in Section 5.

4.1 All envy-graphs are rivers

To prepare Propositions 1, 2 and 3, a lemma below states the most general property of

solution structures which is guaranteed solely by quasi-linearity of utilities for both the

non-relaxed (ρ = 0) and the relaxed screening.8

Lemma 1: (in-rooted envy-graph). For any ρ-solution (x̄, t̄) its envy-graph ¯̄G(x̄, t̄)

is in-rooted, i.e., each node i is connected to the root (#0) by a directed path i → ... → 0.

Thus, ¯̄G(x̄, t̄) contains a spanning-tree.

Proof: In ¯̄G(x̄, t̄), suppose the root (#0) is free of envy, i.e., no constraint (i → 0)

is active. The specific form of the constraints (2) shows that in this case, with quan-

tities x̄ remaining unchanged, all tariffs (t̄1, ..., t̄n) could be increased simultaneously by

some (same) amount without violating any constraint, because variables ti enter all IC

8 Previous somewhat similar statements that we know, are Lemmas 1 and 2 in Rochet and
Stole (2003), and Proposition 1 in Andersson (2005), but we distinguish between binding
and active constraints, consider quite general functions and ρ-relaxation. To generalize the
in-rooted property further, a similar lemma for non-quasi-linear utility functions u(x, t)
should assume them continuous, strictly decreasing in t, u(x,∞) = −∞.
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inequalities at both sides. This contradicts profit maximization at (x̄, t̄). So, the set

L∧1 = {i| (i, 0) ∈ ¯̄G(x̄, t̄)} of agent types adjacently connected to the root is non-empty:

L∧1 6= ∅. If the compliment-set In \L∧1 is empty, then the lemma is proved. Otherwise, sup-

pose that the compliment-set is not connected to #0 and to L∧1 by envy (not mentioning the

connection from). Then, for the same reason, it again contradicts the optimality of (x̄, t̄),

so the second-high layer L∧2 = {i| (i, j) ∈ ¯̄G(x̄, t̄) : j ∈L∧1 } is also nonempty, thereby con-

nected indirectly to #0. We repeat this logic for all layers, and by induction, the in-rooted

property is proved. ¤

Now, under additional assumptions we can ensure acyclic property of in-rooted envy-

graphs under relaxation ρ > 0. It is done using Lemma 2. Its idea and the simple version

of statement (i) originates in Guesnerie and Seade (1982) being also used in several papers.

We extend it for the case ρ > 0 and enforce it.9 In our terms, the lemma states that the

preorder of profit-contributions cannot contradict the partial order Â of the envy-graph.

Lemma 2: (profits order). Take any ρ-solution (x̄, t̄) under fixed-and separable

costs (C(m,x) = f0 +
∑n

i=1 mic(xi) (f 0≥ 0)), then: (i) the profit contribution τ i =

ti − c(xi) from any agent is not lower than the contribution from any of her successor in

the envy-graph, i.e., i → ... → j ⇒ τ̄ i ≥ τ̄ j,; (ii) under ( ρ > 0) this inequality is

strict: i → ... → j ⇒ τ̄ i > τ̄ j, and for the adjacent couples i → j it has the particular

form τ̄ i ≥ τ̄ j +ρ, whereas bunching among predecessors and successors (xi = xj) and other

dicycles are excluded.

Proof. Using separable-cost assumption, we can argue in terms of per-package profit

contributions τ i = ti − c(xi). Let us prove claim (ii) for the case ρ > 0. Assume that

there could be a couple of adjacent agents (i º→ j, i → j) with the reverse order of profit

contributions: (τ i ≤ τ j). Then we could increase the objective function for amount miρ > 0

by replacing the envier’s package (x̄i, τ̄ i) by the envied package (x̄j, τ̄ j), i.e., by assigning a

new package (x̃i, τ̃ i) := (x̄j, τ̄ j +ρ). This new menu ((x̄1, τ̄ 1), ..., (x̃i, τ̃ i), ..., (x̄n, τ̄n)) remains

incentive-compatible because no new quantity-tariff packages arise, and the only affected

agent i is indifferent between her old and new packages, by the assumption i → j which

means ṽi(x̄i) − τ̄ i = ṽi(x̄j) − τ̄ j − ρ. Besides, with a bigger net tariff (τ̃ i = τ̄ j + ρ > τ̄ i)

9 Other versions of claim (i), in Brito et al. (1990) and Andersson (2005), are proved under stronger
restrictions on costs and valuations than here, and consider only adjacent agents, without using graph
notions. Extension of such claim onto non-separable concave cost functions see in Kokovin et al. (2010).
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now the new menu brings a larger profit compared to the initial one. This contradicts the

optimality of initial (x̄, τ̄) menu. Thus, i → j ⇒ τ̄ i ≥ τ̄ j + ρ. By transitivity and using

chains like τ̄ i > τ̄ k... > τ̄ j, such ordering conclusion follows also for non-adjacent successive

agents i → ...j. The same logic proves the case (i) with ρ = 0, only the inequality proved

is not strict: τ̄ i ≥ τ̄ k... ≥ τ̄ j. ¤

The above two lemmas imply the following proposition on acyclic solution structures.10

Proposition 1: (all envy-graphs are rivers).11 For any ρ-solution (x̄, t̄) to

a screening problem with fixed-and separable costs and relaxation ρ > 0, its envy-graph

¯̄G(x̄, t̄) is a river.

Proof. In-rooted property of ¯̄G follows from Lemma 1. As to dicycles, by Lemma 2

under ρ > 0, profit contributions τ̄ are well coordinated with partial order of A-graph ¯̄G,

i.e., predecessors always bring strictly higher profit contributions τ̄ i than their successors.

Therefore any (bunched or not) dicycle i → j → ... → i in ¯̄G would mean a cycled order

τ̄ i > τ̄ j > ... > τ̄ i among real numbers τ̄ i ∈ R, which is impossible. ¤

Note here that bunching (xi = xj) among predecessors and successors is excluded and

remains possible only for packages coinciding accidentally. Unlike usual bunching, the

accidental bunching can be ignored because it has no impact on characterizing solutions.

Additionally, observe that we have obtained here the restrictions on endogenously

emerging structure of the solutions, in contrast with the exogenous structure (unique path)

imposed by SCC in many papers. Of course, the river-structure revealed is too broad a

characterization, but it is the only possible knowledge that can be obtained without some

specific assumptions on valuations vi like SCC. Now we show why it is the case.

10Moreover, observe that the above proof simplifies a given plan through “unifying” some agents, i.e.,

deleting a package from the menu and endowing its owner with another package already existing in this

menu. Then it becomes obvious that regarding any ρ-feasible plan we can also state that it is either acyclic

or can simplified in this way into a weakly more profitable ρ-feasible plan satisfying the natural profit

ordering and thereby acyclic.
11 Reducibility of cycles in A-graph of the main problem (with more restrictions on vi, C than here) was

proven in Guesnerie and Seade (1982) through the same simple Lemma 2, and is repeated in subsequent
papers.
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4.2 All rivers can be envy-graphs

Let us show that any river with n nodes plus the root can be a solution’s envy-graph for

some screening problem where n agent types are served. Having explained the main idea

by Fig.1, we now enumerate all n+0-rivers formally (sign := means assigning a value).

Lemma 3 (number of rivers).12 Consider all labelled rivers having n non-root nodes

{1, ..., n} and the root (sink) with label #0. The number r0(n) of such rivers can be found

recursively as

r0(n) : =
n∑

k=1

2n−kan,k, where

an,k : =
n−k∑
m=1

(2k − 1)m2k(n−m−k)(n
k)an−k,m, aj,j = 1,

and (n
k) denotes the number of all k-element subsets of {1, 2, ..., n}. In particular, r0(1) = 1,

r0(2) = 5, r0(3) = 79, r0(4) = 2865, r0(5) = 254111.

Proof: see Appendix 2.

Note that so far we have got the number r0(n) of possible graphs for those agent types

who are served. We can tell also the number of possible envy graphs for any N -agents

screening problem where some agents may remain unserved and excluded from the graph.

Here we should just summarize numbers r0(n) for all possible n-subsets (n = 1, 2, ..., N)

from the labelled set IN and get

r1(N) =
N∑

n=1

(N
n )r0(n).

In the typical special case when 0 ∈ X is a common outside option for everybody, this zero

bundle is just assigned to all non-served types, so formally everybody is always served: n =

N . Then zero and non-zero quantities need not be distinguished in the graph representation

of such solution (see also Remark after Proposition 4). In this case the number of possible

resulting rivers is only r0(N) < r1(N).

Proposition 2 (all rivers can be envy-graphs). Consider a given dimensionality

l ≥ 1 of real commodity space X = Rl
+, dimensionality n of population served, and a

relaxation parameter ρ ∈ [0, 1
2
(
√

n + 1−√n)). For each river Ḡ among all r0(n) logically

12In Appendix 2 one can find also enumeration of all labelled trees with root #0, in particular T1 = 1,

T2 = 3, T3 = 16, T4 = 125, T5 = 1296.
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possible rivers, there exists a profile of continuous concave net-of-cost valuations (v1, ..., vn) :

vi(0) = 0 and frequencies (m1, ..., mn) generating such a river as the envy-graph ¯̄G of the

solution for the ρ-relaxed normalized screening program (4)–(5).

