
                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Ruiz Libreros, Eduardo D

Title:
A geometric approach for fast affordance determination in 3D

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



A geometric approach for fast affordance
determination in 3D

By

EDUARDO DANIEL RUIZ LIBREROS

Department of Computer Science
UNIVERSITY OF BRISTOL

A dissertation submitted to the University of Bristol in ac-
cordance with the requirements of the degree of DOCTOR OF

PHILOSOPHY in the Faculty of Engineering.

MARCH 2019

Word count: 33 681





ABSTRACT

Visual perception for robotics aims to provide robots with the relevant information about the

environment such that they can interact with it, understand it and accomplish tasks successfully.

Thus, agents that need to act on their surroundings can significantly benefit from the perception

of their interaction possibilities or affordances. The concept of affordances calls for an approach

to visual perception that is free from complex representations, and that is there to help the agent

to interact with the world.

This thesis presents an approach for the determination of affordances in visually perceived

3D environments. The introduced method builds on the hypothesis that geometry on its own

provides enough information to enable the detection of significant interaction possibilities in the

environment. The motivation behind this is that geometric information is intimately related to

the physical interactions afforded by objects in the world.

The work presented in this thesis introduces a geometrical representation for the interaction

between two entities in 3D space. The nature of the approach provides the possibility to generically

describe interactions for everyday objects such as a mug or an umbrella, and also for more complex

affordances such as Sitting or Riding. Experiments with numerous synthetic and RGB-D scenes

show that the representation enables the prediction of affordance candidate locations in novel

environments at fast rates and from a single training example, i.e. one-shot learning. Then, it

is shown that the one-shot capability of the proposed approach and the abstraction power of

state-of-the-art data-driven methods allow to devise a compact and optimised representation for

the detection of multiple affordances in any given location. Experiments and evaluations show

that the proposed algorithms achieve high precision rates that outperform alternative methods.

The evaluations include human validations via crowdsourcing, which show the meaningfulness

of the affordance predictions made with the proposed algorithm.
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INTRODUCTION

To perceive an affordance is not to

classify an object

James J. Gibson [1]

Whereas recognising objects or entities in a scene is an important competence of intelligent

agents, a lot more is needed for visual scene understanding. For cognitive agents (e.g. robots) that

need to interact with their surroundings, it can result more useful to reason and learn based on

functional properties or affordances. The concept of affordance was coined by James J. Gibson

[1] more than five decades ago in the field of ecological psychology. For Gibson, affordances are

action opportunities in the environment that are directly perceived by the observer. According to

this, the goal of vision was to recognise the affordances rather than elements or objects in the

scene. Even David Marr, who provided early efforts to computationally address the problem of

visual recognition [2], posed the question of what type of information does vision really convey?.

According to Gibson and Marr, the visual perception problem becomes that of recovering the valid

properties "offered" by the environment.

Over the last couple of decades, the affordance concept has evolved and has been adopted in

multiple fields such as robotics, computer vision, artificial intelligence and psychology; bringing

different views or interpretations on what an affordance actually is. To some extent, the general

agreement is that affordances are "relations" taking place in the environment: between the
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environment and an agent, or relations in the environment perceived by an observer.

Being linked with visual perception and perhaps motivated by the top-down view adopted

in computer vision research, much of the attention given to the problem of affordances has

focused on the recovery of complex representations of the world, internal symbolic relationships

or semantic category information, which undermines the idea of direct and economical perception

of affordances proposed by Gibson. The idea of being able to directly determine affordances

has faced many dilemmas, namely the challenging problems of visually recovering the relevant

properties of the environment in a robust and accurate manner.

The problems of visually recovering the “valid” properties of the environment that allow to

detect affordances are further accentuated in robotics, due to the fact that robots need to be able

to work in environments that are cluttered, unstructured and unknown. Developing a system that

is able to work under these conditions is a difficult problem; more so when traditional affordance

detection approaches often need to recognise objects semantically in the environment or have

previously extensively trained for as many cases (examples) as possible in order to generalise

to novel scenarios. Robots would benefit from affordance detection approaches that do not rely

on object recognition, nor environment’s features costly to estimate; dropping or relaxing such

requirements in the perception system can allow robots to have greater generalisation capabilities

enabling them to accomplish their task efficiently.

