3 research outputs found

    In no uncertain terms : a dataset for monolingual and multilingual automatic term extraction from comparable corpora

    Get PDF
    Automatic term extraction is a productive field of research within natural language processing, but it still faces significant obstacles regarding datasets and evaluation, which require manual term annotation. This is an arduous task, made even more difficult by the lack of a clear distinction between terms and general language, which results in low inter-annotator agreement. There is a large need for well-documented, manually validated datasets, especially in the rising field of multilingual term extraction from comparable corpora, which presents a unique new set of challenges. In this paper, a new approach is presented for both monolingual and multilingual term annotation in comparable corpora. The detailed guidelines with different term labels, the domain- and language-independent methodology and the large volumes annotated in three different languages and four different domains make this a rich resource. The resulting datasets are not just suited for evaluation purposes but can also serve as a general source of information about terms and even as training data for supervised methods. Moreover, the gold standard for multilingual term extraction from comparable corpora contains information about term variants and translation equivalents, which allows an in-depth, nuanced evaluation

    D-TERMINE : data-driven term extraction methodologies investigated

    Get PDF
    Automatic term extraction is a task in the field of natural language processing that aims to automatically identify terminology in collections of specialised, domain-specific texts. Terminology is defined as domain-specific vocabulary and consists of both single-word terms (e.g., corpus in the field of linguistics, referring to a large collection of texts) and multi-word terms (e.g., automatic term extraction). Terminology is a crucial part of specialised communication since terms can concisely express very specific and essential information. Therefore, quickly and automatically identifying terms is useful in a wide range of contexts. Automatic term extraction can be used by language professionals to find which terms are used in a domain and how, based on a relevant corpus. It is also useful for other tasks in natural language processing, including machine translation. One of the main difficulties with term extraction, both manual and automatic, is the vague boundary between general language and terminology. When different people identify terms in the same text, it will invariably produce different results. Consequently, creating manually annotated datasets for term extraction is a costly, time- and effort- consuming task. This can hinder research on automatic term extraction, which requires gold standard data for evaluation, preferably even in multiple languages and domains, since terms are language- and domain-dependent. Moreover, supervised machine learning methodologies rely on annotated training data to automatically deduce the characteristics of terms, so this knowledge can be used to detect terms in other corpora as well. Consequently, the first part of this PhD project was dedicated to the construction and validation of a new dataset for automatic term extraction, called ACTER – Annotated Corpora for Term Extraction Research. Terms and Named Entities were manually identified with four different labels in twelve specialised corpora. The dataset contains corpora in three languages and four domains, leading to a total of more than 100k annotations, made over almost 600k tokens. It was made publicly available during a shared task we organised, in which five international teams competed to automatically extract terms from the same test data. This illustrated how ACTER can contribute towards advancing the state-of-the-art. It also revealed that there is still a lot of room for improvement, with moderate scores even for the best teams. Therefore, the second part of this dissertation was devoted to researching how supervised machine learning techniques might contribute. The traditional, hybrid approach to automatic term extraction relies on a combination of linguistic and statistical clues to detect terms. An initial list of unique candidate terms is extracted based on linguistic information (e.g., part-of-speech patterns) and this list is filtered based on statistical metrics that use frequencies to measure whether a candidate term might be relevant. The result is a ranked list of candidate terms. HAMLET – Hybrid, Adaptable Machine Learning Approach to Extract Terminology – was developed based on this traditional approach and applies machine learning to efficiently combine more information than could be used with a rule-based approach. This makes HAMLET less susceptible to typical issues like low recall on rare terms. While domain and language have a large impact on results, robust performance was reached even without domain- specific training data, and HAMLET compared favourably to a state-of-the-art rule-based system. Building on these findings, the third and final part of the project was dedicated to investigating methodologies that are even further removed from the traditional approach. Instead of starting from an initial list of unique candidate terms, potential terms were labelled immediately in the running text, in their original context. Two sequential labelling approaches were developed, evaluated and compared: a feature- based conditional random fields classifier, and a recurrent neural network with word embeddings. The latter outperformed the feature-based approach and was compared to HAMLET as well, obtaining comparable and even better results. In conclusion, this research resulted in an extensive, reusable dataset and three distinct new methodologies for automatic term extraction. The elaborate evaluations went beyond reporting scores and revealed the strengths and weaknesses of the different approaches. This identified challenges for future research, since some terms, especially ambiguous ones, remain problematic for all systems. However, overall, results were promising and the approaches were complementary, revealing great potential for new methodologies that combine multiple strategies