Proof: see Appendix 3.
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Figure 2: Construction of valuations generating any river.

This long and tedious proof is based on direct construction of the needed net-valuation

curves, as illustrated by example in Fig 2. Namely, first we sort the given river Ḡ into layers

according to the longest path to the root. Second, graph Ḡ is positioned in quantity-tariff

space on some strictly concave curve like
√· so that none of the nodes is below any arc,

and all arcs go downwards. Third, the arcs going from any node become the parts of the

active piece-wise linear indifference curve belonging to this agent type. Forth, the curves

non-adjacent to the root (like active curve v̌d in Fig.2 which is lower than related valuation

vd) are connected to some point below the root and lifted up to become valuations. Besides,

all curves are extended to +∞ as downward sloping lines. Fifth, we prove that the nodes

at the peaks of the valuations built are really optima under these valuations and some

frequencies mi adjusted to this graph. This stage uses a version of our Proposition 4 with

Lagrange characterization of solutions.

Discussing this result, one can object against too specific non-smooth valuations

constructed. However, it is not a problem, we understand how to extend the proof of

Proposition 2 to strictly convex smooth valuations. Moreover, for n = 2 types (see Nahata
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et al. 2002) and for n = 3 types (in unpublished paper) we have found that the needed

valuations generating any river can be taken quadratic, and importantly, each of possible

r0(n) rivers results from a non-degenerate region of parameters ai, bi : vi(x) = aix − bix
2.

These special cases support the conjecture that all rivers are not only possible, but also

can be expected to result from screening solutions with substantial probabilities under quite

reasonable utilities.

These conclusions appear surprising and somewhat disappointing. Rather big number

r0(n) of qualitatively different outcomes dims the hope for a quick and simple analysis of

general screening since natural restrictions on valuations like concavity do not reduce the

variety. Proposition 2 motivates the necessity for more restrictive assumptions to predict

more definite structures and properties. But at least we know how many switches between

different screening regimes are possible when valuations or frequencies do change.

5 Solution characterization: spanning-trees and La-

grange multipliers

This section shows how one can use the envy-graphs in characterizing solutions, and

gives a hint for finding them. Relying on Lemma 1 and Proposition 1, we characterize

now any optimal solution (1) through its spanning-trees and tree-specific programs; (2)

through its river-specific first-order conditions with Lagrange multipliers (in the case of

normalized problem, smooth valuations and ρ > 0). Each method enables to replace

the initial package-optimization program with an equivalent finite family of graph-specific

programs, each specific problem being simple and allowing for direct exact solution.

5.1 Characterizing solutions by spanning-trees

The spanning-tree solution method optimizes only quantity-variables after expressing all

tariffs through quantities. Such reduction of variables is well known under SCC since

Spence (1980), its general idea is called “virtual-surplus approach.” However, theoretically

justified path-optimizing implementation of this approach was referred by professionals

in the topic as impractical without SCC, see Rochet and Stole (2003) subsection 3.1. For

practically solving their examples with small n Rochet and Stole (2003) and also Armstrong
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and Rochet (1999) optimize only spanning-trees instead of all paths. Indeed, studying all

spanning-trees among a complete n×n graph of constraints looks doable, unlike studying all

possible paths. Now Proposition 3 theoretically justifies their idea in general case, whereas

other general methods are unknown.

In other words, Propositions 3 and 4 under very weak restrictions state the necessary

conditions for optima in the absence of usual SCC. To formulate these conditions, we

introduce new notations related to any node k in a graph G:

- Pk(G) ⊂ {0, 1, ..., n} is the set of all predecessors of node k;

- P ad
k (G) ⊆ Pk(G) ⊂ {0, 1, ..., n} is the set adjacent predecessors of k;

- Sk(G) is the set of all successors of k;

- Sad
k (G) is the set of adjacent successors;

- s1
k(G) is the unique adjacent successor, i.e., Sad

k (G) = {s1
i (G)}.

Sign := everywhere means assigning some value and (common or not for all agents)

outside option or non-participation is denoted as node #0, the root of ¯̄G.

Proposition 3 (Spanning-tree characterization). Let (x̄, t̄) ∈ Xn × Rn be a

ρ-solution to the general screening program (1)-(3) where n consumers are served ( ρ ≥ 0).

Then: (i) There exists a spanning-tree GT ⊆ ¯̄G(x̄, t̄) within this envy-graph such that

the assignment (x̄, t̄) is also a solution to the following tree-specific optimization program

(8)-(11) solved w.r.t. variables x:

π̃(x,GT ) : =
n∑

i=1

mi θi(x,GT )− C(m, x) → max
x∈Xn

s.t. (8)

Vi(xi)− θi(x,GT ) ≥ Vi(xj)− θj(x, GT ) −ρ ∀(i, j) 6∈ GT , (9)

Vi(xi)− θi(x,GT ) ≥ 0, (10)

tariff functions θi and tariffs ti being determined by GT as

tk = θk(x,GT ) :=
∑

j∈Sk(GT )∪{k}
[Vj(xj)− Vj(xs1

j (GT ))+ρ] ∀k ≥ 1, θ0(.) ≡ 0. (11)

(ii) For any spanning-tree GT ⊆ ¯̄G(x̄, t̄) resulting from a solution, all solutions to the

GT -specific program (8)-(11) are also the solutions to initial program (1)-(3).

(iii) Under a fixed-plus-separable cost function, the tree-specific normalized objective

function becomes separable w.r.t. xi, namely :
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π̃(x,GT ) =
n∑

i=1

[mivi(xi) +
∑

j∈P ad
i (GT )

(vi(xi)− vj(xi))M
PGT
j ], (12)

MPGT
j : =

∑

k∈Pj(GT )∪{j}
mk, (13)

MPGT
j being the sum of predecessors’ frequencies.

Proof: see Appendix 3.

5.2 Characterizing solutions by FOC

We characterize now any optimal solution through its its first-order conditions and Lagrange

multipliers in the case of normalized problem, smooth functions and ρ > 0. These necessary

conditions of optima enable to replace the initial package-optimization program with a finite

family of river-specific programs, each having a direct exact solution (by Lemma 3, as many

as r1(N) rivers should be explored). Existence of the Lagrange multipliers for non-relaxed

problem (ρ = 0) in the absence of usual SCC remains an uneasy open question, while the

relaxed problem and related guaranteed existence of the Lagrange multipliers is our novelty.

Proposition 4 (FOC-for-rivers characterization). Assume X = Rl, fixed-

and-separable costs, continuously differentiable net valuations vi : vi(0) = 0, and relax-

ation ρ > 0. Take any solution (x̄, τ̄) to the normalized problem (4)-(6) and its LA-graph

Gλ
+ = Gλ

+(x̄, τ̄) ⊆ ¯̄G(x̄, τ̄), then: (i) There exist Lagrange multipliers λ = (λ1,0, λ1,2, ...,

λn,n−2, λn,n−1) ∈ Rn∗n
+ , satisfying the first-order conditions on Lagrangian L(.) and supple-

mentary inequalities as follows:13

13In these equations all four sums of Lagrange multipliers can be simplified as
∑
∀j λij , but our river-

specific formulation is more convenient for practical applications. This formulation enables to find all

solutions (x̄, τ̄ , λ) from hypothesic rivers Gλ
+.
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∂L(x̄, τ̄ , λ)

∂ti
= mi −

∑

j∈Sad
i (Gλ

+)

λij +
∑

j∈P ad
i (Gλ

+)

λji = 0 ∀i > 0, (14)

∇xi
L(x̄, τ̄ , λ) = ∇xi

vi(x̄i)
∑

j∈Sad
i (Gλ

+)

λij −
∑

j∈P ad
i (Gλ

+)

λji∇xi
vj(x̄i) = 0; ∀i > 0, (15)

0 = vi(x̄i)− τ̄ i − vi(x̄j) + τ̄ j + ρ ∀(i, j) ∈ Gλ
+, (16)

0 = vi(x̄i)− τ̄ i ∀(i, 0) ∈ Gλ
+, (17)

0 ≤ vi(x̄i)− τ̄ i − vi(x̄j) + τ̄ j + ρ ∀(i, j) 6∈ Gλ
+, (18)

0 ≤ vi(x̄i)− τ̄ i ∀(i, 0) 6∈ Gλ
+, x̄i ∈ X, where (19)

Gλ
+ = {(ij)|λij > 0}. (20)

(ii) The Lagrange multipliers of the constraints predecessive and successive to any i are

bounded as

mi +
∑

j∈P ad
i (Gλ

+)

λji =
∑

j∈Sad
i (Gλ

+)

λij ≤ M
PGλ

+

i :=
∑

j∈P (i,Gλ
+)∪{i}

mj ; (21)

moreover, when the river Gλ
+ is a tree, the positive multiplier for the unique successor

s1
i (G

λ
+) of i is found as

λis1
i (Gλ

+) = M
PGλ

+

i .

Proof: see Appendix 3.

Remark: When condition x̄i ∈ X takes most usual form x̄i ≥ 0 (and 0 ∈ X denotes

the common outside option which is non-participation) it can be included into Lagrangian

in usual way, then Lagrangian is maximized unconditionally. However, under natural valu-

ations: vi(xi) < 0 ∀xi < 0, negative xi brings negative tariff and cannot be locally-optimal.

