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Abstract

Accelerated coordinate descent is widely used in optimization due to its cheap per-iteration
cost and scalability to large-scale problems. Up to a primal-dual transformation, it is also
the same as accelerated stochastic gradient descent that is one of the central methods used in
machine learning.

In this paper, we improve the best known running time of accelerated coordinate descent by a
factor up to

√
n. Our improvement is based on a clean, novel non-uniform sampling that selects

each coordinate with a probability proportional to the square root of its smoothness parameter.
Our proof technique also deviates from the classical estimation sequence technique used in prior
work. Our speed-up applies to important problems such as empirical risk minimization and
solving linear systems, both in theory and in practice.

∗The results of this paper were first obtained in October 2015 and first appeared online in December 2015. In
March 2016, Nesterov and Stich have reproduced our results in a technical report [22].
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1 Introduction

First-order methods have received extensive attention in the past two decades due to their ability
to handle large-scale optimization problems. Recently, the development of coordinate versions
of first-order methods have pushed their running times even faster. As a notable example, the
state-of-the-art algorithm for empirical risk minimization (ERM) problems, up to a primal-dual
transformation, is precisely accelerated coordinate descent [14].

In this paper, we consider the following unconstrained minimization problem1

min
x∈Rn

f(x) (1.1)

where the objective f : Rn → R is continuously differentiable and convex. Below, we assume that
f(·) is Li-smooth with respect to its i-th coordinate.

Informally, coordinate smoothness means for each input x, if we add its i-th coordinate by at
most δ, the corresponding coordinate gradient ∇if(x+δei) differs from ∇if(x) by at most Li times
|δ|. Under this definition, the larger Li is, the less smooth f is along the ei direction and therefore
the harder it is to minimize f along the ei direction.2 Intuitively, this implies we should spend
more energy (i.e., assign more sampling probability) on coordinates with larger Li. However, it was
unclear what the best design is for such a distribution. In this paper, we present a clean and novel
non-uniform sampling method which gives a faster convergence rate. Before going into the details,
we first draw a distinction between non-accelerated and accelerated coordinate descent methods.

Non-Accelerated vs. Accelerated Methods. For smooth convex minimization, many first-
order methods converge at a rate 1/ε to obtain an additive error ε > 0. In 1983, Nesterov demon-
strated that a better and optimal rate 1/

√
ε can be obtained using his seminal accelerated gradient

descent method. [18]
For this reason, people refer to methods converging at rate 1/ε as non-accelerated first-order

methods, while those at rate 1/
√
ε as accelerated first-order methods. Similarly, when the objective

f(·) is known to be strongly convex with parameter σ > 0, non-accelerated methods converge at
a rate inversely proportional to σ, while accelerated ones converge at a rate inversely proportional
to
√
σ. Although being much faster, accelerated first-order methods are also much more involved

to design, see some recent attempts for designing accelerated methods in conceptually simpler
manners [3, 6, 24, 35].

Such a distinction continues to hold on the coordinate-gradient setting. A coordinate descent
method iteratively selects a coordinate i ∈ [n] at random, and updates the iterate x according to
its coordinate gradient ∇if(x). As we shall see later, designing good sampling probabilities is well-
studied for non-accelerated coordinate descent. In contrast, less is known in the more challenging
accelerated regime, and we hope our work fills this gap.

We begin describing our result and compare it to the literature in the Euclidean norm case.

1.1 The Standard Euclidean Norm Case

In the non-accelerated world, in 2012, Nesterov [21] proposed a coordinate descent method called
RCDM, which is a simple adaption of the full gradient descent method (see for instance the text-
book [19]). At each iteration, RCDM selects a coordinate i with probability proportional to Li, and

1The results of this paper generalize to the so-called proximal case that is to allow an additional separable term

ψ(x)
def
=

∑n
i=1 ψi(xi) to be added. The proofs require some non-trivial changes so we refrain from doing so in this

version of the paper.
2For instance, if the i-th coordinate is selected, most coordinate-descent methods are only capable of performing

an update x′ ← x− 1
Li
∇if(x) with step length inversely proportional to Li.
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Paper
Euclidean β = 0 Case β ∈ [0, 1] Case β = 1 Case

strongly
convex

non-strongly
convex

strongly
convex

non-strongly
convex

strongly
convex

non-strongly
convex

RCDM [21],
∑
i Li
σ log 1

ε

∑
i Li
ε ‖x0 − x∗‖2 S1−β

σβ
log 1

ε
S1−β
ε ‖x0 − x∗‖2Lβ

n
σ1

log 1
ε

n
ε ‖x0 − x∗‖2L1

APCG [14],
RBCD [15],

Nesterov [21],
APPROX [10]

- - - - n√
σ1

log 1
ε

n√
ε
‖x0 − x∗‖L1

ACDM [13]
√
n
∑
i Li√
σ

log 1
ε

√
n
∑
i Li√

ε/ log 1
ε

‖x0−x∗‖
√
nS1−β√
σβ

log 1
ε

√
nS1−β√
ε/ log 1

ε

‖x0−x∗‖Lβ
√
n√
σ1

log 1
ε

n√
ε/ log 1

ε

‖x0−x∗‖L1

this paper
∑
i

√
Li√
σ

log 1
ε

∑
i

√
Li√
ε
‖x0 − x∗‖ S(1−β)/2√

σβ
log 1

ε

S(1−β)/2√
ε
‖x0 − x∗‖Lβ

√
n√
σ1

log 1
ε

n√
ε
‖x0 − x∗‖L1

Table 1: Comparisons among coordinate descent methods, where Sα
def
=
∑

i L
α
i .

performs update x′ ← x− 1
Li
∇if(x). The number of iterations required to reach an ε error, denoted

by T in this paper, satisfies T = O(
∑
i Li
ε ‖x0 − x∗‖2) for RCDM. Here, we denote by x0 the starting

vector, x∗ the minimizer of f , and ‖ · ‖ the `2 Euclidean norm.
This convergence rate is usually compared to that of full gradient descent: if L is the global

smoothness parameter of f(·), then full gradient descent converges in T = O(Lε ‖x0−x∗‖2) iterations.
Since Li is never larger than L, and performing a coordinate descent step is usually n times faster
than a full gradient step, RCDM performs faster than gradient descent in most applications.

In the same paper [21], Nesterov also demonstrated the possibility of performing accelerated
coordinate gradient descent via a simple adaption of its full-gradient variant [18–20]. This has been
later analyzed in full by Lee and Sidford [13], and they named this method accelerated coordinate
descent method (ACDM). ACDM converges the following number of iterations:

T =





Õ
(√

n
∑
i Li√
ε
‖x0 − x∗‖

)
, when f is convex3

O
(√

n
∑
i Li√
σ

log 1
ε

)
, when f is σ-strongly convex

ACDM is built upon the estimation sequence technique of Nesterov [18, 19, 21], and similar to RCDM,
ACDM also selects each coordinate i (essentially) with a probability proportional to Li.

