74 research outputs found

    Searching force-closure optimal grasps of articulated 2D objects with n links

    Get PDF
    This paper proposes a method that finds a locally optimal grasp of an articulated 2D object with n links considering frictionless contacts. The surface of each link of the object is represented by a finite set of points, thus it may have any shape. The proposed approach finds, first, an initial force-closure grasp and from it starts an iterative search of a local optimum grasp. The quality measure considered in this work is the largest perturbation wrench that a grasp can resist with independence of the direction of the perturbation. The approach has been implemented and some illustrative examples are included in the article.Postprint (published version

    A control basis for learning multifingered grasps

    Get PDF

    Constructing minimum deflection fixture arrangements using frame invariant norms

    Get PDF
    This paper describes a fixture planning method that minimizes object deflection under external loads. The method takes into account the natural compliance of the contacting bodies and applies to two-dimensional and three-dimensional quasirigid bodies. The fixturing method is based on a quality measure that characterizes the deflection of a fixtured object in response to unit magnitude wrenches. The object deflection measure is defined in terms of frame-invariant rigid body velocity and wrench norms and is therefore frame invariant. The object deflection measure is applied to the planning of optimal fixture arrangements of polygonal objects. We describe minimum-deflection fixturing algorithms for these objects, and make qualitative observations on the optimal arrangements generated by the algorithms. Concrete examples illustrate the minimum deflection fixturing method. Note to Practitioners-During fixturing, a workpiece needs to not only be stable against external perturbations, but must also stay within a specified tolerance in response to machining or assembly forces. This paper describes a fixture planning approach that minimizes object deflection under applied work loads. The paper describes how to take local material deformation effects into account, using a generic quasirigid contact model. Practical algorithms that compute the optimal fixturing arrangements of polygonal workpieces are described and examples are then presented

    Modeling and grasping of thin deformable objects

    Get PDF
    Deformable modeling of thin shell-like and other objects have potential application in robot grasping, medical robotics, home robots, and so on. The ability to manipulate electrical and optical cables, rubber toys, plastic bottles, ropes, biological tissues, and organs is an important feature of robot intelligence. However, grasping of deformable objects has remained an underdeveloped research area. When a robot hand applies force to grasp a soft object, deformation will result in the enlarging of the finger contact regions and the rotation of the contact normals, which in turn will result in a changing wrench space. The varying geometry can be determined by either solving a high order differential equation or minimizing potential energy. Efficient and accurate modeling of deformations is crucial for grasp analysis. It helps us predict whether a grasp will be successful from its finger placement and exerted force, and subsequently helps us design a grasping strategy. The first part of this thesis extends the linear and nonlinear shell theories to describe extensional, shearing, and bending strains in terms of geometric invariants including the principal curvatures and vectors, and the related directional and covariant derivatives. To our knowledge, this is the first non-parametric formulation of thin shell strains. A computational procedure for the strain energy is then offered for general parametric shells. In practice, a shell deformation is conveniently represented by a subdivision surface. We compare the results via potential energy minimization over a couple of benchmark problems with their analytical solutions and the results generated by two commercial softwares ABAQUS and ANSYS. Our method achieves a convergence rate an order of magnitude higher. Experimental validation involves regular and freeform shell-like objects (of various materials) grasped by a robot hand, with the results compared against scanned 3-D data (accuracy 0.127mm). Grasped objects often undergo sizable shape changes, for which a much higher modeling accuracy can be achieved using the nonlinear elasticity theory than its linear counterpart. The second part numerically studies two-finger grasping of deformable curve-like objects under frictional contacts. The action is like squeezing. Deformation is modeled by a degenerate version of the thin shell theory. Several differences from rigid body grasping are shown. First, under a squeeze, the friction cone at each finger contact rotates in a direction that depends on the deformable object\u27s global geometry, which implies that modeling is necessary for grasp prediction. Second, the magnitude of the grasping force has to be above certain threshold to achieve equilibrium. Third, the set of feasible finger placements may increase significantly compared to that for a rigid object of the same shape. Finally, the ability to resist disturbance is bounded in the sense that increasing the magnitude of an external force may result in the breaking of the grasp

    Structured manifolds for motion production and segmentation : a structured Kernel Regression approach

    Get PDF
    Steffen JF. Structured manifolds for motion production and segmentation : a structured Kernel Regression approach. Bielefeld (Germany): Bielefeld University; 2010

    \u3cem\u3eGRASP News\u3c/em\u3e, Volume 6, Number 1

    Get PDF
    A report of the General Robotics and Active Sensory Perception (GRASP) Laboratory, edited by Gregory Long and Alok Gupta

    Evaluation of graphical user interfaces for augmented reality based manual assembly support

    Get PDF
    Augmented reality (AR) technology is advancing rapidly and promises benefits to a wide variety of applications&mdashincluding manual assembly and maintenance tasks. This thesis addresses the design of user interfaces for AR applications, focusing specifically on information presentation interface elements for assembly tasks. A framework was developed and utilized to understand and classify these elements, as well as to evaluate numerous existing AR assembly interfaces from literature. Furthermore, a user study was conducted to investigate the strengths and weaknesses of concrete and abstract AR interface elements in an assembly scenario, as well as to compare AR assembly instructions against common paper-based assembly instructions. The results of this study supported, at least partially, the three hypotheses that concrete AR elements are more suitable to convey part manipulation information than abstract AR elements, that concrete AR and paper-based instructions lead to faster assembly times than abstract AR instructions alone, and that concrete AR instructions lead to greater increases in user confidence than paper-based instructions. The study failed to support the hypothesis that abstract AR elements are more suitable for part identification than concrete AR elements. Finally, the study results and hypothesis conclusions are used to suggest future work regarding interface element design for AR assembly applications
    • …
    corecore