Then positivity constraints become redundant, as well as special handling of exclusion of

some types from trade (otherwise possibility of exclusion could increase the number of

iterations, i.e., exceed number r0(n) given by Lemma 3).

The use of these two propositions for finding the solutions is straightforward (we

do not discuss computational efficiency). In essence, Proposition 3 states that each solution

to the initial problem can be found through some spanning-tree. So, whenever we know

a method to globally optimize tree-specific function π̃(x,GT ) subject to constraints (8)-

(11), it is sufficient to try all possible trees GT , i.e., only 3 trees under two agent types,
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16 under three types and so forth (see comment to Lemma 3). Generally a tree-specific

program is non-convex but still much easier than the initial one because it often amounts to

unconstraint optimization of π̃(x,GT ). When some not-in-tree constraint becomes binding,

it should be included into Lagrangian as in Proposition 4 and optimization repeated. But

optimization cannot stop with the first local optimum found. We emphasize that we do

not provide a sufficient condition for optima, only the necessary one, because typically we

have a non-convex optimization in screening, even under strictly concave net valuations

vi(·) (see Section 3). Therefore, theoretically for finding a true solution, one should explore

all possible trees GT using Proposition 3 or all possible rivers Gλ
+ using Proposition 4.

Naturally, usual branches-and-bounds technique can help to considerably reduce this search,

because when a tree GT =Gλ
+ gives a feasible solution worse than another tree, all related

rivers including GT can be neglected, being non-optimal.

In the spirit of Vohra (2008), an interesting extension of our graph approach to screening

can be the flow-network approach. Indeed, using our Proposition 4 one can use the La-

grange multipliers in the role of current-flows to and from any node i, frequencies mi being

the source magnitudes and equation (21) serving as a “conservation law” for these flows.

Probably, this enables to use the special methods of flow-network theory in screening.

Another, more close physical interpretation of the screening problem arising from Propo-

sition 4 is that frequencies mi are the gravity forces pulling each bundle (xi, τ i) upwords

together with the active indifference curve vi(·) that must contain this point. The incentive-

compatibility and participation constraints mean that neither point, including (0,0), can

lie strictly below any curve. In this sense, Proposition 4 describes the local maximum of

a screening program as the equilibrium between the forces pulling the whole net of curves

and points up and its bearing (0,0). Then, the conservation law (21) expresses the balance

between the forces pulling each point i upwards and the reaction of its bearings – succes-

sors. This direct physical analogy helps in finding efficient heuristic algorithms for solutions

and, more importantly, in clear understanding distortion of particular bundles pulled aside

from their peaks. For example, in Fig.1 the accidental efficiency of the middle point j in

the case of “fork” means that the force pushing from the left occurs equal to one pushing

from the right. In other cases, envy-arcs of the solution graphs generally bring distortion

to the envied bundles and we prove this in another paper through Proposition 4.
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6 Conclusions

We study a general setting for discrete multidimensional or unidimensional screening with-

out SCC and obtain four mathematical results. (1) Without any restrictive assumptions on

costs and valuations, a solution structure can be represented by a graph which is in-rooted

and acyclic, i.e., a “river.” (2) More surprisingly, for any logically feasible river there exists

a screening problem that results in such graph. Therefore in general one should explore all

rivers to find or characterize solutions. These qualitatively different “regimes” in screening

are enumerated, this number measuring computational complexity of screening without

SCC. (3) We obtain characterization of solutions in terms of spanning-trees. (4) Under

constraints relaxation, any solution is characterized in terms of Lagrange multipliers for

each possible river. Based on these four results, any solution can be found by comparing

finitely-many river-specific exact solutions (so far general practical solution method without

SCC was absent).

Methodological novelties include our elaborated way of using graph theory in screening

and the relaxation of incentive-compatibility constraints. The latter helps to overcome

hardships with bunching, cycles, and existence of Lagrange multipliers that prevented find-

ing solutions and their properties without SCC.

Our non-published subsequent paper derives efficiency or distortion properties from the

graph structures, and imposes a reasonable restriction weaker than SCC to narrow down

the class of outcomes. Another interesting extension inspired by Rochet and Chone (1998)

could be a study of continuous setting without SCC, describing all possible manifolds of

envy instead of envy-graphs studied here.

Appendix 1: two preorders

Partial order and preorders. In constructing and classifying graphs we need the fol-

lowing notions of partial order and preorder in a graph.

Any digraph G generates a unique arc-induced partial order Â→ among the nodes, where

the notation “i Â→ j” (“i is higher than j”) means that i is the predecessor of j, but j is

not the predecessor of i. All couples (i, j) without i Â→ j or j Â→ i relation are perceived

as non-comparable, which is denoted as i?j. This i?j relates to couples (i, j) not connected
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by a path or connected by a dicycle. Clearly, an acyclic digraph is uniquely restored from

its partial order.

A “preorder” º is a complete transitive binary relation allowing for equivalence denoted

i ∼ j between any couple (i, j) but not allowing for non-comparability relation i?j. In other

words, preorder is a partitioning of the nodes’ set I into ordered classes, called here layers.

Several preorders can be induced by any graph, the most useful being the following two.

For any (acyclic or not) digraph, the shortest-path preorder º∧ is constructed by sorting

the nodes into layers, according to the shortest distance d∧(i, #0) from i to the root.

This d∧(i, #0) is the number of arcs in the shortest available path to the root (∧ denotes

minimum). The nodes that are equidistant from #0 are equivalent. The root is not a

layer, all nodes adjacent to the root constitute the first layer L∧1 , the nodes adjacent to L∧1

constitute the second layer L∧2 , and so on; the more distant layer is higher (see use of this

preorder º∧in Lemma 1).

In contrast, the longest-path preorder º∨ is defined only for acyclic digraphs, and often

differs from º∧. It reflects the length d∨(i, #0) of the longest available path from each i to

the root (∨ denotes maximum). A node having a longer maximal path is considered higher

in preorder º∨, but nodes with equal lengths are equivalent. Namely, the first layer L∨1

contains all nodes connected to #0 by no more than one arc; layer L∨2 contains all nodes

connected to #0 by no more than two arcs, and so on. We use preorder º∨ in proving

Proposition 2 and illustrate it in Fig.1. One can see that only four º∨-preorder types

are possible among rivers with 3 non-zero nodes: {L∨1 3 (i, j, k)}, {L∨1 3 (i, j), L∨2 3 k},
{L∨1 3 i, L∨2 3 (k, j)}, {L∨1 3 i, L∨2 3 j, L∨3 3 k}.

Both preorders º∨,º∧ do not contradict the partial order Â of a graph, but the first

preorder º∧ often includes a predecessor and its successor into the same layer, unlike º∨
which is “finer.”
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Appendix 2: enumeration of trees and rivers14

6.0.1 Number of trees

For solving a screening problem we should know the number of all in-rooted trees with n

non-root nodes labelled 1, 2, ..., n, and a root (sink) #0. We derive it from the following

lemma about non-directed labelled trees.

Lemma 4 [Cayley (1889)].15 The number Cn of labelled trees of order n (with n nodes)

is equal to Cn = nn−2, first numbers of this sequence being C1 = 1, C2 = 1, C3 = 3, C4 = 16,

C5 = 125...

Corollary. The number Tn of labelled in-rooted trees with the sink labelled #0 and n

non-root nodes 1, 2, ..., n is equal to

Tn = Cn+1 = (n + 1)n−1,

first numbers of this sequence being T1 = 1, T2 = 3, T3 = 16, T4 = 125, T5 = 1296,

T6 = 16807, T7 = 262144...

Proof of Corollary. Directing a non-directed tree G (i.e., making an in-rooted tree from

G) amounts to choosing any node in the role of the root which determines the direction of

all arcs. Similarly, when labelling an unlabelled tree we can first assign any node to become

the lowest number out of all labels used (#0 in our case) and then assign somehow other

labels. Any labelled n-tree has a unique counterpart among all labelled n-trees directed

towards the lowest number, which is #0 in this paper where the direction is towards #0.

These classes are equivalent. Hence, our problem of counting in-trees of n nodes with labels

{1, ..., n} plus the root #0 is equivalent to Cayley’s problem for non-directed labelled trees

of the order n + 1. ¤
Now we can use similar ideas for counting rivers.

6.0.2 Number of rivers

We need to count all labelled rivers with n non-root nodes #1, #2, ..., #n plus the root #0.

This class of n+0-rivers include trees and rivers with bypasses. Adding bypasses to trees is

14A more poetical title would be: “Enumeration of Stars, Trees and Rivers” but, unfortunately, there is

only one star among n-rivers.
15See Harary and Palmer (1973), Section 1.7.
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a good method to build rivers maintaining the longest-path preorder unchanged (see Fig

1). We use this idea to derive what we need from Robinson’s lemma below. The lemma

considers any acyclic digraphs, which is a broader class than rivers because the sink need

not be unique.

Lemma 5 [Robinson (1970)].16 Denote by an,k the number of labelled acyclic digraphs

with n nodes, exactly k ≤ n of these nodes lacking arcs “to” them (because being sources

or disconnected). Denote by (n
k) the number of k-element subsets of the set {1, 2, ..., n}.