4 Since the
analysis of Lee and Sidford is tight, it has been thought that the iteration bound T is not improvable.

In this paper, with a different non-uniform sampling method, we develop a new accelerated
coordinate descent method NU ACDM that converges in T iterations, where

T =





O
(∑

i

√
Li√
ε
‖x0 − x∗‖

)
, when f is convex

O
(∑

i

√
Li√
σ

log 1
ε

)
, when f is σ-strongly convex

3In fact, Lee and Sidford did not include a version of ACDM that works for non-strongly convex objectives. However,
using regularization and simple reduction, one can turn an iterative solver for strongly convex and smooth minimiza-
tion to that for convex and smooth minimization, by replacing σ with ε/‖x0−x∗‖2. Such a reduction incurs a factor

log(1/ε) which we hide with the Õ notation in this paper.
4More precisely, they select each coordinate i with a probability proportional to max{Li, 1

n

∑
j Lj}. As a conse-

quence, each coordinate i is selected with probability at least Ω(1/n). Lee and Sidford emphasized that using this
sampling method, rather than choosing each i directly with probability Li/(

∑
j Lj), is essential for ACDM to obtain

the accelerated convergence rate.
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Note that NU ACDM is always faster than ACDM because
∑

i

√
Li ≤

√
n
∑

i Li. In the case when
(L1, . . . , Ln) is non-uniform, our method runs faster by a factor up to

√
n.5 In our sampling step,

we select each coordinate i with probability exactly proportional to
√
Li, rather than (roughly)

proportional to Li. Thus, we need a different analysis from ACDM [13], and also avoid the more
complicated estimation sequence analysis.

1.2 The General Lβ-Norm Case

Define the Lβ norm ‖y‖2Lβ
def
=
∑

i L
β
i ·y2i for β ∈ [0, 1]. Many accelerated coordinate descent methods

provide convergence guarantees with respect to the L1 norm [10, 15] or the Lβ norm [13, 14, 21].

For instance, RCDM takes β as an input, and converges in T = O
(S1−β

ε ‖x0 − x∗‖2Lβ
)

iterations

if one samples each coordinate i with probability L1−β
i /S1−β, where Sα

def
=
∑

i L
α
i . In [13], Lee

and Sidford showed that their ACDM converges in T iterations with the same sampling probabilities
L1−β
i /S1−β, where

T =





Õ
(√

nS1−β√
ε
‖x0 − x∗‖2Lβ

)
, when f is convex

O
(√

nS1−β√
σβ

log 1
ε

)
, when f is σβ-strongly convex w.r.t. the Lβ norm

This is always faster than RCDM. Note that, in the special case of β = 1 (and thus using uniform
sampling probabilities), this same convergence result is also obtained by Nesterov [21], APCG [14],
RBCD [15], and APPROX [10]. (See Table 1.) The results with respect to the L1 norm are not very
interesting. One can scale each coordinate by a factor 1/Li and apply an existing uniform-sampling
coordinate-descent theorem to obtain the same result.

Our method NU ACDM improves this convergence to

T =





O
(
S(1−β)/2√

ε
‖x0 − x∗‖Lβ

)
, when f is convex

O
(
S(1−β)/2√

σβ
log 1

ε

)
, when f is σβ-strongly convex w.r.t. the Lβ norm

Since
√
S1−β ≤ S(1−β)/2 ≤

√
nS1−β, our method is faster than ACDM by a factor up to

√
n. Our

improvement is again due to the new choice of sampling probabilities —we select each coordinate i

with probability L
(1−β)/2
i /S(1−β)/2 which is different from RCDM or ACDM— as well as our new proof

that avoids the use of estimation sequence.

Remark 1.1. For the strongly convex case, convergence results with respect to Euclidean norms
are usually more relevant to applications: for instance, the `2 regularizer is the most common one
used in machine learning applications and algorithms designed for the Euclidean norm should be
used for a better performance.6 However, in the non-strongly convex case, results with respect to
different β are in general incomparable. We include experiments in Section 7.3 to illustrate this.

5If L1 = · · · = Ln, we have
∑
i

√
Li =

√
n
∑
i Li. However, if L1 = 1 while L2 = · · · = Ln = 0, we have∑

i

√
Li = 1√

n
·
√
n
∑
i Li.

6In contrast, consider an objective f(x) equipped with a regularizer σ
2
‖x‖2. Such an objective is also strongly

convex with respect to the Lβ norm with parameter mini L
−β
i . If one applies an algorithm designed for the Lβ norm

using this parameter, the convergence would be much worse than the first column of Table 1.
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2 Applications

Empirical Risk Minimization. A cornerstone problem in machine learning is empirical risk
minimization (ERM). Let a1, . . . , an ∈ Rd be the feature vectors of n data samples, φ1, . . . , φn : R→
R be a sequence of convex loss functions, and r : Rd → R be a convex function (often known as a
regularizer). The goal of ERM problem is to solve the following primal convex problem:

min
w∈Rd

P (w)
def
=

1

n

n∑

i=1

φi
(
〈ai, w〉

)
+ r(w). (2.1)

This includes a family of important problems such as SVM, Lasso, ridge regression, and logistic
regression. Lin, Lu and Xiao [14] showed that the above minimization problem is equivalent to the
following dual one:

min
y∈Rn

D(y)
def
=

1

n

n∑

i=1

φ∗i (yi) + r∗
(
− 1

n

n∑

i=1

yiai

)
, (2.2)

where φ∗i and r∗ are respectively the Fenchel conjugate function of φi and r.7 Most importantly, if
properly preprocessed, D(y) can be shown to be coordinate-wise smooth and therefore accelerated
coordinate descent methods can be applied to minimize D(y). This approach leads to algorithm
APCG, which matches the best known worst-case running time on solving (2.1) up to a logarithmic
factor.8

However, by taking a closer look, the coordinate smoothness parameters L1, . . . , Ln of D(y) are
data dependent. Indeed, Li is roughly proportional to the Euclidean norm square of the i-th feature
vector. Therefore, we can apply NU ACDM in this paper to improve the running time obtained by
APCG or AccSDCA. This is done in Section 7.

Note that each iteration of NU ACDM selects a feature vector with a probability (roughly) propor-
tional to its Euclidean norm. This is very different from the recent work of Zhao and Zhang [38],
where they observed that for SDCA [32], a non-accelerated method, feature vectors should be sam-
pled with probabilities proportional to their Euclidean norm squares. If one also uses the squared
norms in the accelerated setting, he will only get a running time similar to ACDM, and therefore
worse than our NU ACDM.

We also mention one recent result that uses our NU ACDM to develop faster ERM methods by
exploiting the clustering structure of the dataset [4].

Solving Linear Systems. Consider a linear system Ax = b for some full row rank matrix
A ∈ Rm×n where m ≥ n. Denoting ai ∈ Rn as the i-th row vector of matrix A, the celebrated
Kaczmarz method [12] iteratively picks one of the row vectors ai and computes

xk+1 ← xk +
bi − 〈ai, xk〉
‖ai‖2

ai .

Although many deterministic schemes have been proposed regarding how to select row vectors,
many of them are difficult to analyze or compare. In a breakthrough paper, Strohmer and Ver-
shynin [34] analyzed a randomized scheme and proved that:

7The conjugate of r(x) is r∗(y)
def
= maxw{yTw − r(w)}.

8Accelerated algorithms for solving (2.1) were first obtained by AccSDCA [33], and more recently improved by
Katyusha [1].
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Theorem 2.1 (Randomized Kaczmarz [34]). If one samples row i with probability proportional to
‖ai‖2 in each iteration, then the Kaczmarz method produces an ε-approximate solution of Ax = b9

in O
(
‖A−1‖22 · ‖A‖2F · log 1

ε

)
iterations, and each iteration costs a running time O(n).

Above, x∗ is the solution to Ax = b, A−1 is the left inverse, ‖A−1‖2 is one divided by the
smallest non-zero singular value of A, and ‖A‖F = (

∑
ij a

2
ij)

1/2 is the Frobenius norm.
Randomized Kaczmarz can be viewed as coordinate descent [11, 13, 17], and therefore ACDM

applies here and gives a faster running time:

Theorem 2.2 (ACDM on Kaczmarz [13]). The ACDM method samples row i with probability propor-

tional to max{‖ai‖2, ‖A‖
2
F

m } at each iteration, and produces an ε-approximate solution to Ax = b in
O
(√
m‖A−1‖2 · ‖A‖F · log 1

ε

)
iterations, and each iteration costs a running time O(n).

