3,140 research outputs found

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Robust Speech Detection for Noisy Environments

    Get PDF
    This paper presents a robust voice activity detector (VAD) based on hidden Markov models (HMM) to improve speech recognition systems in stationary and non-stationary noise environments: inside motor vehicles (like cars or planes) or inside buildings close to high traffic places (like in a control tower for air traffic control (ATC)). In these environments, there is a high stationary noise level caused by vehicle motors and additionally, there could be people speaking at certain distance from the main speaker producing non-stationary noise. The VAD presented in this paper is characterized by a new front-end and a noise level adaptation process that increases significantly the VAD robustness for different signal to noise ratios (SNRs). The feature vector used by the VAD includes the most relevant Mel Frequency Cepstral Coefficients (MFCC), normalized log energy and delta log energy. The proposed VAD has been evaluated and compared to other well-known VADs using three databases containing different noise conditions: speech in clean environments (SNRs mayor que 20 dB), speech recorded in stationary noise environments (inside or close to motor vehicles), and finally, speech in non stationary environments (including noise from bars, television and far-field speakers). In the three cases, the detection error obtained with the proposed VAD is the lowest for all SNRs compared to AceroÂżs VAD (reference of this work) and other well-known VADs like AMR, AURORA or G729 annex b

    BaNa: a noise resilient fundamental frequency detection algorithm for speech and music

    Get PDF
    Fundamental frequency (F0) is one of the essential features in many acoustic related applications. Although numerous F0 detection algorithms have been developed, the detection accuracy in noisy environments still needs improvement. We present a hybrid noise resilient F0 detection algorithm named BaNa that combines the approaches of harmonic ratios and Cepstrum analysis. A Viterbi algorithm with a cost function is used to identify the F0 value among several F0 candidates. Speech and music databases with eight different types of additive noise are used to evaluate the performance of the BaNa algorithm and several classic and state-of-the-art F0 detection algorithms. Results show that for almost all types of noise and signal-to-noise ratio (SNR) values investigated, BaNa achieves the lowest Gross Pitch Error (GPE) rate among all the algorithms. Moreover, for the 0 dB SNR scenarios, the BaNa algorithm is shown to achieve 20% to 35% GPE rate for speech and 12% to 39% GPE rate for music. We also describe implementation issues that must be addressed to run the BaNa algorithm as a real-time application on a smartphone platform.Peer ReviewedPostprint (author's final draft

    Speech Recognition in Unknown Noisy Conditions

    Get PDF

    Spectral Reconstruction and Noise Model Estimation Based on a Masking Model for Noise Robust Speech Recognition

    Get PDF
    An effective way to increase noise robustness in automatic speech recognition (ASR) systems is feature enhancement based on an analytical distortion model that describes the effects of noise on the speech features. One of such distortion models that has been reported to achieve a good trade-off between accuracy and simplicity is the masking model. Under this model, speech distortion caused by environmental noise is seen as a spectral mask and, as a result, noisy speech features can be either reliable (speech is not masked by noise) or unreliable (speech is masked). In this paper, we present a detailed overview of this model and its applications to noise robust ASR. Firstly, using the masking model, we derive a spectral reconstruction technique aimed at enhancing the noisy speech features. Two problems must be solved in order to perform spectral reconstruction using the masking model: (1) mask estimation, i.e. determining the reliability of the noisy features, and (2) feature imputation, i.e. estimating speech for the unreliable features. Unlike missing data imputation techniques where the two problems are considered as independent, our technique jointly addresses them by exploiting a priori knowledge of the speech and noise sources in the form of a statistical model. Secondly, we propose an algorithm for estimating the noise model required by the feature enhancement technique. The proposed algorithm fits a Gaussian mixture model to the noise by iteratively maximising the likelihood of the noisy speech signal so that noise can be estimated even during speech-dominating frames. A comprehensive set of experiments carried out on the Aurora-2 and Aurora-4 databases shows that the proposed method achieves significant improvements over the baseline system and other similar missing data imputation techniques

    Automatic Speech Recognition Using LP-DCTC/DCS Analysis Followed by Morphological Filtering

    Get PDF
    Front-end feature extraction techniques have long been a critical component in Automatic Speech Recognition (ASR). Nonlinear filtering techniques are becoming increasingly important in this application, and are often better than linear filters at removing noise without distorting speech features. However, design and analysis of nonlinear filters are more difficult than for linear filters. Mathematical morphology, which creates filters based on shape and size characteristics, is a design structure for nonlinear filters. These filters are limited to minimum and maximum operations that introduce a deterministic bias into filtered signals. This work develops filtering structures based on a mathematical morphology that utilizes the bias while emphasizing spectral peaks. The combination of peak emphasis via LP analysis with morphological filtering results in more noise robust speech recognition rates. To help understand the behavior of these pre-processing techniques the deterministic and statistical properties of the morphological filters are compared to the properties of feature extraction techniques that do not employ such algorithms. The robust behavior of these algorithms for automatic speech recognition in the presence of rapidly fluctuating speech signals with additive and convolutional noise is illustrated. Examples of these nonlinear feature extraction techniques are given using the Aurora 2.0 and Aurora 3.0 databases. Features are computed using LP analysis alone to emphasize peaks, morphological filtering alone, or a combination of the two approaches. Although absolute best results are normally obtained using a combination of the two methods, morphological filtering alone is nearly as effective and much more computationally efficient
    • …
    corecore