Any number an,k can be found recursively from the lower-order elements of matrix a as

an,k =
∑n−k

m=1(2
k − 1)m2k(n−m−k)(n

k)an−k,m. Using matrix a, the total number ρac(n) of

acyclic labelled digraphs of order n is found as ρac(n) =
∑n

k=1 an,k, the first 7 numbers of

this sequence being ρac(·) = 1, 3, 25, 479, 22511, 2349987, 569684123.

We use Robinson’s lemma and details of its proof to derive our Lemma 3, which considers

a different class of graphs but gives a similar formula, except for a multiplier 2n−k.

Proof of Lemma 3 (number of rivers). We need to apply Robinson’s lemma and

prove that any magnitude r0(n) can be found recursively from the Robinson’s matrix a as

r0(n) :=
n∑

k=1

2n−kan,k. (22)

To this end, note that our task of enumerating rivers is rather similar to Robinson’s

enumeration of all acyclic digraphs because any acyclic (connected or disconnected) digraph

G of n nodes i = 1, ..., n, we can extend by adding there a root #0. Namely, we take each

node not connected to anything (i.e., take all sinks and disconnected nodes) and connect

it to #0 by an arc from this node, thus “extending” the graph G downstream (see Harary

and Palmer, 1973, Section 1.6, about extensions). Obviously this “extension” of graph G

always makes a river from the initial acyclic graph G. Further, all rivers constructed in this

way are different because their basic graphs were different and they were supplemented by

#0 in a unique way. The class of acyclic digraphs supplemented by a root in this “minimal”

way constitutes a family of rivers called further R1 = R1(n). This class is equivalent to the

class An of all acyclic digraphs and its number of elements is |An| = ρac(n) by Robinson’s

lemma.

However, to construct the complete family of rivers called Rall(n) from the smaller family

R1, we should supplement R1 by some other rivers. To comprehend this fact, consider a

16See Harary and Palmer (1973), Section 1.6.
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river named rkj ∈ R1 with k < n nodes adjacent to the root. Robinson’s proof of his lemma

tells us that there are an,k such rivers: j = 1, ..., an,k. (To make quite correct reference here,

we apply notation an,k to k sinks of an acyclic digraph with n nodes, instead of Robinson’s

k sources used in Section 1.6. in Harary and Palmer (1973), but changing + for - in all

directions of all graphs in a family makes no difference for their number). When this river

rkj has high (different from L∨1 ) layers, they can be supplemented by some bypasses from

these L∨2 , L∨3 ,... directly to the root, such bypasses being absent in R1 by construction (see

Fig.1 for examples of extending a graph with bypasses). Therefore, enumerating all such

modifications of any river rkj ∈ R1 amounts to 2n−k combinations of “yes” or “no” possible

for all N(rkj) = n − k high nodes of this river, previously non-adjacent to the root; each

high node may become adjacent or non-adjacent to the root. Thus, each initial river rkj

becomes included into a richer family constructed from it through adding bypasses i → 0.

A river like “star” in Fig.1 may lack high layers L∨2 , L∨3 , ..., then rkj : k = n, and it is

the only member in its family: 2n−n = 1. More generally, the possibility of bypasses/no

bypasses to #0 increases the number of rivers similar to initial rkj by 2n−k times. This

multiplier with number an,k of initial rivers yields the desired formula (22).

However, to use this formula without doubt, we must be sure that our extension of

a river rkj ∈ R1 (one or several bypasses i → 0 added) generates always a new river,

different from any river, generated from some other element rk̂i of class R1. When k̂ 6= k

the difference is obvious because longest-path preorder º∨ of a graph is not changed by

any additional bypasses to #0, whereas such rk̂i and rkj belong to different classes, their

first layers being different: |L∨1 (rk̂i)| = k̂ 6= k = |L∨1 (rkj)|. More generally, even when

k̂ = k suppose that the same river rks ∈ Rall resulted form adding bypasses l → 0 to

two different initial rivers rki ∈ R1 and rkj ∈ R1. However, reverse operation (removing

from the constructed river rks all bypasses l → 0 of high layers L∨2 , L∨3 ,...) is an operation

with the unique outcome. Therefore, two constructed rivers could coincide only when their

initial rivers did coincide: rki = rkj ∈ R1. Thus, we never arrive at the same river by

extending (with bypasses to #0) different initial rivers from R1. In other words, there arise

no duplicates in Rall during our extension of R1 and the lemma is proved. ¤
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Appendix 3: proofs of Propositions 2–4

We prove Propositions 3 and 4 before proving the complicated Proposition 2 which uses

some version of Proposition 4 (Propositions 3 and 4 do not rely on Proposition 2).

Proof of Proposition 3.17 (i) Based on Lemma 1, a (non-unique) spanning-tree can

always be chosen from the envy-graph ¯̄G(x̄, t̄) of the solution (x̄, t̄) to the initial problem.

Select any such tree GT = GT (x̄, t̄). Compare the formulations and observe that new

problem (8)-(11) differs from the initial problem (1)-(2) only in one additional requirement:

equation (11) requires that those constraints (i, j) ∈ GT which were active (equalities) at

point (x̄, t̄) would remain equalities at all feasible points; thereby it calculates the tariffs

specifically as t̄k = Tk(xi) :=
∑

i∈Sk(GT )∪{k}[Vi(xi)−Vi(xs1
i (GT ))] (using the named equalities

recursively). This new requirement makes the set of constraints more restrictive, though

(x̄, t̄) still satisfies it and at (x̄, t̄) the new objective function takes the same optimal value

π̃(x̄, GT ) as the old function: π(x̄, t̄) =π̃(x̄, GT ). Hence in this new GT -specific problem

no admissible plan (x̃, t̃) can be better than the initial plan (x̄, t̄), which therefore remains

optimal for the new tree-specific problem (8)-(11).

(ii) Any other optimal GT -tree-specific solution (x̃, t̃) must give the same value to new

and old objective functions π̃ and π, as well as initial optimal plan (x̄, t̄). Besides, (x̃, t̃)

must satisfy all constraints (8)-(11) that are stronger than (1)-(2). Therefore, such (x̃, t̃) is

also a solution to the initial program (1)-(2).

(iii) In separable case, derivation of our expressions π̃, MPG
k in (12)-(13) from initial

formulae (8)-(11) is performed directly by recursively substituting tariffs along the tree. ¤

Proof of Proposition 4. When the Lagrange multipliers exist, these FOC follow

straightforwardly from differentiating the Lagrangian L(x, τ , λ) of our relaxed problem

(4)-(5). We have only reformulated the usual FOC in graph terms with summation over

∀j ∈ P ad
i (Gλ

+), ∀j ∈ Sad
i (Gλ

+) for predecessors and successors instead of summation over

simpler equivalent index-set (∀j 6= i). (The reason is that graph expressions help for

practically finding local maxima from hypotheses on Gλ
+).

More serious question is the applicability of the Kuhn-Tucker theorem itself and related

17Under differentiability and other restrictions, one can derive the needed proof from Proposition 4, but

this general proof is simpler.
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existence of the Lagrange multipliers λ for a solution (x̄, τ̄). Here the assumption (ρ > 0)

helps, because Proposition 2 ensures that there are no cycles, and Lemma 2 gives the strict

order of profits. To characterize our non-convex optimization program, we exploit a non-

convex version of the Kuhn-Tucker theorem with the Mangasarian-Fromovitz constraint-

qualification, namely, Theorem 4.2 in Rockafellar (1993), reformulated as the following

Lemma 6.

Lemma 6. Take an optimization program {maxz∈Rn̄ u(z); gk(z) ≥ 0, k = 1, ..., m} with

continuously differentiable functions, and a locally optimal point z̄. Assume the cone of admissible

directions at z̄ is solid, i.e., there exists a direction-vector w ∈ Rn̄ with a positive scalar product

to the gradient of each active inequality-constraint so that w∇gk(z̄) > 0 ∀k : gk(z̄) = 0. Then

there exist dual vector λ ∈ Rm
+ satisfying the first-order conditions with this optimum z̄.

To apply this lemma, we reformulate its terms in our notation: z̄ = (x̄, τ̄), n̄ = 2n,

m = n × n, (k) = (i, j), gij(x, τ) := vi(xi) − vi(xj) − τ i + τ j ≥ 0. Then the solid-cone

restriction on the active constraints means

∃w ∈ R2n : w∇gij(x̄, τ̄) > 0 ∀(i, j) ∈ Ḡ(x̄, τ̄) : where (23)

Ḡ(x̄, τ̄) : = {(i, j) : gij(x̄, τ̄) := vi(x̄i)− vi(x̄j)− τ̄ i + τ̄ j = 0}.

So, to apply Lemma 6, we should build a vector w satisfying condition (23). In other

words, for all small ε > 0, the direction wε would lie in the admissible cone’s interiority, so

that (x̄, τ̄) + wε would be a strictly admissible plan (one showing only strict inequalities).

First, we renumber the agents in the order of their profit-contributions (net tariffs), so

that τ̄ (1) < τ̄ (2) < ... < τ̄ (j) < ... < τ̄ (n) (these numbers cannot coincide by Lemma 2).

