61 research outputs found

    Grey Numbers in Multiple Criteria Decision Analysis and Conflict Resolution

    Get PDF
    Definitions of grey numbers are adapted for incorporation into Multiple Criteria Decision Analysis and the Graph Model for Conflict Resolution in order to capture uncertainty in decision making. The main objective is to design improved methods for dealing with decision problems under uncertainty, characterized by limited input data and uncertain preferences of decision makers. A literature review is carried out in order to understand the problems of representing uncertainty using grey numbers within two key decision making contexts: comparing alternative solutions within an multiple criteria decision analysis framework, and deciding upon meaningful courses of action by decision makers involved in a conflict. Then two methodologies that rely on grey numbers to represent uncertain information are provided, and relevant definitions, procedures, and solution concepts are presented

    A Review and Classification of Approaches for Dealing with Uncertainty in Multi-Criteria Decision Analysis for Healthcare Decisions

    Get PDF
    Multi-criteria decision analysis (MCDA) is increasingly used to support decisions in healthcare involving multiple and conflicting criteria. Although uncertainty is usually carefully addressed in health economic evaluations, whether and how the different sources of uncertainty are dealt with and with what methods in MCDA is less known. The objective of this study is to review how uncertainty can be explicitly taken into account in MCDA and to discuss which approach may be appropriate for healthcare decision makers. A literature review was conducted in the Scopus and PubMed databases. Two reviewers independently categorized studies according to research areas, the type of MCDA used, and the approach used to quantify uncertainty. Selected full text articles were read for methodological details. The search strategy identified 569 studies. The five approaches most identified were fuzzy set theory (45 % of studies), probabilistic sensitivity analysis (15 %), deterministic sensitivity analysis (31 %), Bayesian framework (6 %), and grey theory (3 %). A large number of papers considered the analytic hierarchy process in combination with fuzzy set theory (31 %). Only 3 % of studies were published in healthcare-related journals. In conclusion, our review identified five different approaches to take uncertainty into account in MCDA. The deterministic approach is most likely sufficient for most healthcare policy decisions because of its low complexity and straightforward implementation. However, more complex approaches may be needed when multiple sources of uncertainty must be considered simultaneousl

    Elimination Method of Multi-Criteria Decision Analysis (MCDA): A Simple Methodological Approach for Assessing Agricultural Sustainability

    Get PDF
    In the present world context, there is a need to assess the sustainability of agricultural systems. Various methods have been proposed to assess agricultural sustainability. Like in many other fields, Multi-Criteria Decision Analysis (MCDA) has recently been used as a methodological approach for the assessment of agricultural sustainability. In this paper, an attempt is made to apply Elimination, a MCDA method, to an agricultural sustainability assessment, and to investigate its benefits and drawbacks. This article starts by explaining the importance of agricultural sustainability. Common MCDA types are discussed, with a description of the state-of-the-art method for incorporating multi-criteria and reference values for agricultural sustainability assessment. Then, a generic description of the Elimination Method is provided, and its modeling approach is applied to a case study in coastal Bangladesh. An assessment of the results is provided, and the issues that need consideration before applying Elimination to agricultural sustainability, are examined. Whilst having some limitations, the case study shows that it is applicable for agricultural sustainability assessments and for ranking the sustainability of agricultural systems. The assessment is quick compared to other assessment methods and is shown to be helpful for agricultural sustainability assessment. It is a relatively simple and straightforward analytical tool that could be widely and easily applied. However, it is suggested that appropriate care must be taken to ensure the successful use of the Elimination Method during the assessment process.Social Sciences and Humanities Research Council (SSHRC), Canad

    A Review and Classification of Approaches for Dealing with Uncertainty in Multi-Criteria Decision Analysis for Healthcare Decisions

    Get PDF
    The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Multi-criteria decision analysis (MCDA) is increasingly used to support decisions in healthcare involving multiple and conflicting criteria. Although uncertainty is usually carefully addressed in health eco-nomic evaluations, whether and how the different sources of uncertainty are dealt with and with what methods in MCDA is less known. The objective of this study is to review how uncertainty can be explicitly taken into account in MCDA and to discuss which approach may be appro-priate for healthcare decision makers. A literature review was conducted in the Scopus and PubMed databases. Two reviewers independently categorized studies according to research areas, the type of MCDA used, and the approach used to quantify uncertainty. Selected full text articles wer

