948 research outputs found

    A contribution to the Semantics of Xcerpt, a Web Query and Transformation Language

    Get PDF
    Xcerpt [1] is a declarative and pattern-based query and transformation languag

    Qualitative Spatial Configuration Queries Towards Next Generation Access Methods for GIS

    Get PDF
    For a long time survey, management, and provision of geographic information in Geographic Information Systems (GIS) have mainly had an authoritative nature. Today the trend is changing and such an authoritative geographic information source is now accompanied by a public and freely available one which is usually referred to as Volunteered Geographic Information (VGI). Actually, the term VGI does not refer only to the mere geographic information, but, more generally, to the whole process which assumes the engagement of volunteers to collect and maintain such information in freely accessible GIS. The quick spread of VGI gives new relevance to a well-known challenge: developing new methods and techniques to ease down the interaction between users and GIS. Indeed, in spite of continuous improvements, GIS mainly provide interfaces tailored for experts, denying the casual user usually a non-expert the possibility to access VGI information. One main obstacle resides in the different ways GIS and humans deal with spatial information: GIS mainly encode spatial information in a quantitative format, whereas human beings typically prefer a qualitative and relational approach. For example, we use expressions like the lake is to the right-hand side of the wood or is there a supermarket close to the university? which qualitatively locate a spatial entity with respect to another. Nowadays, such a gap in representation has to be plugged by the user, who has to learn about the system structure and to encode his requests in a form suitable to the system. Contrarily, enabling gis to explicitly deal with qualitative spatial information allows for shifting the translation effort to the system side. Thus, to facilitate the interaction with human beings, GIS have to be enhanced with tools for efficiently handling qualitative spatial information. The work presented in this thesis addresses the problem of enabling Qualitative Spatial Configuration Queries (QSCQs) in GIS. A QSCQ is a spatial database query which allows for an automatic mapping of spatial descriptions produced by humans: A user naturally expresses his request of spatial information by drawing a sketch map or producing a verbal description. The qualitative information conveyed by such descriptions is automatically extracted and encoded into a QSCQ. The focus of this work is on two main challenges: First, the development of a framework that allows for managing in a spatial database the variety of spatial aspects that might be enclosed in a spatial description produced by a human. Second, the conception of Qualitative Spatial Access Methods (QSAMs): algorithms and data structures tailored for efficiently solving QSCQs. The main objective of a QSAM is that of countering the exponential explosion in terms of storage space occurring when switching from a quantitative to a qualitative spatial representation while keeping query response time acceptable

    A Framework for XML-based Integration of Data, Visualization and Analysis in a Biomedical Domain

    Get PDF
    Biomedical data are becoming increasingly complex and heterogeneous in nature. The data are stored in distributed information systems, using a variety of data models, and are processed by increasingly more complex tools that analyze and visualize them. We present in this paper our framework for integrating biomedical research data and tools into a unique Web front end. Our framework is applied to the University of Washington’s Human Brain Project. Specifically, we present solutions to four integration tasks: definition of complex mappings from relational sources to XML, distributed XQuery processing, generation of heterogeneous output formats, and the integration of heterogeneous data visualization and analysis tools

    ON COMPLETENESS OF HISTORICAL RELATIONAL QUERY LANGUAGES

    Get PDF
    Numerous proposals for extending the relational data model to incorporate the temporal dimension of data have appeared in the past several years. These proposals have differed considerably in the way that the temporal dimension has been incorporated both into the structure of the extended relations of these temporal models, and consequently into the extended relational algebra or calculus that they define. Because of these differences it has been difficult to compare the proposed models and to make judgments as to which of them might in some sense be equivalent or even better. In this paper we define the notions of temporally grouped and temporally ungrouped historical data models and propose two notions of historical relational completeness, analogous to Codd's notion of relational completeness, one for each type of model. We show that the temporally ungrouped models are less powerful than the grouped models, but demonstrate a technique for extending the ungrouped models with a grouping mechanism to capture the additional semantic power of temporal grouping. For the ungrouped models we define three different languages, a temporal logic, a logic with explicit reference to time, and a temporal algebra, and show that under certain assumptions all three are equivalent in power. For the grouped models we define a many-sorted logic with variables over ordinary values, historical values, and times. Finally, we demonstrate the equivalence of this grouped calculus and the ungrouped calculus extended with the proposed grouping mechanism. We believe the classification of historical data models into grouped and ungrouped provides a useful framework for the comparison of models in the literature, and furthermore the exposition of equivalent languages for each type provides reasonable standards for common, and minimal, notions of historical relational completeness.Information Systems Working Papers Serie
    corecore