Second, we construct the needed specific vector w̄ only from the net tariffs:

w̄ = (0n, w̄n+1, w̄n+2, ..., w̄2n) = (0, ..., 0,−τ̄ (1),−τ̄ (2),−τ̄ (3), ...,−τ̄ (n)) ∈ R2n. (24)

One can easily check that such proportional decrease in all tariffs makes a feasible point

(x̄, τ̄) + w̄ε strictly incentive compatible. So, our w̄ satisfies the regularity condition (23):

w̄∇gij(x̄, τ̄) = 0 · v̇i(x̄i)− 0 · v̇i(x̄j)− 1 · (−τ̄ i) + 1 · (−τ̄ j) > 0. (25)

Hence, Lemma 6 is applicable and the Lagrange multipliers exist.

(ii) To estimate the multipliers in the case of a tree, we can recursively find all λij

substituting them along our tree GT into formula (14) of the river-specific program. In a
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tree this is possible because each node has a unique successor Sad
i (G) = {s1

i (G)}. Starting

from the sources (“top” nodes without predecessors), we find their λis1
i

as λis1
i

= mi.

Then we exclude them from the graph, similarly find λjsj
for the remaining sources, and

continue recursively finding for each i the Lagrange multiplier λis1
i

= MPGT
i of the unique

IC constraint leading from i downwards as required in (21).

For the case of a river which is not a tree, we see from (14) that the sum of succeeding

multipliers λij exceeds the sum of preceding ones, exactly by magnitude mi:

mi +
∑

j∈P ad
i (Gλ

+)

λji =
∑

j∈Sad
i (Gλ

+)

λij.

If we search for maxλ≥0{
∑

j∈Sad
i (Gλ

+) λij} among non-negative λij satisfying all these equa-

tions, we find the needed upper bound (21). ¤

For Proposition 2 we need the following version of Proposition 4 with non-differentiable

functions, left and right derivatives v′−i (·), v′+i (·). For simplicity, we formulate it only for the

unidimensional commodity and common outside option 0 for all agents, exactly as needed

in proving our Proposition 2.

Proposition 4* (FOC for rivers under piecewise linear v). Assume unidimen-

sional X ⊂ R1, fixed-and-separable costs and piecewise-linear net valuations v(·). Take any

solution (x̄, τ̄) to the normalized problem (4)-(5), then: (i) There exist a Lagrange multipli-

ers λ = (λ1,0, λ1,2, ..., λn,n−2, λn,n−1) ∈ Rn∗n
+ , satisfying the following generalized first-order

conditions of Lagrangian L(.) and supplementary inequalities for finding (x̄, τ̄ , λ) from any

hypothesis on Gλ
+:

∂L(x̄, τ̄ , λ)

∂ti
= mi −

∑

j∈Sad
i (Gλ

+)

λij +
∑

j∈P ad
i (Gλ

+)

λji = 0 ∀i > 0, (26)

∂L(x̄, τ̄ , λ)

∂−xi

= v′−i (x̄i)
∑

j∈Sad
i (Gλ

+)

λij −
∑

j∈P ad
i (Gλ

+)

λjiv
′
j(x̄i) ≥ 0; ∀i > 0, (27)

∂L(x̄, τ̄ , λ)

∂+xi

= v′+i (x̄i)
∑

j∈Sad
i (Gλ

+)

λij −
∑

j∈P ad
i (Gλ

+)

λjiv
′
j(x̄i) ≤ 0; ∀i > 0, (28)

0 = vi(x̄i)− τ̄ i − vi(x̄j) + τ̄ j + ρij ∀(i, j) ∈ Gλ
+, (29)

0 ≤ vi(x̄i)− τ̄ i − vi(x̄j) + τ̄ j + ρij ∀(i, j) 6∈ Gλ
+, (30)

Gλ
+ = {(ij)|λij > 0}, x̄0 := 0, τ̄ 0 := 0, (31)
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where the left derivative is v′−i (x̄i) := ∂vi(x̄i)
∂−xi

:= limt→+0
vi(x̄i)−vi(x̄i−t)

t
whereas the right

derivative is v′+i (x̄i) := ∂vi(x̄i)
∂+xi

:= limt→+0
−vi(x̄i)+vi(x̄i+t)

t
.

(ii) The Lagrange multipliers of the constraints successive to any i are bounded as

∑

j∈Sad
i (Gλ

+)

λij ≤ M
PGλ

+

i :=
∑

j∈P (i,Gλ
+)∪{i}

mj ∀i; (32)

moreover, when the river Gλ
+ is a tree, the positive multiplier for the unique successor of i

is found as

λis1
i (Gλ

+) = M
PGλ

+

i .

Proof. Generally this modification of Proposition 4 is proved in a way similar to initial

version. The only hardship is to ensure the existence of the Lagrange multipliers without

guaranteed solid admissible set. However, under piecewise-linear valuations, our admissible

set (convex or non-convex) is anyway a polyhedron, obviously combined of several convex

polyhedrons. The objective function maximized is linear. Therefore, any local or global

optimum (x̄, τ̄) can be looked upon as a maximum of the function π on a convex polyhedron

locally coinciding with the global admissible set. Such local program amounts to linear

programming. Thereby, by linear (polyhedron) version of the Kuhn-Tucker theorem, any

optimum can be characterized by some Lagrange multipliers, i.e., they exist.

Another distinction from the basic version of Proposition 4 here is the use of the direc-

tional derivatives instead of the usual v′. However, this generalization is rather standard:

at the maximum the left derivative should be non-negative and the right one should be

non-positive. When both coincide it means the usual condition v′(x) = 0. This gener-

alization is explained and illustrated by the equations (34) in the proof of Proposition 2.

¤

Now we are ready for our longest proof.

Proof of Proposition 2.

It is sufficient to prove the proposition for the dimensionality l = 1 because a func-

tion vi(xi1) of one argument can be viewed as a function vi(xi1, xi2, ...) formally dependent

upon a higher-dimensional argument. Therefore an example, i.e., a profile of functions

v1(x11), ..., vn(xn1) yielding any arbitrarily given river answers our question for any dimen-

sionality l ≥ 1. Moreover, constructing the needed example in a higher dimensionality is

much easier because of more freedom.
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We take only nontrivial case n ≥ 2 and exploit geometric reasoning. For any given

parameter ρ ≥ 0 and any given river Ḡ = {i1 → i2, i3 → i4, ...}, we show how to con-

struct the valuations and the frequencies resulting in such A-graph Ḡ. Our plan during

this construction is: (1) to establish some preorder among the nodes of our graph Ḡ and

renumber our agents respectively; (2) under ρ = 0, to choose some quantities/tariffs menu

(x̄, τ̄) coordinated with this numeration and with the graph Ḡ in the sense of Lemma 2;

(3) to find some net valuations v and frequencies m that generate this menu (x̄, τ̄) as a

ρ-solution such that ¯̄G(x̄, τ̄) = Ḡ (see Fig.4.2); (4) to prove optimality of (x̄, τ̄) under these

v, m; (5) to extend our reasoning onto the case ρ > 0.

(1). We have excluded bunching and other dicycles by considering only rivers. So, we

can establish a longest-path preorder º∨ (see definition in Section 3) among agents 1, 2, ..., n

perceived as quantity/tariff packages or nodes of the graph Ḡ. We sort all these nodes into

several layers L∨1 , L∨2 ,..., according to this preorder º∨. In particular, the layer L∨1 contains

all agents connected to #0 by no more than one arc; all nodes connected to #0 by no more

than two arcs belong to L∨2 , and so on. Such preordered partitioning of population In is

suitable for the needed construction of packages because it is well coordinated with the

arc-induced partial order Â→ within the initial graph Ḡ.

To renumber the agents, we start from the layer L∨1 . Assume there are some k1 ≥ 1

nodes in L∨1 . We assign the smallest successive integer numbers 1, 2, 3,..., k1 to all agents

from the layer L∨1 chosen in any arbitrary order from L∨1 . Similarly, assuming k2 elements in

the next layer L∨2 , we assign the subsequent (higher) integer numbers: k1+1, k1+2,...,k1+k2

to all agents from the layer L∨2 taken in any order from this layer. Afterwards, we proceed

similarly by labelling the layer L∨3 with subsequent numbers k1+k2+1, k1+k2+2,...,k1+k2+

k3 and so on. In this way we can renumber elements of all layers and exhaust population

In. From now on, without loss of generality, we assume for simplicity of notation that

agents initially had the same labels (indices) as these freshly assigned numbers 1,...,n.

(2). We stick to special case ρ = 0 until step 5 and then generalize the construction.

We should choose now a solution menu (x, τ) satisfying Lemma 2 for the graph Ḡ,

i.e., for the predecessors we should construct higher net tariffs τ i than for the successors.

Geometrically, this task of choosing an appropriate (x, τ) means drawing our graph Ḡ

in the quantity-tariff space R2 in a specific manner (see Fig.4.2). To do this, first we

assign the agents’ labels (indices) according to their consumption quantities, i.e., take
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x̄1 := 1, x̄2 := 2, x̄3 := 3, ..., x̄n := n.

Now, to assign the needed net tariffs τ i, it is sufficient to take a square root function

(or any other strictly concave strictly increasing function) of the quantities, i.e., τ̄ i :=
√

x̄i.

The needed assignment (x̄, τ̄) ∈ R2
+ is constructed from the given graph Ḡ in such a way

that all predecessors always have bigger net tariffs τ̄ i and bigger quantities x̄i than their

successors (i.e., the predecessors lie to the right and above). Now we connect the obtained

points (x̄i, τ̄ i), (x̄j, τ̄ j), ... by the line segments which are all arcs ij of the initial graph Ḡ.