To obtain the above result, Lee and Sidford rewrote the problem of solving Ax = b as an
m-variate quadratic minimization problem

min
y∈Rm

{
f(y)

def
=

1

2
‖AT y‖2 − 〈b, y〉

}
.

The coordinate smoothness of f is Li = ‖ai‖2 for every i ∈ [m], and the strong convexity of f can be
deduced as σ = ‖A−1‖−22 .10 For this reason, if we apply NU ACDM instead of ACDM, we immediately
get a faster algorithm:

Theorem 2.3 (NU ACDM on Kaczmarz). The NU ACDM method samples row i with probability
proportional to ‖ai‖ at each iteration, and produces an ε-approximate solution to Ax = b in
O
(
‖A−1‖2 · ‖A‖2,1 · log 1

ε

)
iterations, and each iteration costs a running time O(n).

Above, ‖A‖2,1 def
=
∑m

j=1

(∑n
i=1 |aij |2

)1/2
is the matrix L2,1 norm. Since it satisfies ‖A‖F ≤ ‖A‖2,1 ≤√

m‖A‖F , our method is always faster than ACDM, and can be faster by a factor up to
√
m that

depends on the problem structure. We provide empirical evaluation on this in Section 8.
We remark here that when A is a positive semidefinite square matrix, the celebrated conjugate

gradient method solves linear systems Ax = b efficiently, especially when the eigenvalues of A are
clustered. The authors of ACDM have reported that their method can run faster than conjugate
gradient in several interesting cases, and our NU ACDM obviously provides further speedups to such
cases as well.

3 Other Related Work

People have considered selecting coordinates non-uniformly from other perspectives. For example,
Nutini et al. [23] compared the random coordinate selection rule with the Gauss-Southwell rule, and
proved that except in the extreme cases, Gauss-Southwell rule is faster. Needell et el. [17] proposed
a non-uniform sampling for stochastic gradient descent, and made a connection to the randomized
Kaczmarz algorithm. Qu et al. [26] gave an algorithm which supports arbitrary sampling on dual
variables. Csiba et al. [7] showed that one can adaptively choose a probability distribution over
the dual variables that depends on the “dual residues”. All of the works cited above are for non-
accelerated settings, while this paper focuses on designing fast accelerated method. Note that Qu
and Richtárik [25] provided a unified analysis for both accelerated and non-accelerated coordinate

9That is, a vector x satisfying E[‖xk − x∗‖2] ≤ ε‖x0 − x∗‖2.
10One has to in fact consider the strong convexity of f in the space orthogonal to the null space {y ∈ Rm|AT y = 0}.

We recommend interested readers to see Section 5.2 of [13] for details.
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Algorithm 1 NU ACDM(β, f, x0, T )

Input: β ∈ [0, 1];
f a convex function that is coordinate-wise smooth with parameters (L1, . . . , Ln), and

σβ-strongly convex with respect to ‖ · ‖Lβ for some β ∈ [0, 1];
x0 some initial point; and
T the number of iterations.

Output: yT such that E[f(yT )]− f(x∗) ≤ O((1− τ)T ) · (f(x0)− f(x∗)).
1: α← (1− β)/2, Sα ←

∑n
i=1 L

α
i .

2: pi ← Lαi
Sα

for each i ∈ [n]. � ∑i pi = 1 so {pi}i forms a distribution over [n]

3: τ ← 2

1+
√

4S2
α/σβ+1

, η ← 1
τS2

α
. � τ = O(

√
σβ
Sα

) and η = O( 1√
σβSα

)

4: y0 ← x0, z0 ← x0.
5: for k ← 0 to T − 1 do
6: xk+1 ← τzk + (1− τ)yk.
7: Sample i from {1, · · · , n} based on p = (p1, · · · , pn).

8: yk+1 ← y
(i)
k+1

def
= xk+1 − 1

Li
∇if(xk+1)

9: zk+1 ← z
(i)
k+1

def
= 1

1+ησβ

(
zk + ησβxk+1 − η

piL
β
i

∇if(xk+1)
)

10: end for
11: return yT .

descent methods with what they call “arbitrary sampling” in the non-strongly convex case. Our
work can be seen as a continuation of that work, in that we instead focus on a particular class of
sampling probabilities, for which we derive provably better convergence complexity bounds than
prior results both for strongly-convex and non-strongly convex cases. In the non-strongly convex
case, our results can be infered from the general results in [25].

This paper aims at improving the intrinsic convergence rate for coordinate descent, and thus
chooses not to cover some of the other important features.

• One such feature is to support composite objective function of the form minx{f(x)+
∑

i ψi(xi)}
for simple and proper convex proximal functions ψi(·). Many coordinate descent methods
support this feature [9, 16, 28–31]. The recent results of RBCD [15] and APCG [14] made an
important step towards supporting proximal functions also for accelerated coordinate de-
scent. Our results apply to such setting as well, but since this will significantly complicate
the notations and the proofs, we refrain from doing so in this paper.

• Another important feature is to support parallelization in coordinate descent. The interesting
sequence of work [5, 27, 36] manages to prove that, very informally, if the function satisfies
some nice property then the coordinate updates can be performed in parallel. This type of
result has been recently introduced to accelerated coordinate descent as well [28].

For empirical risk minimization problems, we emphasize that accelerated coordinate descent
(such as APCG [14]) is not the only tool to obtain the fastest running time. The first method with
this running time is AccSDCA by Shalev-Shwartz and Zhang [33], and the best known running time
is by Katyusha [1]. However, these methods do not solve (1.1) through coordinate gradients.

6



4 Notations

Let x∗ be an arbitrary minimizer of f(x) and we are interested in finding a vector x satisfying
f(x)− f(x∗) ≤ ε for an accuracy parameter ε > 0. We use ‖ · ‖ to denote the Euclidean norm and
ei ∈ Rn the i-th unit vector. We denote by ∇f(x) the full gradient of f at point x ∈ Rn, and by
∇if(x) the i-th coordinate gradient. With a slight abuse of notation, we view ∇if(x) both as a
scaler in R and as a singleton vector in Rn.

Definition 4.1. We say that f is L-smooth if ∀x, y ∈ Rn, it satisfies ‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖.
We say that f is σ-strongly convex (with respect to the Euclidean norm) if ∀x, y ∈ Rn, it satisfies

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ σ
2 ‖x− y‖2.

Definition 4.2. f is coordinate-wise smooth with parameters (L1, L2, . . . , Ln), if for all x ∈ Rn, δ >
0, i ∈ [n]:

|∇if(x+ δei)−∇if(x)| ≤ Li · δ .

We remark here that the same result of this paper continues to hold if one replaces coordinate
gradients with the more general block-wise gradients.11 We adopt this simpler notion for the ease
of presenting this paper.

Following the notations of prior work [13, 21], we make the following definitions

Definition 4.3. Given α, β ∈ [0, 1], define

Sα
def
=

n∑

i=1

Lαi , ‖x‖Lβ
def
=

n∑

i=1

x2i · Lβi , and 〈x, y〉Lβ
def
=

n∑

i=1

xiyi · Lβi .

Also, define σβ to be the strong convexity parameter of f(·) with respect to the ‖ · ‖Lβ norm. That

is, it satisfies f(y) ≥ f(x) + 〈∇f(x), y − x〉+
σβ
2 ‖x− y‖2Lβ for all x, y ∈ Rn.

Clearly, if f is σ strongly convex then σ0 = σ.