Following Gibson’s idea of direct perception of affordances, and motivated by studies in

neuroscience showing that affordance detection does not require semantic reasoning [3–6]; we

hypothesise that geometric information or shape provides enough information for an agent to

directly perceive the interaction opportunities in its environment. Notably, this has support on

research showing that parts of the brain involved in the visual perception of affordances rely on

shape, size, and depth properties of objects in the environment [7–9].

Particularly, this thesis is concerned with the detection of affordances between two entities

in the environment; more specifically, static interactions between generic pairs of solid entities

in 3D space, i.e. pointclouds. Examples of this detection scenario are the prediction of suitable

locations for a coat-hanger that needs to be hanged or a glass that needs to be filled (e.g. with

water). Moreover, the methods here proposed also allow to consider a model of a human body for

the detection of suitable places for sitting or riding a motorcycle.

2



Briefly speaking, the methods here presented would allow a robot to enter into a never-before-

seen environment and detect candidate locations for multiple interactions such as Hanging a

handbag, Placing a bottle, etc. Among the main characteristic of the proposed representation

is the fact that it remains agnostic to semantic categories, complex surface features and that

is able to generalise to completely novel environment training from a single demonstrated

interaction. Furthermore, the method does not rely on the scene or the objects in isolation but

in the interactions of both. This is achieved by hallucinating the interactions in the scene; thus,

the system does not know in advance if a region in the input scenario affords the interaction.

Detections are made online at fast rates by investigating, via the proposed descriptor, the

likelihood of the interaction taking place at a region of interest. We argue that the aforementioned

characteristics align well with Gibson’s idea of direct perception of affordances.

An example scenario of the problem of affordance determination in 3D environments tackled

in this thesis is shown in Figure 1.1. The same Figure shows examples of the type of predictions

made by the proposed approach; the detections shown in the bottom image correspond to Placing

a bottle (orange), a bowl(blue), Hanging a coat-hanger (green) and handbag (yellow).

Figure 1.1: The affordance detection approach presented in this thesis enables a robot to go into a
completely unknown environment and predict good candidate locations affording to Place, Hang,

Fill, etc. everyday objects such as bowls, mugs, bottles, handbags, and more. The method allows
the agent to give an answer to perceptual questions like: “Where can I hang a handbag?”, or more
generally “What can I afford to here?”. All this from a single interaction example obtained with
different and synthetic 3D models.
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1.1 Contributions

In summary, the contributions made with the research reported in this thesis are:

• A 3D geometrical representation for the characterisation of interactions between two rigid

entities in space: The Interaction Tensor.

• An affordance descriptor and similarity function that enable to quickly evaluate the likeli-

hood of an interaction taking place in completely novel RGB-D scenarios.

• A scalable one-shot learning algorithm that allows to efficiently query multiple affordances

at any given location in novel environments without compromising detection speed or

quality.

• A hybrid approach that combines data-driven abstraction power and rich geometric informa-

tion to learn compact, multiple-affordance representations allowing to predict meaningful

interaction opportunities at high frame rates.

1.2 Overview of the thesis

The work presented in this thesis is organised as follows:

Chapter 2 In this chapter can be found a review of previous approaches to the problem of

affordance detection and learning. The key concepts and background on affordances in psychol-

ogy and neuroscience are presented. After reviewing the most relevant works in robotics and

computer vision, another source of inspiration is introduced: interactions and functionality in

computer graphics. Finally, the key aspects that motivated the approach proposed in the thesis

are discussed.

Chapter 3 This chapter presents the core of the proposed representation for affordance

detection. Here are introduced the details regarding the characterisation of the interaction

between any given pair of objects: the interactions tensor. Examples of the representation are

provided for five generic interactions, namely: Filling, Hanging, Placing, Sitting and Riding.

Later, it is shown how this geometrical representation can be employed to devise a descriptor for

affordance determination in 3D environments.

Chapter 4 Starts by describing the one-shot learning algorithm that leverages the interac-

tion tensor to detect affordances in novel (i.e. unknown) synthetic scenes and RGB-D scans of
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real indoor environments. Then, this chapter shows that by efficiently clustering single example

interactions, it is possible to obtain a scalable, multiple-affordance representation able to work at

high frame rates and producing top quality predictions as validated with human criteria.