Thus, the needed allocation of graph Ḡ in quantity/tariff space is completed, and each arc

of the re-allocated graph Ḡ goes to a lower net tariff, as Lemma 2 requires.

To explain this construction through an example, we illustrate a sample graph Ḡ = {0 ←
c → a → 0 ← b ← d ← e → 0, d → a}, ρ = 0, in Fig.2. The left panel shows step 1: this

graph is sorted into 3 layers according to the longest-path preorder º∨. The middle panel shows

the next step of enumerating the nodes according to their layers (a := #1, b := #2, ...) and

assigning them the menu (x̄, τ̄) := ((1, 1), (2,
√

2), ...). In essence, by steps 1 and 2 our initial

graph Ḡ is only turned and stretched, i.e., specifically positioned in the quantity-tariff space. The

arrows (arcs) are drawn with different types of dashes to distinguish connections between each

node and to highlight that all arcs go leftward and downwards. By taking √., we have ensured

such a position of graph Ḡ where an arc can never go above any point. One can understand

now that such a reallocation is possible for any river Ḡ. The right panel illustrates making some

valuations from the arcs obtained.

(3). Now from the arcs obtained we construct the active indifference curves v̌i and such

net valuations vi that could generate our assignment (x̄, τ̄) as an optimal solution. We

make these active curves v̌i piecewise-linear by taking the existing arcs and adding some

segments as illustrated in the right panel of Fig.2. The general requirement for (x̄, τ̄) to be

a solution is that the i-th active indifference curve v̌i under construction should go through

all points (x̄j, τ̄ j) to which i is adjacently connected as a predecessor (i → j). We first

explain in detail such construction and then summarize it in equation (26) below.

3.1. Each package-point (x̄i, τ̄ i) is already connected by some directed linear segments

(arcs) denoted now as Aik := [(x̄i, τ̄ i), (x̄k, τ̄ k)] to one or more lower packages according to

arcs i → k, i → j, ... of initial graph Ḡ. We construct now the graph Ui under the i-th

active indifference curve v̌i by including all these segments into Ui 3 Aik∀k. Further, Ui

should be extended leftward and rightward by some additional segments to define curve v̌i
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on the whole half-space R+.

3.2. Specifically, to extend the curve v̌i to the root, no supplement is needed if (x̄i, τ̄ i)

is already adjacently connected to (0,0), which is the case for points i = a, b, c, e in Fig.4.2.

But when (x̄i, τ̄ i) is not connected to #0 so far, like point d in Fig.4.2, it is sufficient to

connect (x̄i, τ̄ i) by a line segment to some point strictly below the root (0, 0), lower for

some small magnitude δ > 0. We use from now on specific value δ = 1
2n2n and show

that it is sufficiently small for our purpose. We connect one destination point (0,−δ) of

this kind to all agents non-adjacent to (0,0) and respectively construct a starting-segment

Ai0 := [(x̄i, τ̄ i), (0,−δ)] for each node i : i 6→ 0.

3.3. As to the upper interval (x̄i, +∞) of the domain for the valuation vi, it is sufficient

to take any non-increasing ray Ai∞ to make a maximum or a summit out of (x̄i, τ̄ i). In

particular, for each node i we can take now any strictly decreasing ray, for instance, Ai∞ :=

[(x̄i, τ̄ i), (x̄i + z, τ̄ i − 1 ∗ z)) : ∀z > 0 (see Fig.4.2). Such a non-increasing ray Ai∞ similar

to initial segments do not go above any other nodes j 6= i because high-labelled nodes lie

higher. The same property is true for the starting-segments Ai0 due to strict concavity of

√
.. Any initial segment Ai,i+k := [(x̄i, τ̄ i), (x̄i+k, τ̄ i+k)] also goes below the intermediate

points because its ends and all points belong to strictly concave curve (x,
√

x). This means

that the new segments of v̌i as well as the old ones do not violate any IC constraints.

3.4. Now, for any given agent i, we use all initial and additional segments {Ai0, Ai1, Ai2, ...

, Ai∞} going radially out of her package (x̄i, τ̄ i) for constructing the under-graph set Ui of her

active valuation curve v̌i. Namely we define Ui as the convex hull Ui = Hull{Ai0, Ai1, ..., Ai∞}
of all points belonging to these segments. The needed active indifference curve v̌i is defined

as the upper envelope of this set Ui. Finally, if the node is adjacent to (0,0), then the i-th

net valuation is assigned as the active indifference curve itself: vi := v̌i. In the opposite case

the valuation is taken higher for δ than the active curve v̌i. The final formula summarizes

this construction of net valuations as follows:

vi(z) :=


 v̌i(z) if (i → 0) ∈ Ḡ;

v̌i(z) + δ if (i → 0) 6∈ Ḡ.
; v̌i(z) := max

(z,τ)∈Hull{Ai0,Ai1,...,Ai∞}
τ .

To comprehend this construction, compare the middle and the right panels in Fig.2. Here

point #1 = a was connected only to the root by the segment [(0, 0), (1, 1)], so its valuation

according to the above formula becomes va(z) := v̌a(z) := min{1 ∗ z, 4
3
− 1

3
z} ∀z ≥ 0,

and shown by thin solid lines. Similarly, for #2 = b its valuation becomes vb(z) := v̌b(z) :=
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min{
√

2
2

z,
√

2 + 2
3
− 1

3
z}, depicted by thin dashed lines. Similar is the dotted curve vc(z) :=

v̌c(z) := min{z, 3−√3
2

+
√

3−1
2

z,
√

3 + 1 − 1
3
z}, and the thick-dashed curve ve(z) := v̌e(z) :=

min{1
2
z, 10− 4

√
5 +

√
5−2
1

z,
√

5 + 5
3
− 1

3
z}. Node #4 = d not adjacent to (0,0) is different, its

active indifference curve v̌d(z) = min{−1
2
+ 3

2
z, 2−√2+

√
2−1
1

z, 2
√

2−2+ 2−√2
2

z, 10
3
− 1

3
z} (drawn

as thick solid lines) contains artificial point (0,−δ), and the related valuation vd(z) := 1
2
+ v̌d(z)

is somewhat higher than v̌d.

By using the convex hull operation, we always arrive at concave net valuations vi.

Besides, each active indifference curve v̌i connects its peak (x̄i, τ̄ i) only with those points j

whose arcs (i, j) belong to the initial graph Ḡ. Other constraints not included into Ḡ are

not active, i.e., they are satisfied as strict inequalities because their peaks (x̄k, τ̄ k) lie higher

than v̌i. Thus, the obtained system of active indifference curves exactly generates initial

graph Ḡ of the active constraints. We have seen already that none of the IC constraints are

violated and so our plan (x̄, τ̄) is feasible for the obtained net valuations vi(.) and indeed

it generates the needed almost–envy graph in the sense Ḡ = ¯̄G(x̄, τ̄).

3.5. Now we should choose such frequencies mi that make our feasible plan (x̄, τ̄)

also optimal for these net valuations vi. To make it easy, each quantity x̄i have been

constructed at the peak of its net valuation vi, thereby quantities x̄ are the first-best ones

(i.e., vi(x̄i) = arg maxxi
vi(xi) ∀i). Moreover, within the same A-graph Ḡ, profit cannot be

improved by changing the whole menu (x, τ) because variables x̄i are first-best, while τ̄ i

cannot be increased any more without violating some IC constraints under this x̄ (more

detailed explanation follows). However, a more delicate task is to choose now appropriate

frequencies mi that ensure that any other graph is not better for profit. In particular, it

should not be profitable to delete (in the sense (xi, τ i) := 0) any package from the menu

for achieving an increase in other tariffs.

To construct weights mi guaranteeing such impossibility of improvement, first we denote

the left derivative of vi at xi as v′−i (xi) := limt→+0
vi(xi)−vi(xi−t)

t
and the right derivative as

v′+i (xi) := limt→+0
−vi(xi)+vi(xi+t)

t
(both directional derivatives are finite at all x since vi is

piece-wise linear and each one coincides with one of the slopes among the segments Aik).

At xi = 0 we artificially define the left derivative as v′−i (0) = v′+i (0). Now, studying all

the derivatives, we can find the maximal slope š and the a lower estimate ŝ of the minimal
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slope among all linear segments of all valuation curves:

š := 1 = max
i
{ sup

xi∈(0,∞)

|v′−i (xi)|, sup
xi∈(0,∞)

|v′+i (xi)|}, ŝ := (
√

n−√n− 1).

To comprehend the formula, note that both ends of these segments typically belong to the

curve
√

., except the left ends of the type (0,−δ). The steepest segment is the first one

going from (0,0) to (1,1). The most flat segment can go from (n − 1,
√

n− 1) to (n,
√

n)

at least when there is an arc (n → (n− 1)) in the graph, otherwise the flattest segment is

steeper. Thus, instead of the minimal slope mini{infxi∈(0,∞) |v′−i (xi)|, infxi∈(0,∞) |v′+i (xi)|},
we can take its lower estimate ŝ :=

√
n−√n− 1 which is weakly smaller than the slope of

any segment.

For subsequent construction we use magnitude

ε̂ :=
ŝ

2nš
=

√
n−√n− 1

2n

that decreases in n and satisfies bound ε̂ < 1/8 for all n ≥ 2.