5 NUACDM in the Strongly Convex Case

We now propose our new method NU ACDM to deal with strongly convex and smooth objectives.
Suppose f(·) is coordinate-wise smooth with parameters (L1, . . . , Ln) and σβ-strongly convex with
respect to ‖ · ‖Lβ for some β ∈ [0, 1]. At a first reading, one can simply consider β = 0 so f is
σ0-strongly convex with respect to the traditional Euclidean norm. We choose to analyze the full
parameter regime of β to better compare us with known literatures.

As described in Algorithm 1, NU ACDM begins with x0 = y0 = z0 and iteratively computes the
tuple xk+1, yk+1, zk+1 from xk, yk, zk. In iteration k = 0, 1, . . . , T − 1, we first compute xk+1 ←
τzk + (1 − τ)yk for some parameter τ ∈ [0, 1] (whose value will be specified later), and randomly

select a coordinate i ∈ [n] with probability pi = Lαi /Sα where α
def
= (1− β)/2.

Whenever i is selected at iteration k, we perform two updates yk+1 ← xk+1− 1
Li
∇if(xk+1) and

zk+1 ← 1
1+ησβ

(
zk + ησβxk+1 − η

piL
β
i

∇if(xk+1)
)
, both using the i-th coordinate gradient at point

xk+1. Here, η > 0 is the parameter that determines the step length of the second update; its choice
will become clear in the analysis. Our main theorem in this section is as follows:

11That is, following for instance [14, 15], suppose that there is an n × n permutation matrix U partitioned as
U = [U1 · · ·Up] where Ui ∈ Rn×ni , and suppose that every vector x ∈ Rn is partitioned into {xi ∈ Rni i = 1, 2, . . . , p}
satisfying that x =

∑p
i=1 Uixi. Next, one can define ∇if(x)

def
= UTi ∇f(x). Under these notations, we say that f is

block-wise smooth with parameters (L1, . . . , Lp) if ‖∇if(x + Uihi) − ∇if(x)‖ ≤ Li‖hi‖ for every i ∈ [p] and every
hi ∈ Rni .
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Theorem 5.1. If f(x) is coordinate-wise smooth with parameters (L1, . . . , Ln), and σβ-strongly
convex with respect to ‖ · ‖Lβ for some β ∈ [0, 1], then NU ACDM(β, f, x0, T ) produces an output yT
satisfying

E[f(yT )]− f(x∗) ≤ O(1) · (1− τ)T (f(x0)− f(x∗)) ,

where τ = 2

1+
√

4S2
(1−β)/2/σβ+1

= 1

O
(
S(1−β)/2/

√
σβ

) .

In particular, if β = 0 parameter τ becomes τ = 1

O
(∑

i

√
Li/
√
σ
) .

Remark 5.2 (Per-Iteration Cost of NU ACDM). Before analyzing the convergence, we emphasize
that the computational cost of each iteration in NU ACDM is dominated by (1) a coordinate gradient
computation ∇if(·) and (2) a constant number of n-dimensional vector computations such as
xk+1 ← τzk + (1 − τ)yk. In many real-life applications, the complexity of (2) dominates that of
(1). For this reason, many authors have discussed about how to carefully modify an accelerated
algorithm to avoid n-dimensional vector computations. We refer interested readers to Section 4 of
[14], and simply claim here without proof that our NU ACDM admits the same modification.

5.1 Proof Outline

Our proof is different from the estimation sequence analysis used in ACDM, RCDM, or APCG, but follows
from the linear-coupling framework of [3].

We use the superscript (i) on y
(i)
k+1 and z

(i)
k+1 to emphasize that the value depends on the choice

of i. Therefore, yk+1 equals y
(i)
k+1 with probability pi, and similarly for z.

At each iteration k, the coordinate-wise smoothness classically gives a guarantee on the objective
decrease:

Lemma 5.3. f(y
(i)
k+1) ≤ f(xk+1)− 1

2Li
‖∇if(xk+1)‖2.

On the other hand, our update on z can be written in the following minimization form, known
as mirror-descent form in optimization literatures:

z
(i)
k+1 = min

z

{1

2
‖z − zk‖2Lβ +

η

pi
〈∇if(xk+1), z〉+

ησβ
2
‖z − xk+1‖2Lβ

}
. (5.1)

We then apply a probabilistic analysis to deduce the following guarantee on mirror descent:

Lemma 5.4. For every u ∈ Rn,

η

pi
〈∇if(xk+1), z

(i)
k+1 − u〉 −

ησβ
2
‖xk+1 − u‖2Lβ

≤ −1

2
‖zk − z(i)k+1‖2Lβ +

1

2
‖zk − u‖2Lβ −

1 + ησβ
2

‖z(i)k+1 − u‖2Lβ ,

Suppose at the moment that yk, zk and xk+1 are fixed, and the only source of randomness comes
from the random choice of i when computing zk+1 and yk+1. Then, the following inequality can be
deduced as is a nature linear combination of the two lemmas above:

Lemma 5.5. For every u ∈ Rn,

η〈∇f(xk+1), zk − u〉 −
ησβ

2
‖u− xk+1‖2Lβ

≤ η2S2
α

(
f(xk+1)− Ei

[
f(yk+1)

])
+

1

2
‖zk − u‖2Lβ −

1 + ησβ
2

Ei
[
‖zk+1 − u‖2Lβ

]
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By taking into account our choice xk+1 = τzk + (1 − τ)yk and the convexity of f(·), we can
deduce that (again assuming yk and zk are fixed and the only randomness comes from the choice
of i to compute yk+1 and zk+1):

Lemma 5.6.

0 ≤ (1− τ)η

τ
(f(yk)− f(x∗))− η

τ
Ei[f(yk+1)− f(x∗)] +

1

2
‖zk − x∗‖2Lβ −

1 + ησβ
2

Ei
[
‖zk+1 − x∗‖2Lβ

]

Finally, we choose τ = 2

1+
√

4S2
α/σβ+1

≤
√
σβ
Sα

so as to ensure that 1 + ησβ = 1
1−τ .12 Under these

parameter choices, Lemma 5.6 can be re-written as

Ei
[(
f(yk+1)−f(x∗)

)
+

τ

2η(1− τ)
‖zk+1−x∗‖2Lβ

]
≤ (1−τ)

(
(f(yk)−f(x∗))+

τ

2η(1− τ)
‖zk−x∗‖2Lβ

)

Telescoping it for all iterations k, we conclude that

E[f(yT )]− f(x∗) ≤ (1− τ)T
(
f(y0)− f(x∗) +

τ

2η
‖z0 − x∗‖2Lβ

)
≤ O(1) · (1− τ)T (f(x0)− f(x∗)) .

where the last inequality is because (i) x0 = y0 = z0, (ii) O(τ/η) = O(τ2S2
α) = O(σβ) and (iii) the

strong convexity of f(·) which implies f(x0) − f(x∗) ≥ σβ
2 ‖x0 − x∗‖2Lβ . This finishes the proof of

our Theorem 5.1.

5.2 Proofs of Missing Lemmas

Lemma 5.3. f(y
(i)
k+1) ≤ f(xk+1)− 1

2Li
‖∇if(xk+1)‖2.

Proof. Abbreviating xk+1 by x and y
(i)
k+1 by y, we have that x and y only different at coordinate i

so we deduce that

f(y)− f(x) =

∫ 1

τ=0
〈∇f(x+ τ(y − x)), y − x〉dτ

= 〈∇f(x), y − x) +

∫ 1

τ=0
〈∇f(x+ τ(y − x))−∇f(x), y − x〉dτ

= 〈∇f(x), y − x) +

∫ 1

τ=0

(
∇if(x+ τ(yi − xi)ei)−∇if(x)

)
· (yi − xi)dτ

≤ 〈∇f(x), y − x) +

∫ 1

τ=0
τLi(yi − xi) · (yi − xi)dτ = 〈∇f(x), y − x) +

Li
2
‖y − x‖2 .

