7 research outputs found

    Evasiveness of Graph Properties and Topological Fixed-Point Theorems

    Full text link
    Many graph properties (e.g., connectedness, containing a complete subgraph) are known to be difficult to check. In a decision-tree model, the cost of an algorithm is measured by the number of edges in the graph that it queries. R. Karp conjectured in the early 1970s that all monotone graph properties are evasive -- that is, any algorithm which computes a monotone graph property must check all edges in the worst case. This conjecture is unproven, but a lot of progress has been made. Starting with the work of Kahn, Saks, and Sturtevant in 1984, topological methods have been applied to prove partial results on the Karp conjecture. This text is a tutorial on these topological methods. I give a fully self-contained account of the central proofs from the paper of Kahn, Saks, and Sturtevant, with no prior knowledge of topology assumed. I also briefly survey some of the more recent results on evasiveness.Comment: Book version, 92 page

    Counting induced subgraphs: a topological approach to #W[1]-hardness

    Get PDF
    We investigate the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) of counting all induced subgraphs of size kk in a graph GG that satisfy a given property Φ\Phi. This continues the work of Jerrum and Meeks who proved the problem to be #W[1]\#\mathrm{W[1]}-hard for some families of properties which include, among others, (dis)connectedness [JCSS 15] and even- or oddness of the number of edges [Combinatorica 17]. Using the recent framework of graph motif parameters due to Curticapean, Dell and Marx [STOC 17], we discover that for monotone properties Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard for #W[1]\#\mathrm{W[1]} if the reduced Euler characteristic of the associated simplicial (graph) complex of Φ\Phi is non-zero. This observation links #IndSub(Φ)\#\mathsf{IndSub}(\Phi) to Karp's famous Evasiveness Conjecture, as every graph complex with non-vanishing reduced Euler characteristic is known to be evasive. Applying tools from the "topological approach to evasiveness" which was introduced in the seminal paper of Khan, Saks and Sturtevant [FOCS 83], we prove that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is #W[1]\#\mathrm{W[1]}-hard for every monotone property Φ\Phi that does not hold on the Hamilton cycle as well as for some monotone properties that hold on the Hamilton cycle such as being triangle-free or not kk-edge-connected for k>2k > 2. Moreover, we show that for those properties #IndSub(Φ)\#\mathsf{IndSub}(\Phi) can not be solved in time f(k)no(k)f(k)\cdot n^{o(k)} for any computable function ff unless the Exponential Time Hypothesis (ETH) fails. In the final part of the paper, we investigate non-monotone properties and prove that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is #W[1]\#\mathrm{W[1]}-hard if Φ\Phi is any non-trivial modularity constraint on the number of edges with respect to some prime qq or if Φ\Phi enforces the presence of a fixed isolated subgraph

    Counting Induced Subgraphs: {A}n Algebraic Approach to \#{W}[1]-hardness

    Get PDF

    Counting small induced subgraphs satisfying monotone properties

    Get PDF
    Given a graph property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) asks, on input a graph GG and a positive integer kk, to compute the number of induced subgraphs of size kk in GG that satisfy Φ\Phi. The search for explicit criteria on Φ\Phi ensuring that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) cannot be solved in time f(k)V(G)o(k/log1/2(k))f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})} for any function ff, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a #W[1]\#\mathsf{W}[1]-completeness result

    Counting small induced subgraphs satisfying monotone properties

    Get PDF
    Given a graph property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) asks, on input a graph GG and a positive integer kk, to compute the number of induced subgraphs of size kk in GG that satisfy Φ\Phi. The search for explicit criteria on Φ\Phi ensuring that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) cannot be solved in time f(k)V(G)o(k/log1/2(k))f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})} for any function ff, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a #W[1]\#\mathsf{W}[1]-completeness result

    Counting Small Induced Subgraphs Satisfying Monotone Properties

    Get PDF
    Given a graph property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) asks, on input a graph GG and a positive integer kk, to compute the number of induced subgraphs of size kk in GG that satisfy Φ\Phi. The search for explicit criteria on Φ\Phi ensuring that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) cannot be solved in time f(k)V(G)o(k/log1/2(k))f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})} for any function ff, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a #W[1]\#\mathsf{W}[1]-completeness result.Comment: 33 pages, 2 figure

    Counting Small Induced Subgraphs Satisfying Monotone Properties

    Get PDF
    Given a graph property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) asks, on input a graph GG and a positive integer kk, to compute the number of induced subgraphs of size kk in GG that satisfy Φ\Phi. The search for explicit criteria on Φ\Phi ensuring that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) cannot be solved in time f(k)V(G)o(k/log1/2(k))f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})} for any function ff, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a #W[1]\#\mathsf{W}[1]-completeness result
    corecore