Now we can assign the first frequency m̄1 = 1 and other frequencies as

m̄i := ε̂(i−1) =

(√
n−√n− 1

2n

)i−1

∀i.

Each m̄i < m̄i−1 because of higher power (i−1) for higher i and small ε̂. This construction

intends to ensure the needed doubled domination of any (i < n) frequency over the sum of

all higher frequencies:

m̄i

2
=

ε̂(i−1)

2
>

n∑
j=i+1

m̄j =
n∑

j=i+1

ε̂(j−1) =
ε̂i(1− ε̂n−i)

1− ε̂
,

where we have used the formula for the sum of finite geometric progression, and the in-

equality holds true because ε̂ < 1/8.

(4). Why our menu (x̄, τ̄) = ((1, 1), (2,
√

2), ...) is optimal under these v, m̄? The

general idea is that under these frequencies m̄ we can optimize the components of the menu

separately, one-by-one or layer by layer from below to upwards. Very small higher weights

m̄i and piecewise-linear net-valuation curves enable such sequence. Since agents with higher

indices are comparatively rare, their influence on the lower packages is negligible, so they

are not essential for choosing (xi, τ i) at the lower layers. In this case the optimal choice of

each (xi, τ i) becomes obvious. Just each xi should be taken at the peak of the related curve

vi(.) exactly as our x̄i, and after choosing xi all tariffs τ i should be maximized subject to
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all constraints and already fixed quantities x̄i. This simple algorithm results exactly in our

τ̄ .

To implement this general idea, we should only check are the weights m̄i of higher-

numbered packages small enough to make xi, τ i irrelevant for the optimal positions of

xk, τ k with lower numbers? We start with discussing any optimal menu (x̃, τ̃) and show

that it cannot differ from our menu (x̄, τ̄).

4.1. Bounds on vertical deviation from τ̄ and graph-order of (x̃, τ̃).

First we construct the upper bound on the optimal value of the profit function maximized

through designing the so-called “first-best-optimal” menu. This means optimization w.r.t.

the participation constraints vj(xj) ≥ 0 only. The structure of the “first-best” menu

(x̆, τ̆) = (x̄, τ̆) is obvious:

(x̆, τ̆) = ((1,
√

1), (2,
√

2 + ξ2), ..., (n,
√

n + ξn)), ξj =


 0 ∀(j → 0) ∈ Ḡ

δ ∀(j → 0) 6∈ Ḡ
.

Here a small addition ξj to the basic tariff
√

j is chosen as ξj = 0 if this node j is connected

to the root (0,0) in the sense (j, 0) ∈ Ḡ, or ξj = δ for the opposite case. The latter case

can be understood from Fig.4.2; here any active indifference curve starting from point

(0,−δ) below the origin can be lifted up for δ until the participation constraint becomes

binding. Thus, the upper bound on the optimal payoff is π̆ = 1 +
∑n

i=2(m̄i

√
i + m̄iξi) ≤

1 +
∑n

i=2(m̄i

√
i + m̄iδ). Additionally, due to small δ, the tariffs order τ̆ 1 < τ̆ 2 < ... < τ̆n in

the first-best menu is the same as in our (x̄, τ̄).

Further, to find a lower bound on the optimal value of the objective function, recall

that our constructed menu (x̄, τ̄) = ((1,
√

1), (2,
√

2), ..., (n,
√

n)) is feasible and δ-close in

all dimensions to the first-best menu. So, its payoff π̄ = π(x̄, τ̄) =
∑n

i=1 m̄i

√
i differs from

the first-best payoff π̆ = π(x̆, τ̆) =
∑n

i=1 m̄i(ξi +
√

i) only by a small amount

l̄ = π̆ − π̄ ≤ δ

n∑
i=2

m̄i <
1

2
δ =

1

4n2n
.

The latter equality follows from step 3.2, while
∑n

i=2 m̄i < 1/2 is ensured by step 3.5.

We are going to show that any feasible menu (x̃, τ̃) brings a bigger loss than l̄, if

(x̃, τ̃) “essentially” differs from (x̄, τ̄) in the following sense: some package (x̃i, τ̃ i) steps in

vertical direction outside some ζ-vicinity of the current package (x̄i, τ̄ i) = (i,
√

i), namely,

|τ̃ i − τ̄ i| > ζ i =
√

i−√i−1
2

. Here ζ i denotes half of the distance from τ̄ i =
√

i towards the
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lower neighbor. We show now impossibility of such a big “distortion” of τ̃ i compared to

the first-best plan.

Any big amount ζ i > δ of upward distortion is impossible because of the participation

constraint. To study the downward distortion, let us estimate the loss l̃ in profit from a

downward shift of τ̃ i for the amount ζ i, compared to the first-best solution (x̆, τ̆). When

τ̃ i − τ̆ i ≥ ζ i it follows that

l̃ = π̆ − π̃ ≥ ζ im̄i = n

(√
n−√n− 1

n

)i

> n

(
1−

√
1− 1/n√
n

)n

even when all other variables τ̃ j are first-best optimal in the sense τ̃ j = τ̆ j ∀j 6= i. We

simplify n

(
1−
√

1−1/n√
n

)n

= n

(
(1−(1−1/n))

(1+
√

1−1/n)
√

n

)n

> 1
(2
√

n)n and check comparison

l̄ <
1

2
δ =

1

4n2n
=

1

((2n)2)n
<

1

(2
√

n)n
< l̃,

that holds for any package i. So, any plan ζ i-different in tariffs from the first-best (x̆, τ̆)

cannot be optimal. Therefore, the order of any optimal τ̃ 1 < τ̃ 2 < ... < τ̃n is the same

as the order of our current plan; high-numbered packages lie higher in space. Then, by

Lemma 2, the high-numbered packages must lie higher in the A-graph of any optimal (x̃, τ̃),

as they do in our Ḡ.

4.2. Generalized FOC. Under our v, m̄, we are going to prove the absence of any

horizontal distortion in any optimal menu (x̃, τ̃). This means proving x̃i = i. For this goal,

we use Proposition 4* that generalizes Proposition 4 (which is proved without Proposition 2

considered now). The generalization extends Proposition 4 from differentiable to piece-wise

linear functions, like in our construction v, m̄. By Proposition 4*, the Lagrange multipliers

should exist for the Lagrangian L which is now a piece-wise differentiable function:

L(x, τ , λ) :=
n∑

i=1

(miτ i −
∑

j∈Sad
i (Gλ

+)

λij · (vi(xi)− τ i + ρ− vi(xj) + τ j)).

Usual first-order conditions (14)-(20) from Proposition 4 are naturally modified by

Proposition 4* into the following generalized first-order conditions (GFOC) that use the

directional derivatives v′−i (.), v′+i (.) of the Lagrangian instead of usual derivatives to char-

acterize any optimal (x̃, τ̃):
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∂L(x̃, τ , λ)

∂τ i

(τ̃) = mi −
∑

j∈Sad
i (Gλ

+)

λij +
∑

j∈P ad
i (Gλ

+)

λji = 0 ∀i > 0, (33)

∂L(x, τ̃ , λ)

∂−xi

(x̃) : = v′−i (x̃i)
∑

j∈Sad
i (Gλ

+)

λij −
∑

j∈P ad
i (Gλ

+)

λjiv
′−
j (x̃i) ≥ 0 ∀i > 0, (34)

∂L(x, τ̃ , λ)

∂+xi

(x̃) : = v′+i (x̃i)
∑

j∈Sad
i (Gλ

+)

λij −
∑

j∈P ad
i (Gλ

+)

λjiv
′+
j (x̃i) ≤ 0 ∀i > 0, (35)

0 = vi(x̃i)− τ̃ i − vi(x̃j) + τ̃ j + ρij ∀(i, j) ∈ Gλ
+: = {(ij)|λij > 0}, (36)

0 ≤ vi(x̃i)− τ̃ i − vi(x̃j) + τ̃ j + ρij ∀(i, j) 6∈ Gλ
+, x̃0 := 0, τ̃ 0 := 0.(37)

The first equation (33) here has the obvious meaning, it summarizes all multipliers of

τ i in the Lagrangian. The second condition (34) says that it is unprofitable to decrease

variable xi below the optimal value x̃i, while (35) states that it is unprofitable to increase

xi. Here we have used left and right derivatives v′−i (x̃i), v
′+
i (x̃i) coinciding with the left and

right slopes of the piece-wise linear function vi. These conditions (34)-(35) naturally replace

one condition (15) from Proposition 4. The latter two equations (16)-(18) just repeat the

supplementary slackness conditions and inactive inequalities.

4.3. No horizontal deviation from x̄. Implementing our general idea of sequential

optimization, consider now optimization of the first package (x1, τ 1). If we had zero higher

weights mi = 0 ∀i > 1, then we could ignore all high-numbered variables xi, τ i : i > 1 and

choose exactly the constructed package (x̄1, τ̄ 1) = (1,
√

1) which is “non-distorted” in the

sense vi(x̄i) = arg maxxi
vi(xi) (“first-best”). Besides, the entire welfare is appropriated

as profit τ̄ 1 = v1(x̄1), so the profit contribution π1 = m̄1τ 1 from this package cannot be

improved. Now let us see that the same outcome (x̄1, τ̄ 1) of optimization occurs even under

non-zero frequencies m̄i>1 > 0, because these m̄i are designed sufficiently small to not

influence lower package (x1, τ 1).

