9,996 research outputs found

    Causality and the semantics of provenance

    Full text link
    Provenance, or information about the sources, derivation, custody or history of data, has been studied recently in a number of contexts, including databases, scientific workflows and the Semantic Web. Many provenance mechanisms have been developed, motivated by informal notions such as influence, dependence, explanation and causality. However, there has been little study of whether these mechanisms formally satisfy appropriate policies or even how to formalize relevant motivating concepts such as causality. We contend that mathematical models of these concepts are needed to justify and compare provenance techniques. In this paper we review a theory of causality based on structural models that has been developed in artificial intelligence, and describe work in progress on a causal semantics for provenance graphs.Comment: Workshop submissio

    Distributed Ledger for Provenance Tracking of Artificial Intelligence Assets

    Full text link
    High availability of data is responsible for the current trends in Artificial Intelligence (AI) and Machine Learning (ML). However, high-grade datasets are reluctantly shared between actors because of lacking trust and fear of losing control. Provenance tracing systems are a possible measure to build trust by improving transparency. Especially the tracing of AI assets along complete AI value chains bears various challenges such as trust, privacy, confidentiality, traceability, and fair remuneration. In this paper we design a graph-based provenance model for AI assets and their relations within an AI value chain. Moreover, we propose a protocol to exchange AI assets securely to selected parties. The provenance model and exchange protocol are then combined and implemented as a smart contract on a permission-less blockchain. We show how the smart contract enables the tracing of AI assets in an existing industry use case while solving all challenges. Consequently, our smart contract helps to increase traceability and transparency, encourages trust between actors and thus fosters collaboration between them

    ARCHANGEL: Tamper-proofing Video Archives using Temporal Content Hashes on the Blockchain

    Get PDF
    We present ARCHANGEL; a novel distributed ledger based system for assuring the long-term integrity of digital video archives. First, we describe a novel deep network architecture for computing compact temporal content hashes (TCHs) from audio-visual streams with durations of minutes or hours. Our TCHs are sensitive to accidental or malicious content modification (tampering) but invariant to the codec used to encode the video. This is necessary due to the curatorial requirement for archives to format shift video over time to ensure future accessibility. Second, we describe how the TCHs (and the models used to derive them) are secured via a proof-of-authority blockchain distributed across multiple independent archives. We report on the efficacy of ARCHANGEL within the context of a trial deployment in which the national government archives of the United Kingdom, Estonia and Norway participated.Comment: Accepted to CVPR Blockchain Workshop 201

    Security Aspects in Web of Data Based on Trust Principles. A brief of Literature Review

    Get PDF
    Within scientific community, there is a certain consensus to define "Big Data" as a global set, through a complex integration that embraces several dimensions from using of research data, Open Data, Linked Data, Social Network Data, etc. These data are scattered in different sources, which suppose a mix that respond to diverse philosophies, great diversity of structures, different denominations, etc. Its management faces great technological and methodological challenges: The discovery and selection of data, its extraction and final processing, preservation, visualization, access possibility, greater or lesser structuring, between other aspects, which allow showing a huge domain of study at the level of analysis and implementation in different knowledge domains. However, given the data availability and its possible opening: What problems do the data opening face? This paper shows a literature review about these security aspects

    Security Aspects in Web of Data Based on Trust Principles. A brief of Literature Review

    Get PDF
    Within scientific community, there is a certain consensus to define "Big Data" as a global set, through a complex integration that embraces several dimensions from using of research data, Open Data, Linked Data, Social Network Data, etc. These data are scattered in different sources, which suppose a mix that respond to diverse philosophies, great diversity of structures, different denominations, etc. Its management faces great technological and methodological challenges: The discovery and selection of data, its extraction and final processing, preservation, visualization, access possibility, greater or lesser structuring, between other aspects, that allow showing a huge domain of study at the level of analysis and implementation in different knowledge domains. However, given the data availability and its possible opening: What problems do the data opening face? This paper shows a literature review about these security aspects

    Blockchain for Healthcare: Securing Patient Data and Enabling Trusted Artificial Intelligence

    Get PDF
    Advances in information technology are digitizing the healthcare domain with the aim of improved medical services, diagnostics, continuous monitoring using wearables, etc., at reduced costs. This digitization improves the ease of computation, storage and access of medical records which enables better treatment experiences for patients. However, it comes with a risk of cyber attacks and security and privacy concerns on this digital data. In this work, we propose a Blockchain based solution for healthcare records to address the security and privacy concerns which are currently not present in existing e-Health systems. This work also explores the potential of building trusted Artificial Intelligence models over Blockchain in e-Health, where a transparent platform for consent-based data sharing is designed. Provenance of the consent of individuals and traceability of data sources used for building and training the AI model is captured in an immutable distributed data store. The audit trail of the data access captured using Blockchain provides the data owner to understand the exposure of the data. It also helps the user to understand the revenue models that could be built on top of this framework for commercial data sharing to build trusted AI models
    • 

    corecore