379,662 research outputs found

    Marine data prediction : An evaluation of machine learning, deep learning, and statistical predictive models

    Get PDF
    Nowadays, ocean observation technology continues to progress, resulting in a huge increase in marine data volume and dimensionality. This volume of data provides a golden opportunity to train predictive models, as the more the data is, the better the predictive model is. Predicting marine data such as sea surface temperature (SST) and Significant Wave Height (SWH) is a vital task in a variety of disciplines, including marine activities, deep-sea, and marine biodiversity monitoring. The literature has efforts to forecast such marine data; these efforts can be classified into three classes: machine learning, deep learning, and statistical predictive models. To the best of the authors’ knowledge, no study compared the performance of these three approaches on a real dataset. This paper focuses on the prediction of two critical marine features: the SST and SWH. In this work, we proposed implementing statistical, deep learning, and machine learning models for predicting the SST and SWH on a real dataset obtained from the Korea Hydrographic and Oceanographic Agency. Then, we proposed comparing these three predictive approaches on four different evaluation metrics. Experimental results have revealed that the deep learning model slightly outperformed the machine learning models for overall performance, and both of these approaches greatly outperformed the statistical predictive model

    Marine Data Prediction: An Evaluation of Machine Learning, Deep Learning, and Statistical Predictive Models.

    Full text link
    Nowadays, ocean observation technology continues to progress, resulting in a huge increase in marine data volume and dimensionality. This volume of data provides a golden opportunity to train predictive models, as the more the data is, the better the predictive model is. Predicting marine data such as sea surface temperature (SST) and Significant Wave Height (SWH) is a vital task in a variety of disciplines, including marine activities, deep-sea, and marine biodiversity monitoring. The literature has efforts to forecast such marine data; these efforts can be classified into three classes: machine learning, deep learning, and statistical predictive models. To the best of the authors' knowledge, no study compared the performance of these three approaches on a real dataset. This paper focuses on the prediction of two critical marine features: the SST and SWH. In this work, we proposed implementing statistical, deep learning, and machine learning models for predicting the SST and SWH on a real dataset obtained from the Korea Hydrographic and Oceanographic Agency. Then, we proposed comparing these three predictive approaches on four different evaluation metrics. Experimental results have revealed that the deep learning model slightly outperformed the machine learning models for overall performance, and both of these approaches greatly outperformed the statistical predictive model

    Human Machine Interfaces for Teleoperators and Virtual Environments

    Get PDF
    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models

    Independent evaluation of ARMED service: final report.

    Get PDF
    ARMED (HAS Technology, Lichfield, UK) is a falls prevention technology that combines a wrist-worn activity tracker with predictive analytics and machine learning to enable early intervention. Data from the tracker is augmented by weekly grip strength and body composition measurements. ARMED-in-a-box is a streamlined version of ARMED that does not use the grip strength or body composition measures, rolled-out in response to the COVID-19 pandemic. This independent evaluation was commissioned by the Digital Health and Care Innovation Centre and conducted by an interdisciplinary team from Robert Gordon University, the University of Aberdeen, and NHS Grampian. The purpose of the evaluation was to inform the potential for scalability of ARMED within the Scottish digital health and care context, and specifically to analyse and appraise the effectiveness of the current ARMED service and business models, aligning with the national technology enabled care (TEC) programme's existing test of change (TOC) activity