To ensure x̃1 = x̄1 = 1, note that some optimal menu should exist. Indeed, in our

example all functions vi are continuous, first increasing from 0 to some peak and then

decreasing to 0 and below, whereas we maximize the weighted sum
∑

miτ i under con-

straints τ i ≤ vi(xi) from above and additional constraints. Therefore, the admissible set

for (x, τ) can be artificially bounded from below by 0 ∈ R2n
++ and from the above by

some big M ∈ R2n
++ without changing the solutions. The new admissible set is equivalent,

non-empty, bounded and compact. This suffices for existence of optima.
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Based on the existence, to check the optimality of non-distorted value x̄1 = 1 in our

example we can ignore second-order conditions. It is sufficient to apply the necessary

conditions (33)-(37) to any optimal point x̃ and observe these conditions satisfied only

under x̃1 = x̄1.

First check relation (35) holding at x̃1 = x̄1. It means that increasing x1 beyond x̄1 is

unprofitable. Indeed, using (33) reformulated as mi +
∑

j∈P ad
i (Gλ

+) λji =
∑

j∈Sad
i (Gλ

+) λij, the

“unprofitable-increasing” relation (35) for any active graph Gλ
+ = G(x̃, τ̃) can be reformu-

lated as

v′+1 (x̃1)m1 ≤
∑

j∈P ad
1 (Gλ

+)

(v′+j (x̃i)− v′+1 (x̃1))λj1 ≤
∑
j>1

(v′+j (x̃i)− v′+1 (x̃1))mj. (38)

To ensure these inequalities, we construct a chain:

m1

2
>

∑
j>1

mj ≥
∑

j∈P ad
i (Gλ

+)

mj ≥
∑

j∈P ad
i (Gλ

+)

λij. (39)

The first strict inequality here reflects the choice of m̄i in step 3.5 (irrespective of the

unknown graph Gλ
+ = G(x̃, τ̃) of the solution). The latter inequality is true because of

the upper bound on
∑

j∈P ad
i (Gλ

+) λij established in Proposition 4* and expressed now as
∑

k∈Sad
1 (Gλ

+) λ1k = m1 +
∑

j∈P ad
1 (Gλ

+) λj1 ≤
∑

j∈P (1,GT ) mj + m1.

Using chain (39), we start checking inequality (38). At the peak, by construction the

right derivative is negative: v′+1 (x̃1) = −1, and (
∑

j∈P ad
i (Gλ

+) λij ≥
∑

j∈P ad
i (Gλ

+) λij(
v′+j (x̃i)

v′+1 (x̃1)
−1))

because |v′+j (.)| ≤ 1, |v′−j (.)| ≤ 1 always holds in our example and |v′+j (x̃i) − v′+1 (x̃1)| ≤ 2

holds based on step 3.5. So, multiplying the chain (39) by v′+1 < 0, we get (38) which holds

true at x̄1 = 1 and at a higher x1 > x̄1. That is, any increase of x1 at points x̃1 ≥ x̄1

rightward from x̄1 is unprofitable. But increase is profitable at any point x̃1 < x̄1 to the

left of x̄1, because there the right derivative is positive: v′+1 (x̃1) > 0. Using our chain

as before, we ensure this profitability because inequality m1 ≤
∑

j∈P ad
1 (Gλ

+) λj1(v
′+
j (x̃i) −

v′+1 (x̃1))/v
′+
1 (x̃1) is violated. Thus, any optimal point x̃1 cannot be smaller than x̄1 = 1

(any leftward distortion is excluded).

To exclude rightward distortion, we reformulate the condition (34) as

v−1 (x̃1)m1 ≥
∑

j∈P ad
1 (Gλ

+)

λj1(v
′−
j (x̃i)− v′−1 (x̃1)) .
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and check it similarly to leftward distortion. The condition holds at x̃1 = x̄1 = 1 and to

the left of x̄1 but appears violated at all points x̃1 > x̄1, i.e., rightward from x̄1 where

v′−1 (x̃1) < 0. Summarizing, the only optimal horizontal position for the first package can

be x̃1 = x̄1 = 1.

Now we can check in a similar fashion the absence of distortion for any other package

i > 1. Based on step 4.1, we are sure that its predecessors j ∈ P ad
i (Gλ

+) in the A-graph

has higher numbers than i and substantially smaller weights m̄j than m̄i. Then the logic

of excluding horizontal distortion works similarly for all i. Therefore, x̃ = x̄.

4.4. Finding tariffs τ̃ . After fixing the optimal quantities at x̃ = x̄ = (1, 2, ..., n),

the optimization of remaining variables τ = (τ 1, ..., τn) becomes a very simple linear-

optimization program: max τ

∑
i m̄iτ i s.t. vii − τ i ≤ vij − τ j ∀i, j, where magnitudes

vik = vi(xk) are already known and the list of possible active constraints is already tightly

restricted by step 4.1. This fact helps to find the optimal τ̃ i rather easily and recursively;

first for i = 1, then for i = 2 and so on. Namely for i = 1 the only possible active arc is

known as 1 → 0. So, we find τ̃ 1 = τ̄ 1 =
√

1, this segment S10 = [(0, 0), (1, 1)] of active

indifference curve v1 being built from arc 1 → 0 of the initial graph G. Then, we find

τ̃ 2 = τ̄ 2 =
√

2, because we have built this active curve either from segment S20, or from

S21. The segment goes from point (2,
√

2) to one of the two lower already fixed points (0,0)

or ( 1,
√

1) of our plan (x̄, τ̄). An active indifference curve v2 cannot let tariff τ̃ 2 go higher

than
√

2, whereas there is no need for making it lower. Knowing from step 4.1 that all

other constraints (2 → j) j 6= 0, 1 do not matter in choosing τ̃ 2. Similarly, in choosing τ̃ 3

only the arcs 3 → 0, 3 → 1, 3 → 2 may matter and one of these constraints is already

constructed as active, and the other two are satisfied at point τ̃ 3 = τ̄ 3 =
√

3. Proceeding

in similar way for all i, we come to the needed equivalence τ̃ i = τ̄ i =
√

i.

To summarize our steps 4.1-4.4, all quantities are non-distorted (x̃i = x̄i) and all tariffs

in any optimal menu also coincide with our constructed menu: τ̃ i = τ̄ i. Thus, our plan

(x̄, τ̄) appears optimal under our valuations vi and frequencies m̄i. Thus we have built

valuations and frequencies resulting in the optimal plan with a given A-graph. This proves

our proposition for the case ρ = 0.

(5) Relaxation ρ > 0. So far in steps 2, 3 and 4 we have studied the unrelaxed case

of ρ = 0. Now we extend our construction and proof to the case ρ > 0.

In this case, for any solution the geometry of active indifference curves is as follows.
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Feasibility of (x, τ) under relaxed constraint (i, j) of the type vi(xi) − ti + ρ ≥ vi(xj) − tj

means that the active indifference curve v̂i containing the “envying” package (xi, τ i) can

go slightly above the envied package (xj, τ j), namely higher for magnitude ρ. In other

words, each package (xj, τ j) has its higher duplicate (xj, τ j + ρ), and a segment (i → j)

of active indifference curve v̂i instead of connecting (xi, τ i) and (xj, τ j) connects i to j-th

upper duplicate (xj, τ j + ρ).

Having this in mind, we construct the same menu (x̄, τ̄) = ((1, 1), (2,
√

2), ..., (n,
√

n))

as previously, but slightly different active indifference curves v̂i. They go somewhat higher

than the previous curves everywhere, except for their peaks (x̄i, τ̄ i) and the declining seg-

ments Si∞. More precisely, each segment Sij of active indifference curve instead of con-

necting point (x̄i, τ̄ i) with lower point (x̄j, τ̄ j) connects now (x̄i, τ̄ i) with a slightly higher

point (x̄j, τ̄ j + ρ). The assumption ρ ∈ [0, 1
2

√
n + 1− 1

2

√
n) ensures that each segment Sij

still goes downward. Then, such a slight modification of the active curves and valuations

makes no difference for the rest of the proof, which remains exactly the same as for ρ = 0.

The proposition is proved. ¤

We can suggest the following plausible enforcement of Proposition 2. We have a sketch

of its proof through ε-approximations of valuations vi used in Proposition 2.

Conjecture 1. Proposition 2 can be enforced in two respects: (i) net valuations yielding

the given A-graph Ḡ can be constructed strictly concave and smooth, (ii) resulting LA-graph

also can coincide with Ḡ.

This conjecture is worth studying because the set of LA-constraints (those with positive

Lagrange multipliers) often do differ from the active constraints under bunching or non-

smooth valuations. In particular, one can see that LA-graph in our example depicted in

Fig.2 does not coincide with the A-graph ¯̄G(x̄, t̄). Indeed, relaxing or abolishing the two

constraints c → a, e → d cannot enhance the optimal profit because the related packages

(xc, τ c), (xe, τ e) are attached to (0,0) by the bypass constraints c → 0, e → 0. So, the

active constraints c → a, e → d should have zero Lagrange multipliers. It is well know that

under smooth optimization such “over-constrained” situations are “rare,” and this is why

the above conjecture could help in characterizing the solutions.
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