Above, the only inequality is due to the coordinate-wise smoothness of f(·) (see Definition 4.2). �
Lemma 5.4. For every u ∈ Rn,

η

pi
〈∇if(xk+1), z

(i)
k+1 − u〉 −

ησβ
2
‖xk+1 − u‖2Lβ

≤ −1

2
‖zk − z(i)k+1‖2Lβ +

1

2
‖zk − u‖2Lβ −

1 + ησβ
2

‖z(i)k+1 − u‖2Lβ ,

12The reason of τ ∈ [0, 1] is as follows. By the definition of coordinate-wise smoothness and strong convexity we
have for every β, Li ≥ σβLβi . This means L1−β

i ≥ σβ . Since β = 1−2α, we have the following fact: S2
α ≥

∑n
i=1 L

2α
i ≥

nσ1−2α = nσβ .
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Proof. The minimality condition in (5.1) tells us that for every u ∈ Rn,

0 =
〈 ∂
∂z

(1

2
‖z − zk‖2Lβ +

η

pi
〈∇if(xk+1), z〉+

ησβ
2
‖z − xk+1‖2Lβ

)∣∣∣
z=z

(i)
k+1

, z
(i)
k+1 − u

〉

= 〈z(i)k+1 − zk, z
(i)
k+1 − u〉Lβ +

η

pi
〈∇if(xk+1), z

(i)
k+1 − u〉+ ησβ〈z(i)k+1 − xk+1, z

(i)
k+1 − u〉Lβ (5.2)

Next, the three-point equality of Euclidean norms tells us that

〈z(i)k+1 − zk, z
(i)
k+1 − u〉Lβ =

1

2
‖zk − z(i)k+1‖2Lβ −

1

2
‖zk − u‖2Lβ +

1

2
‖z(i)k+1 − u‖2Lβ , (5.3)

as well as that

〈z(i)k+1 − xk+1, z
(i)
k+1 − u〉Lβ =

1

2
‖xk+1 − z(i)k+1‖2Lβ −

1

2
‖xk+1 − u‖2Lβ +

1

2
‖z(i)k+1 − u‖2Lβ . (5.4)

Plugging (5.3) and (5.4) back to (5.2), we arrive at the equality

η

pi
〈∇if(xk+1), z

(i)
k+1 − u〉+ η

(σβ
2
‖xk+1 − z(i)k+1‖2Lβ −

σβ
2
‖xk+1 − u‖2Lβ

)

= −1

2
‖zk − z(i)k+1‖2Lβ +

1

2
‖zk − u‖2Lβ −

1 + ησβ
2

‖z(i)k+1 − u‖2Lβ ,

thus finishing the proof. �
Lemma 5.5. For every u ∈ Rn,

η〈∇f(xk+1), zk − u〉 −
ησβ

2
‖u− xk+1‖2Lβ

≤ η2S2
α

(
f(xk+1)− Ei

[
f(yk+1)

])
+

1

2
‖zk − u‖2Lβ −

1 + ησβ
2

Ei
[
‖zk+1 − u‖2Lβ

]

Proof. Combining Lemma 5.3 and Lemma 5.4 we deduce that for each i ∈ [n],

η

pi
〈∇if(xk+1), zk − u〉 −

ησβ
2
‖xk+1 − u‖2Lβ

¬
≤ η

pi
〈∇if(xk+1), zk − z(i)k+1〉 −

1

2
‖zk − z(i)k+1‖2Lβ +

1

2
‖zk − u‖2Lβ −

1 + ησβ
2

‖z(i)k+1 − u‖2Lβ
­
≤ η2

2p2iL
β
i

‖∇if(xk+1)‖2 +
1

2
‖zk − u‖2Lβ −

1 + ησβ
2

‖z(i)k+1 − u‖2Lβ
®
≤ η2Li

p2iL
β
i

(
f(xk+1)− f(y

(i)
k+1)

)
+

1

2
‖zk − u‖2Lβ −

1 + ησβ
2

‖z(i)k+1 − u‖2Lβ
¯
= η2S2

α

(
f(xk+1)− f(y

(i)
k+1)

)
+

1

2
‖zk − u‖2Lβ −

1 + ησβ
2

‖z(i)k+1 − u‖2Lβ .

Above, ¬ uses Lemma 5.4, ­ uses the Cauchy-Schwarz inequality,13 ® uses Lemma 5.3, and ¯ uses
the choice of pi = Lαi /Sα and β = 1− 2α. As a result, taking into account the randomness of i, we

13More specifically, η
pi
〈∇if(xk+1), zk − z(i)k+1〉 = 〈 η

piL
β
i

∇if(xk+1), zk − z(i)k+1〉Lβ ≤ η2

2p2iL
2β
i

‖∇if(xk+1)‖2Lβ + 1
2
‖zk −

z
(i)
k+1‖2Lβ = η2

2p2iL
β
i

‖∇if(xk+1)‖2 + 1
2
‖zk − z(i)k+1‖2Lβ .
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have

η〈∇f(xk+1), zk − u〉 −
ησβ

2
‖u− xk+1‖2Lβ

= Ei
[ η
pi
〈∇if(xk+1), zk − u〉 −

ησβ
2
‖u− xk+1‖2Lβ

]

≤ Ei
[
η2S2

α

(
f(xk+1)− f(y

(i)
k+1)

)
+

1

2
‖zk − u‖2Lβ −

1 + ησβ
2

‖z(i)k+1 − u‖2Lβ
]

= η2S2
α

(
f(xk+1)− Ei

[
f(yk+1)

])
+

1

2
‖zk − u‖2Lβ −

1 + ησβ
2

Ei
[
‖zk+1 − u‖2Lβ

]
. �

Lemma 5.6.

0 ≤ (1− τ)η

τ
(f(yk)− f(x∗))− η

τ
Ei[f(yk+1)− f(x∗)] +

1

2
‖zk − x∗‖2Lβ −

1 + ησβ
2

Ei
[
‖zk+1 − x∗‖2Lβ

]

Proof.

η(f(xk+1)− f(x∗))
¬
≤ η〈∇f(xk+1), xk+1 − x∗〉 −

ησβ
2
‖x∗ − xk+1‖2Lβ

= η〈∇f(xk+1), xk+1 − zk〉+ η〈∇f(xk+1), zk − x∗〉 −
ησβ

2
‖x∗ − xk+1‖2Lβ

­
=

(1− τ)η

τ
〈∇f(xk+1), yk − xk+1〉+ η〈∇f(xk+1), zk − x∗〉 −

ησβ
2
‖x∗ − xk+1‖2Lβ

®
≤ (1− τ)η

τ
(f(yk)− f(xk+1)) + Ei

[
η2S2

α

(
f(xk+1)− f(yk+1)

)
+

1

2
‖zk − x∗‖2Lβ −

1 + ησβ
2

‖zk+1 − x∗‖2Lβ
]

Above, ¬ is owing to the strong convexity of f(·) (see Definition 4.3), ­ uses the fact that xk+1 =
τzk + (1− τ)yk, and ® uses the convexity of f(·) as well as Lemma 5.5 with the choice of u = x∗.
Recall η = 1

τS2
α

, we arrive at the desired inequality. �

6 NUACDM in the Non-Strongly Convex Case

We now propose our non-uniform accelerated coordinate gradient method NU ACDMns that deals
with non-strongly convex and smooth objectives f(·). More precisely, consider the case when f(·)
is coordinate-wise smooth with parameters (L1, . . . , Ln).

As described in Algorithm 2, NU ACDMns begins with x0 = y0 = z0, and is parameterized by
β ∈ [0, 1]. Following [13, 21], we shoot for obtaining a convergence result where the number of
iterations T is proportional to ‖x0 − x∗‖Lβ .