    Shifting from Population-wide to Personalized Cancer Prognosis with Microarrays

    Get PDF
    The era of personalized medicine for cancer therapeutics has taken an important step forward in making accurate prognoses for individual patients with the adoption of high-throughput microarray technology. However, microarray technology in cancer diagnosis or prognosis has been primarily used for the statistical evaluation of patient populations, and thus excludes inter-individual variability and patient-specific predictions. Here we propose a metric called clinical confidence that serves as a measure of prognostic reliability to facilitate the shift from population-wide to personalized cancer prognosis using microarray-based predictive models. The performance of sample-based models predicted with different clinical confidences was evaluated and compared systematically using three large clinical datasets studying the following cancers: breast cancer, multiple myeloma, and neuroblastoma. Survival curves for patients, with different confidences, were also delineated. The results show that the clinical confidence metric separates patients with different prediction accuracies and survival times. Samples with high clinical confidence were likely to have accurate prognoses from predictive models. Moreover, patients with high clinical confidence would be expected to live for a notably longer or shorter time if their prognosis was good or grim based on the models, respectively. We conclude that clinical confidence could serve as a beneficial metric for personalized cancer prognosis prediction utilizing microarrays. Ascribing a confidence level to prognosis with the clinical confidence metric provides the clinician an objective, personalized basis for decisions, such as choosing the severity of the treatment

    Prediction of Distribution Network Line Loss Rate Based on Ensemble Learning

    Get PDF
    The distribution network line loss rate is a crucial factor in improving the economic efficiency of power grids. However, the traditional prediction model has low accuracy. This study proposes a predictive method based on data preprocessing and model integration to improve accuracy. Data preprocessing employs dynamic cleaning technology with machine learning to enhance data quality. Model integration combines long short-term memory (LSTM), linear regression, and extreme gradient boosting (XGBoost) models to achieve multi-angle modeling. This study employs regression evaluation metrics to assess the difference between predicted and actual results for model evaluation. Experimental results show that this method leads to improvements over other models. For example, compared to LSTM, root mean square error (RMSE) was reduced by 44.0% and mean absolute error (MAE) by 23.8%. The method provides technical solutions for building accurate line loss monitoring systems and enhances power grid operations

    Optimisation of the predictive ability of NIR models to estimate nutritional parameters in elephant grass through LOCAL algorithms

    Get PDF
    Elephant grass is a tropical forage widely used for livestock feed. The analytical techniques traditionally used for its nutritional evaluation are costly and time consuming. Alternatively, Near Infrared Spectroscopy (NIRS) technology has been used as a rapid analysis technique. However, in crops with high variability due to genetic improvement, predictive models quickly lose accuracy and must be recalibrated. The use of non-linear models such as LOCAL calibrations could mitigate these issues, although a number of parameters need to be optimized to obtain accurate results. The objective of this work was to compare the predictive results obtained with global NIRS calibrations and with LOCAL calibrations, paying special attention to the configuration parameters of the models. The results obtained showed that the prediction errors with the LOCAL models were between 1.6 and 17.5 % lower. The best results were obtained in most cases with a low number of selected samples (n = 100–250) and a high number of PLS terms (n = 20). This configuration allows a reduced computation time with high accuracy, becoming a valuable alternative for analytical determinations that require ruminal fluid, which would improve the welfare of the animals by avoiding the need to surgically prepare animals to estimate the nutritional value of the feeds

    Cross-Platform Comparison of Microarray-Based Multiple-Class Prediction

    Get PDF
    High-throughput microarray technology has been widely applied in biological and medical decision-making research during the past decade. However, the diversity of platforms has made it a challenge to re-use and/or integrate datasets generated in different experiments or labs for constructing array-based diagnostic models. Using large toxicogenomics datasets generated using both Affymetrix and Agilent microarray platforms, we carried out a benchmark evaluation of cross-platform consistency in multiple-class prediction using three widely-used machine learning algorithms. After an initial assessment of model performance on different platforms, we evaluated whether predictive signature features selected in one platform could be directly used to train a model in the other platform and whether predictive models trained using data from one platform could predict datasets profiled using the other platform with comparable performance. Our results established that it is possible to successfully apply multiple-class prediction models across different commercial microarray platforms, offering a number of important benefits such as accelerating the possible translation of biomarkers identified with microarrays to clinically-validated assays. However, this investigation focuses on a technical platform comparison and is actually only the beginning of exploring cross-platform consistency. Further studies are needed to confirm the feasibility of microarray-based cross-platform prediction, especially using independent datasets
    • …
    corecore