    Selecting Sustainable Point-of-Use and Point-of-Entry Drinking Water Treatment: A Decision Support System

    Get PDF
    Point-of-use (POU) and point-of-entry (POE) water treatment are forms of decentralized water treatment that are becoming increasingly sought alternatives for ensuring the safety of drinking water. Although the acceptance of POU and POE systems is still the subject of some debate, it is generally acknowledged that they have a role to play in drinking water treatment. However, some of the main drivers for the increase in the use of POU and POE alternatives include: (1) the emergence of new technologies with high removal efficiencies of target contaminants; (2) the enhanced certification system of POU and POE treatment devices and components which ensures that devices have been well engineered to achieve defined contaminant removal targets and do not add contaminants from materials of construction; (3) the inclusion of POU and POE systems as acceptable means to comply with drinking water standards; and (4) the concerns voiced by consumers in several surveys regarding the safety of centrally treated drinking water; which, regardless of whether or not these concerns are justified, have led to an increase in the use of POU and POE treatment systems. With the commercialization of these devices the task of selecting a suitable device for treatment has become cumbersome. When the inherent complexity of a particular drinking water treatment task is added to the mix, a complex decision making situation is created. Thus the need for designing a decision support tool to compare and select POU and POE treatment systems was evident. Currently the best decision aid for selecting POU and POE systems is NSF International’s listing of the devices and their contaminant reduction claims. A significant contribution of this research is the depiction of an appropriate conceptual framework for developing usable and valid decision support systems (DSSs) to select or design water or wastewater treatment systems. A thorough investigation of the methods used to develop DSSs benchmarked a systematic approach to developing DSSs, which includes the analysis of the treatment problem(s), knowledge acquisition and representation, and the identification and evaluation of criteria controlling the selection of optimal treatment systems. Finally, it was concluded that there is a need to develop integrated DSSs that are generic, user-friendly and employ a systems analysis approach. Another significant contribution of this research is applying a systems analysis approach to outline aspects of implementation, management, and governance of POU and POE water treatment systems. The analysis also included a timeline of the progress of POU and POE treatment from regulatory, industry and certification, and research perspectives. Results of the analysis were considered the first step of a conceptual framework for the sustainability assessment of POU and POE treatment systems which acts as the basis for developing a decision support system that will help select sustainable POU or POE treatment systems. In the context of POU and POE treatment, sustainability encompasses providing: (a) safe drinking water to help maintain good human health and hygiene; (b) minimum negative impact on the environment; (c) better use of human, natural, and financial resources; (d) a high degree of functional robustness and flexibility; and (e) cultural acceptance thus encouraging responsible behavior by the users. The most significant contribution of this research is developing, for the first time, a set of sustainability criteria, objectives, and quantifiable indicators to properly assess the sustainability of the various POU and POE alternatives. Twenty five quantitative and qualitative indicators covering technical, economic, environmental, and socio-cultural aspects of implementing a POU or a POE system were defined. Results of a survey of experts’ judgment on the effectiveness of the developed list of indicators generated 52 comments from 11 experts, which helped in refining and enhancing the list. The conceptual framework for assessing the sustainability of POU and POE systems represented a blueprint for building the decision support system. Decision logic and cognitive thinking was used to formulate the calculation of the 20 refined indicators. The Analytical Hierarchy Process (AHP), a recognized Multi-criteria Decision Analysis (MCDA) tool, was employed to construct the structural hierarchy of sustainability indicators. Pairwise comparison was used to help in the analysis of indicators' relative importance and develop the indicators’ weights. A survey was designed to develop the relative weights of the indicators based on the average response of 19 stakeholders to a series of pairwise comparison questions pertaining to the relative importance of the indicators. Finally, the practical contribution of this research is the development of, for the first time, a new Decision Support System for Selecting Sustainable POU and POE Treatment Systems (D4SPOUTS) suitable for a particular water treatment case. The MCDA technique explained above is combined with designed screening rules, constraints, and case characteristics to be applied to a knowledgebase of POU and POE treatment systems incorporated in the DSS. The components of the DSS were built using Microsoft® Excel® and Visual Basic® for Applications. The quality of the DSS and aspects of its usability, applicability, and sensitivity analysis are demonstrated through a hypothetical case study for lead removal from drinking water. This research is expected to assist water purveyors, consultants, and other stakeholders in selecting sustainable and cost effective POU and POE treatment systems

    Indicators and their functions

    Get PDF
    • …
    corecore