    Élaboration d'un corpus étalon pour l'évaluation d'extracteurs de termes

    Full text link
    Ce travail porte sur la construction d’un corpus étalon pour l’évaluation automatisée des extracteurs de termes. Ces programmes informatiques, conçus pour extraire automatiquement les termes contenus dans un corpus, sont utilisés dans différentes applications, telles que la terminographie, la traduction, la recherche d’information, l’indexation, etc. Ainsi, leur évaluation doit être faite en fonction d’une application précise. Une façon d’évaluer les extracteurs consiste à annoter toutes les occurrences des termes dans un corpus, ce qui nécessite un protocole de repérage et de découpage des unités terminologiques. À notre connaissance, il n’existe pas de corpus annoté bien documenté pour l’évaluation des extracteurs. Ce travail vise à construire un tel corpus et à décrire les problèmes qui doivent être abordés pour y parvenir. Le corpus étalon que nous proposons est un corpus entièrement annoté, construit en fonction d’une application précise, à savoir la compilation d’un dictionnaire spécialisé de la mécanique automobile. Ce corpus rend compte de la variété des réalisations des termes en contexte. Les termes sont sélectionnés en fonction de critères précis liés à l’application, ainsi qu’à certaines propriétés formelles, linguistiques et conceptuelles des termes et des variantes terminologiques. Pour évaluer un extracteur au moyen de ce corpus, il suffit d’extraire toutes les unités terminologiques du corpus et de comparer, au moyen de métriques, cette liste à la sortie de l’extracteur. On peut aussi créer une liste de référence sur mesure en extrayant des sous-ensembles de termes en fonction de différents critères. Ce travail permet une évaluation automatique des extracteurs qui tient compte du rôle de l’application. Cette évaluation étant reproductible, elle peut servir non seulement à mesurer la qualité d’un extracteur, mais à comparer différents extracteurs et à améliorer les techniques d’extraction.We describe a methodology for constructing a gold standard for the automatic evaluation of term extractors. These programs, designed to automatically extract specialized terms from a corpus, are used in various settings, including terminology work, translation, information retrieval, indexing, etc. Thus, the evaluation of term extractors must be carried out in accordance with a specific application. One way of evaluating term extractors is to construct a corpus in which all term occurrences have been annotated. This involves establishing a protocol for term selection and term boundary identification. To our knowledge, no well-documented annotated corpus is available for the evaluation of term extractors. This contribution aims to build such a corpus and describe what issues must be dealt with in the process. The gold standard we propose is a fully annotated corpus, constructed in accordance with a specific terminological setting, namely the compilation of a specialized dictionary of automotive mechanics. This annotated corpus accounts for the wide variety of realizations of terms in context. Terms are selected in accordance with specific criteria pertaining to the terminological setting as well as formal, linguistic and conceptual properties of terms and term variations. To evaluate a term extractor, a list of all the terminological units in the corpus is extracted and compared to the output of the term extractor, using a set of metrics to assess its performance. Subsets of terminological units may also be extracted, providing a level of customization. This allows an automatic and application-driven evaluation of term extractors. Due to its reusability, it can serve not only to assess the performance of a particular extractor, but also to compare different extractors and fine-tune extraction techniques
    corecore