Our NU ACDMns iteratively compute the tuple xk+1, yk+1, zk+1 from xk, yk, zk. In iteration k =
0, 1, . . . , T − 1, we first compute xk+1 ← τkzk + (1 − τk)yk for some parameter τk ∈ [0, 1] (whose
value will be specified and used at the end of this section), and randomly select a coordinate i ∈ [n]

with probability pi = Lαi /Sα where α
def
= (1− β)/2.

Whenever i is selected at iteration k, we perform two updates yk+1 ← xk+1− 1
Li
∇fi(xk+1) and

zk+1 ← zk − ηk+1

piL
β
i

∇if(xk+1), both using the i-th coordinate gradient at point xk+1. Here, ηk+1 > 0

is the parameter that determines the step length of the second update; its choice will become clear
at the end of this section.

We are now ready to state our main theorem in this section, and leave its proof to Section 6.1.
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Algorithm 2 NU ACDMns(β, f, x0, T )

Input: β ∈ [0, 1];
f a convex function that is coordinate-wise smooth with parameters (L1, . . . , Ln);
x0 some initial point; and
T the number of iterations.

Output: yT such that E[f(yT )]− f(x∗) ≤ 2‖x0 − x∗‖2Lβ · S
2
(1−β)/2/(T + 1)2.

1: α← (1− β)/2, Sα ←
∑n

i=1 L
α
i .

2: pi ← Lαi
Sα

for each i ∈ [n]. � ∑i pi = 1 so {pi}i forms a distribution over [n]
3: y0 ← x0, z0 ← x0.
4: for k ← 0 to T − 1 do
5: ηk+1 ← k+2

2S2
α

, and τk ← 1
ηk+1S2

α
= 2

k+2 .

6: xk+1 ← τkzk + (1− τk)yk.
7: Sample i from {1, · · · , n} based on p = (p1, · · · , pn).

8: yk+1 ← y
(i)
k+1

def
= xk+1 − 1

Li
∇if(xk+1)

9: zk+1 ← z
(i)
k+1

def
= zk − ηk+1

piL
β
i

∇if(xk+1)

10: end forreturn yT .

Theorem 6.1. If f(x) is coordinate-wise smooth with parameters (L1, . . . , Ln), and β ∈ [0, 1]
is a given parameter, the algorithm NU ACDMns(β, f, x0, T ) in Algorithm 2 produces an output yT
satisfying

E[f(yT )]− f(x∗) ≤
2‖x0 − x∗‖2Lβ · S

2
(1−β)/2

(T + 1)2
.

If β = 0, the above convergence gets simplified to

E[f(yT )]− f(x∗) ≤ 2‖x0 − x∗‖2 ·
(∑

i

√
Li
)2

(T + 1)2
.

6.1 Convergence Analysis

In this section we use the superscript (i) on y
(i)
k+1 and z

(i)
k+1 to emphasize that the value depends on

the choice of i. Therefore, yk+1 equals y
(i)
k+1 with probability pi, and similarly for z.

At each iteration k, from Lemma 5.3 we know that the coordinate-wise smoothness directly

yields the following guarantee on the objective decrease: f(y
(i)
k+1) ≤ f(xk+1)− 1

2Li
‖∇if(xk+1)‖2.

Next, since our update step on z can be re-written in the minimization form

z
(i)
k+1 = min

z

{1

2
‖z − zk‖2Lβ +

ηk+1

pi
〈∇if(xk+1), z〉

}
, (6.1)

we can apply the standard mirror-descent analysis and deduce that

Lemma 6.2. For every u ∈ Rn,

ηk+1

pi
〈∇if(xk+1), z

(i)
k+1 − u〉 = −1

2
‖zk − z(i)k+1‖2Lβ +

1

2
‖zk − u‖2Lβ −

1

2
‖z(i)k+1 − u‖2Lβ ,
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Proof. The minimality condition in (6.1) tells us that for every u ∈ Rn,

0 =
〈 ∂
∂z

(1

2
‖z − zk‖2Lβ +

ηk+1

pi
〈∇if(xk+1), z〉

)∣∣∣
z=z

(i)
k+1

, z
(i)
k+1 − u

〉

= 〈z(i)k+1 − zk, z
(i)
k+1 − u〉Lβ +

ηk+1

pi
〈∇if(xk+1), z

(i)
k+1 − u〉 (6.2)

Next, the three-point equality of Euclidean norms tells us that

〈z(i)k+1 − zk, z
(i)
k+1 − u〉Lβ =

1

2
‖zk − z(i)k+1‖2Lβ −

1

2
‖zk − u‖2Lβ +

1

2
‖z(i)k+1 − u‖2Lβ . (6.3)

Combining (6.3) and (6.2), we arrive at the desired equality. �
Suppose at the moment that yk, zk and xk+1 are fixed, and the only source of randomness comes

from the random choice of i when computing zk+1 and yk+1. We claim that the following inequality
holds:

Lemma 6.3. For every u ∈ Rn,

ηk+1〈∇f(xk+1), zk − u〉 ≤ η2k+1S
2
α

(
f(xk+1)− Ei

[
f(yk+1)

])
+

1

2
‖zk − u‖2Lβ −

1

2
Ei
[
‖zk+1 − u‖2Lβ

]

Proof. Combining Lemma 5.3 and Lemma 6.2 we deduce that for each i ∈ [n],

ηk+1

pi
〈∇if(xk+1), zk − u〉

¬
≤ ηk+1

pi
〈∇if(xk+1), zk − z(i)k+1〉 −

1

2
‖zk − z(i)k+1‖2Lβ +

1

2
‖zk − u‖2Lβ −

1

2
‖z(i)k+1 − u‖2Lβ

­
≤ η2k+1

2p2iL
β
i

‖∇if(xk+1)‖2 +
1

2
‖zk − u‖2Lβ −

1

2
‖z(i)k+1 − u‖2Lβ

®
≤ η2k+1Li

p2iL
β
i

(
f(xk+1)− f(y

(i)
k+1)

)
+

1

2
‖zk − u‖2Lβ −

1

2
‖z(i)k+1 − u‖2Lβ

¯
= η2k+1S

2
α

(
f(xk+1)− f(y

(i)
k+1)

)
+

1

2
‖zk − u‖2Lβ −

1

2
‖z(i)k+1 − u‖2Lβ .

Above, ¬ uses Lemma 6.2, ­ uses the Cauchy-Schwarz inequality,14 ® uses Lemma 5.3, and ¯ uses
the choice of pi = Lαi /Sα and β = 1− 2α. As a result, taking into account the randomness of i, we
have

ηk+1〈∇f(xk+1), zk − u〉 = Ei
[ηk+1

pi
〈∇if(xk+1), zk − u〉

]

≤ Ei
[
η2k+1S

2
α

(
f(xk+1)− f(y

(i)
k+1)

)
+

1

2
‖zk − u‖2Lβ −

1

2
‖z(i)k+1 − u‖2Lβ

]

= η2k+1S
2
α

(
f(xk+1)− Ei

[
f(yk+1)

])
+

1

2
‖zk − u‖2Lβ −

1

2
Ei
[
‖zk+1 − u‖2Lβ

]
. �

At this moment, we take into account our choice of xk+1 = τkzk + (1 − τk)yk and deduce that
(again assuming that yk and zk are fixed while the only randomness comes from the choice of i
when computing yk+1 and zk+1):

14More specifically,
ηk+1

pi
〈∇if(xk+1), zk − z(i)k+1〉 = 〈 ηk+1

piL
β
i

∇if(xk+1), zk − z(i)k+1〉Lβ ≤
η2k+1

2p2iL
2β
i

‖∇if(xk+1)‖2Lβ + 1
2
‖zk −

z
(i)
k+1‖2Lβ =

η2k+1

2p2iL
β
i

‖∇if(xk+1)‖2 + 1
2
‖zk − z(i)k+1‖2Lβ .
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Lemma 6.4. For every u ∈ Rd,

0 ≤ (η2k+1S
2
α−ηk+1)(f(yk)−f(u))−η2k+1S

2
α ·Ei

[
f(yk+1)−f(u)

]
+

1

2
‖zk−u‖2Lβ −

1

2
Ei
[
‖zk+1−u‖2Lβ

]

Proof.

