49 research outputs found

    Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling

    Get PDF
    Accelerated coordinate descent is widely used in optimization due to its cheap per-iteration cost and scalability to large-scale problems. Up to a primal-dual transformation, it is also the same as accelerated stochastic gradient descent that is one of the central methods used in machine learning. In this paper, we improve the best known running time of accelerated coordinate descent by a factor up to n\sqrt{n}. Our improvement is based on a clean, novel non-uniform sampling that selects each coordinate with a probability proportional to the square root of its smoothness parameter. Our proof technique also deviates from the classical estimation sequence technique used in prior work. Our speed-up applies to important problems such as empirical risk minimization and solving linear systems, both in theory and in practice.Comment: same result, but polished writin

    Alternating Randomized Block Coordinate Descent

    Full text link
    Block-coordinate descent algorithms and alternating minimization methods are fundamental optimization algorithms and an important primitive in large-scale optimization and machine learning. While various block-coordinate-descent-type methods have been studied extensively, only alternating minimization -- which applies to the setting of only two blocks -- is known to have convergence time that scales independently of the least smooth block. A natural question is then: is the setting of two blocks special? We show that the answer is "no" as long as the least smooth block can be optimized exactly -- an assumption that is also needed in the setting of alternating minimization. We do so by introducing a novel algorithm AR-BCD, whose convergence time scales independently of the least smooth (possibly non-smooth) block. The basic algorithm generalizes both alternating minimization and randomized block coordinate (gradient) descent, and we also provide its accelerated version -- AAR-BCD. As a special case of AAR-BCD, we obtain the first nontrivial accelerated alternating minimization algorithm.Comment: Version 1 appeared Proc. ICML'18. v1 -> v2: added remarks about how accelerated alternating minimization follows directly from the results that appeared in ICML'18; no new technical results were needed for thi

    Coordinate Descent with Bandit Sampling

    Full text link
    Coordinate descent methods usually minimize a cost function by updating a random decision variable (corresponding to one coordinate) at a time. Ideally, we would update the decision variable that yields the largest decrease in the cost function. However, finding this coordinate would require checking all of them, which would effectively negate the improvement in computational tractability that coordinate descent is intended to afford. To address this, we propose a new adaptive method for selecting a coordinate. First, we find a lower bound on the amount the cost function decreases when a coordinate is updated. We then use a multi-armed bandit algorithm to learn which coordinates result in the largest lower bound by interleaving this learning with conventional coordinate descent updates except that the coordinate is selected proportionately to the expected decrease. We show that our approach improves the convergence of coordinate descent methods both theoretically and experimentally.Comment: appearing at NeurIPS 201

    On accelerated alternating minimization

    Get PDF
    Alternating minimization (AM) optimization algorithms have been known for a long time and are of importance in machine learning problems, among which we are mostly motivated by approximating optimal transport distances. AM algorithms assume that the decision variable is divided into several blocks and minimization in each block can be done explicitly or cheaply with high accuracy. The ubiquitous Sinkhorn's algorithm can be seen as an alternating minimization algorithm for the dual to the entropy-regularized optimal transport problem. We introduce an accelerated alternating minimization method with a 1/k21/k^2 convergence rate, where kk is the iteration counter. This improves over known bound 1/k1/k for general AM methods and for the Sinkhorn's algorithm. Moreover, our algorithm converges faster than gradient-type methods in practice as it is free of the choice of the step-size and is adaptive to the local smoothness of the problem. We show that the proposed method is primal-dual, meaning that if we apply it to a dual problem, we can reconstruct the solution of the primal problem with the same convergence rate. We apply our method to the entropy regularized optimal transport problem and show experimentally, that it outperforms Sinkhorn's algorithm
    corecore