ηk+1(f(xk+1)− f(u))
¬
≤ ηk+1〈∇f(xk+1), xk+1 − u〉

= ηk+1〈∇f(xk+1), xk+1 − zk〉+ ηk+1〈∇f(xk+1), zk − u〉
­
=

(1− τk)ηk+1

τk
〈∇f(xk+1), yk − xk+1〉+ ηk+1〈∇f(xk+1), zk − u〉

®
≤ (1− τk)ηk+1

τk
(f(yk)− f(xk+1)) + Ei

[
η2k+1S

2
α

(
f(xk+1)− f(yk+1)

)
+

1

2
‖zk − u‖2Lβ −

1

2
‖zk+1 − u‖2Lβ

]

Above, ¬ is owing to the convexity of f(·), ­ uses the fact that xk+1 = τkzk + (1 − τk)yk, and ®

uses the convexity of f(·) as well as Lemma 6.3. As a consequence, by choosing τk = 1
ηk+1S2

α
, we

arrive at the desired inequality. �
Finally, we only need to set the sequence of ηk so that η2kS

2
α ≈ η2k+1S

2
α − ηk+1 as well as

τk = 1/ηk+1S
2
α ∈ [0, 1]. For instance, we can let ηk = k+1

2S2
α

so that η2kS
2
α = η2k+1S

2
α − ηk+1 + 1

4S2
α

.

After telescoping Lemma 6.4 with k = 0, 1, . . . , T − 1 and setting u = x∗, we obtain that

η2TS
2
αE
[
f(yT )− f(x∗)

]
+
T−1∑

k=1

1

4S2
α

E
[
f(yk)− f(x∗)

]
≤ 1

2
‖z0 − x∗‖2Lβ −

1

2
E[‖zT − x∗‖2Lβ ] .

Finally, since x∗ is the minimizer and satisfies f(yk) ≥ f(x∗) and z0 = x0, we obtain

(T + 1)2

4S4
α

S2
α

(
E[f(yT )]− f(x∗)

)
≤ 1

2
‖x0 − x∗‖2Lβ .

This finishes the proof of our Theorem 6.1.

7 Experiments on Empirical Risk Minimization

We perform experiments on ERM problems to confirm our theoretical improvements. We consider
three datasets in this section: (1) class 1 of the news20 dataset (15, 935 samples and 62, 061
features), (2) the w8a dataset (49, 749 samples and 300 features), and (3) the covtype dataset
(581, 012 samples and 54 features). All of them can be found on the LibSVM website [8], and
contain examples that have non-uniform Euclidean norms (see Figure 1 for the distribution).

7.1 Experiments on Strongly Convex Objectives

Consider a regularized least-square problem which is problem (2.1) with φi(t)
def
= 1

2(t − li)2, where

li is the label for feature vector ai. In the case when r(w) = λ
2‖w‖22, this problem becomes ridge

regression, and in the case when r(w) = λ‖w‖1, it is known as Lasso regression.
Following (2.2), the equivalent dual formulation of regularized least square can be written as

Dual: min
y∈Rn

{
D(y)

def
=

1

n

n∑

i=1

(1

2
y2i + yi · li

)
+ r∗

(
− 1

n

n∑

i=1

yiai

)}
. (7.1)
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Figure 1: Distribution of ‖ai‖22, the feature vector norm squares.
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Figure 2: Performance Comparison for Ridge Regression. The y axis represents the dual objective
distance to minimum, and the x axis represents the number of passes to the dataset.

Furthermore, D(y) is 1/n-strongly convex.

Ridge Regression. In ridge regression, we have r(w) = λ
2‖w‖22 and accordingly r∗(z) = 1

2λ‖z‖22
in (7.1). It is not hard to verify that D(y) is Li

def
= 1

n + 1
λn2 ‖ai‖22 smooth with respect to its i-th

coordinate (and thus with respect to the i-th example). Therefore, the coordinate smoothness
parameters are non-uniform if examples a1, . . . , an’s do not have the same Euclidean norms.

We can directly apply RCDM, ACDM and our NU ACDM with β = 0 and σ = 1/n to minimize (7.1).
In principle, one can also apply APCG to minimize D(y). However, since APCG is only designed
for β = 1 and needs an unknown parameter σ1 > 0 as input, we have tuned it for the fastest
convergence in our experiments; whenever we do so, we denote it as APCG∗ in the diagrams.15

15We have chosen 14 values of σ1 in a reasonable range, where the largest choice of σ1 is 50, 000 times larger than
the smallest choice. Our automated program will then make the final choice of σ1 based on the convergence speed.
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news20 λ = 0.001 1.56772 λ = 0.01 1.30740 λ = 0.1 1.05110

w8a λ = 0.00001 1.11060 λ = 0.0001 1.04897 λ = 0.001 1.00373

covtype λ = 1 1.04266 λ = 10 1.02787 λ = 100 1.00362

Table 2: The theoretical speed-up factor
√
n
∑

i Li/
(∑

i

√
Li
)

of NU ACDM over ACDM for the three
datasets.

Our experimental results for ridge regression are in Figure 2. Note that theory predicts that

NU ACDM enjoys a speed-up factor of

√
n
∑
i Li∑

i

√
Li
≥ 1 over ACDM, and we show this factor in Table 2.

We make the following observations:

• Since Li = 1
n + 1

λn2 ‖ai‖22, the smaller the regularization parameter λ is, the more non-uniform
the parameters L1, . . . , Ln are. This is why the numbers in Table 2 are in decreasing order in
each row. Our experiment confirms on this because we obtain the greatest improvements for
the left 3 charts in Figure 2.

• news20 has the most non-uniformity on the examples’ Euclidean norms among the three
datasets. Therefore, the first row Table 2 have the largest speed-up factors. Our experiment
confirms on this because we obtain the greatest improvements in the top 3 charts in Figure 2.

• APCG performs quite poorly on dataset news20 because it relies on the Lβ norm strong con-
vexity for β = 1, which is very different from the Euclidean norm strong convexity when the
parameters Li are very non-uniform. We discuss the choice of β in Section 7.3, and would like
to point out that APCG performs very well for non strongly convex objectives, see Section 7.2.

Due to strong duality, our convergence speed-up on the dual objective also translates to that on
the primal objective. See Figure 7 in the appendix for details.

Lasso. In the Lasso problem, we have r(w) = λ‖w‖1 in the primal objective so the corresponding
dual D(y) in (7.1) is not smooth. Fortunately, standard regularization techniques suggest that
in order to minimize the Lasso objective P (w), it suffices to look at an alternative regularizer

r′(w)
def
= λ‖w‖1 + λ2

2 ‖w‖22 and its corresponding objective P ′(w)
def
= P (w) + λ2

2 ‖w‖22.16 Since for
every w it satisfies |P (w)− P ′(w)| ≤ O(λ2), one can specify a small enough parameter λ2 > 0 and
minimize P ′(w) instead. This auxiliary 2-norm regularizer introduces error to the objective, but
allows the function P ′(w) to be minimized fast. Indeed, all known accelerated gradient methods to
solve Lasso (such as AccSDCA [33], APCG [14], SPDC [37] have relied on this regularization step.17

With this new regularizer, one can show that the dual objective D′(y) is Li
def
= 1

n + 1
λ2n2 ‖ai‖22

smooth with respect to the i-th coordinate, as well as 1/n-strongly convex with respect to the
Euclidean norm. Therefore, we can again apply RCDM, ACDM, APCG, and our NU ACDM to this objective
D′(y) and compare their performances. This is shown in Figure 3.
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Figure 3: Performance Comparison for Lasso. The y axis represents the objective distance to
minimum, and the x axis represents the number of passes to the dataset.

7.2 Experiments on Non-Strongly Convex Objectives

Consider problem (2.1) where r(w) = λ
2‖w‖2 is the `2 regularizer and each φi(·) is some non-smooth

loss function. In this case, the dual objective (2.2) becomes

min
y∈Rn

{
D(y)

def
=

1

n

n∑

i=1

φ∗i (yi) +
1

2λn2

∥∥∥
n∑

i=1

yiai

∥∥∥
2

2

}
. (7.2)

This D(y) is not necessarily strongly convex because the penalty functions φi(·) is not smooth. In

this section, we conduct an experiment for the case when φi(α)
def
= 1

2(α− li)2 + |α− li| is an `2 − `1
penalty function. We call this ERM problem the `2 − `1 Penalty Regression.

As before, we know that D(y) is Li
def
= 1

n + 1
λn2 ‖ai‖22 smooth with respect to the i-th coordinate,

so we can apply ACDM, RCDM, APCG and our NU ACDMns directly to minimize D(y). We choose β = 0
for ACDM, RCDM, and NU ACDMns in our experiment, and have to choose β = 1 for APCG. Our results
are shown in Figure 4.

From these experiments, we see that again the theoretical speed-up factors in Table 2 are
validated in practice. NU ACDMns has a clear advantage over its close relatives ACDM and RCDM when
the coordinate smoothness parameters Li are very non-uniform (such as dataset news20), and when

16This reduction introduces a logarithmic factor loss in the running time, and was recently improved by [2].
17After this paper has been submitted for publication, a new accelerated method Katyusha was discovered to avoid

this regularization step [1].
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Figure 4: Performance Comparison for `1-`2 Penalty Regression. The y axis represents the training
objective distance to minimum, and the x axis represents the number of passes to the dataset.

λ is relatively small. In contrast, in the least non-uniform datasets covtype, ACDM performs even
slightly faster than NU ACDMns. This is not surprising, because the theoretical speed-up in this case
is only less than 0.3%.

In contrast to the previous subsection, APCG (which uses β = 1) performs extremely well and
similar to NU ACDMns (which uses β = 0) in Figure 4. As we shall see in the next section, by taking
a closer look at different choices of β for non-strongly convex objectives, APCG is in fact analogous
to the β = 1 case of NU ACDMns, but is slightly worse than NU ACDMns for β being between 0 and 0.8
for all the three datasets we are considering in this paper.

7.3 Dependence on β

As discussed in Remark 1.1, when dealing with a strongly convex objective f(·), we usually work
with accelerated coordinate descent methods for Euclidean norm rather than Lβ norms. However,
the choice becomes less obvious for non-strongly convex objectives.

For instance, in Table 1, by comparing T =
∑

i

√
Li/ε · ‖x0 − x∗‖ for β = 0 and T = n/

√
ε ·

‖x0 − x∗‖L1 for β = 1, it is not immediately clear which one is more preferable to the other. If one
works with a standard machine learning boundedness assumption ‖x0−x∗‖ ≤ Θ for some constant
Θ, then the convergence for the β = 1 case reduces to T = n/

√
ε · ‖x0 − x∗‖L1 ≤ nmaxi

√
Li/ε ·Θ

which is slower than that of the β = 0 case. However, in general, the best choice of β depends on
how the coordinates of the vector x0 − x∗ scale with parameters Li.

Nevertheless, we can perform a comparison in practice between difference choices of β. Focusing
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Figure 5: Performance Comparison on NU ACDMns with β = 0, 0.2, 0.4, 0.6, 0.8, 1 and APCG.

r = 100% r = 80%, r = 60% r = 40% r = 20% r = 10%

Speed Up 1 1.0992 1.2464 1.4025 1.6243 1.7379

Table 3: Theoretical Speed-Up Factors
√
n
∑

i Li/
(∑

i

√
Li
)

of NU ACDM over ACDM for linear systems
Ax = b.

on the `1 − `2 Penalty Regression dual objective (7.2), we plot the performance of NU ACDMns with
different β. From Figure 5, we conclude that smaller values of β are perhaps more preferred to larger
ones in practice. Not surprisingly, the performance difference becomes less significant for dataset
covtype, because it has more uniform smoothness parameters Li than the other two datasets.
Finally, we have included APCG in Figure 5 as well, and it has very similar performance comparing
to NU ACDMns for β = 1. This confirms our theoretical finding in Table 1.

8 Experiments on Solving Linear Systems

We generate random linear systems Ax = b and compare randomized Kaczmarz, ACDM, and NU ACDM.
We choose m = 300 and n = 100, and generate each entry Aij uniformly at random in [0, 1].

We scale a fraction r of A’s rows to have Euclidean norm 10, and the rest to have Euclidean norm
1. We generate a random vector x, compute b = Ax, and use each of the three algorithms to solve
x given A and b.

Since the coordinate smoothness parameters depend on the Euclidean norm squares of A’s rows,
we expect our NU ACDM to have a greater speed up comparing to ACDM for small nonzeros values of
r. We compute the theoretical speed up factors in Table 3.

In Figure 6, we see that both NU ACDM and ACDM outperform the non-accelerated randomized
Kaczmarz without surprise. Furthermore, NU ACDM and ACDM are comparable for r = 100%, and
the out-performance indeed becomes more significant for smaller values of r.

Acknowledgements

We thank Yin Tat Lee for helpful conversations and careful reading of a draft of this paper. ZA-Z
is partially supported by a Microsoft Research Grant, no. 0518584. ZQ and PR would like to
acknowledge support from the EPSRC Grant EP/K02325X/1, “Accelerated Coordinate Descent
Methods for Big Data Optimization”. PR also acknowledges support from the EPSRC Fellowship
Grant EP/N005538/1, “Randomized Algorithms for Extreme Convex Optimization”.

19



1.E-14

1.E-11

1.E-08

1.E-05

1.E-02

1.E+01

0 50 100 150 200

NUACDM ACDM RandKaczmarz

(a) r = 100%

1.E-14

1.E-11

1.E-08

1.E-05

1.E-02

1.E+01

0 50 100 150 200

NUACDM ACDM RandKaczmarz

(b) r = 80%

1.E-14

1.E-11

1.E-08

1.E-05

1.E-02

1.E+01

0 50 100 150 200

NUACDM ACDM RandKaczmarz

(c) r = 60%

1.E-14

1.E-11

1.E-08

1.E-05

1.E-02

1.E+01

0 50 100 150 200

NUACDM ACDM RandKaczmarz

(d) r = 40%

1.E-14

1.E-11

1.E-08

1.E-05

1.E-02

1.E+01

0 50 100 150 200

NUACDM ACDM RandKaczmarz

(e) r = 20%

1.E-14

1.E-11

1.E-08

1.E-05

1.E-02

1.E+01

0 50 100 150 200

NUACDM ACDM RandKaczmarz

(f) r = 10%

Figure 6: Performance Comparison on Solving Ax = b.
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Figure 7: Performance Comparison for Ridge Regression (Primal). The y axis represents the primal
objective distance to minimum, and the x axis represents the number of passes to the dataset.
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