Chapter 5 In this chapter is introduced the hybrid approach that allows to devise an

optimised multiple-affordance representation. The proposed approach leverages a state-of-the-

art data-driven method to efficiently parse the 3D input, learning key locations that inform

the iT method of "where to look" while predicting multiple affordances, i.e. keypoint sampling.

Evaluations and comparisons with alternative methods are presented, including examples of

affordance detection on publicly available datasets.

Chapter 6 This application chapter shows that the proposed approach is suitable for

robotic and augmented reality systems due to the fast rates at which predictions are performed.

Robotic simulation examples are provided showing how a robotic platform could benefit from

fast affordance detection in unknown environments. Then, the affordance lantern concept is

introduced, which allows to augment a real indoor environment with dynamically discovered

affordances, i.e. affordance-based scene augmentation.

Chapter 7 This final chapter contains the conclusions and final discussion regarding this

research. The key contributions and limitations of the current work are summarised, and avenues

for future work are proposed.

1.3 Publications

This thesis is primarily based on the work from the following publications:

1. E. Ruiz, and W. Mayol-Cuevas,Where can I do this? Geometric Affordances from a Single

Example with the Interaction Tensor, in Robotics and Automation (ICRA),2018 IEEE

International Conference on, pp. 2192-2199

2. E. Ruiz, and W. Mayol-Cuevas,What can I do here? Leveraging Deep 3D saliency and

geometry for fast and scalable multiple affordance detection, Manuscript in preparation.

arXiv:1812.00889. 2019.
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LITERATURE REVIEW

2.1 Introduction

Affordances relate to the possible actions that are directly perceived in the environment by an

agent. The concept was coined in 1967 by American psychologist James J. Gibson. Since then,

and especially over the last couple of decades, many attempts have been made to develop systems

that incorporate such perception idea. One major challenge when investigating affordances in

robotics, artificial intelligence or computer vision is the many interpretations that have been

made of Gibson’s ideas. Even Gibson himself made multiple attempts to develop the concept of

affordances. On a first approach [10] he writes:

“ When the constant properties of constant objects are perceived (the shape, size,

colour, texture, composition, motion, animation, and position relative to other objects),

the observer can go on to detect their affordances. I have coined this word as a substitute

for values, a term which carries an old burden of philosophical meaning. I mean simply

what things furnish, for good or ill. What they afford the observer, after all, depends

on their properties.” (p.285)

Which seems to attribute the idea of affordances primarily to the detection of properties of

the environment by an observer. Then, in his later work [1], Gibson continues to develop the idea:
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“The affordances of the environment are what it offers the animal, what it provides

or furnishes, either for good or ill. The verb to afford is found in the dictionary, but the

noun affordance is not. I have made it up. I mean by it something that refers to both

the environment and the animal in a way that no existing term does. It implies the

complementarity of the animal and the environment” (p. 127)

“...But I now suggest that what we perceive when we look at objects are their

affordances, not their qualities. We can discriminate the dimensions of difference if

required to do so in an experiment, but what the object affords us is what we normally

pay attention to. The special combination of qualities into which an object can be

analysed is ordinarily not noticed.”(p.134)

In this work Gibson seems to build on the idea of an animal-environment system, where they

compliment each other; therefore affordances do not exist only as properties of the environment

(e.g. colour, texture, size, shape) as Gibson first suggested. These contrasting views gave way to a

controversial debate regarding the true nature of the affordance concept. In fact, just within the

last decade efforts have been made [11–15] to revisit and organise the several works that have

tackled the affordance problem in robotics, computer vision and artificial intelligence.

In the following section, a brief overview of the definitions and formalisms of affordances is

presented. Following that, evidence from neuroscience studies regarding affordance perception

and learning are introduced. Then, the most relevant works on robotics and computer vision

are discussed. Finally, other approaches outside these latter fields but also studying agent and

environment interactions are presented.

2.2 Affordance Theory

Michael T. Turvey [16] defined affordances as the dispositional properties of the environment that

only under specific circumstances become evident, e.g. the presence of an agent. He considers

affordances central to prospective control, guiding the agent’s planning or behaviour by informing

about the possible actions to perform. In contrast to Gibson’s idea of direct perception, Vera

and Simon [17] argue that an affordance is not merely a property of the physical environment

but rather an internal semantic mapping (e.g. symbol) encoding functionality in terms of visual

display, where the complex visual display is produced by the physical scene that is being observed.
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Notably, their view coincides with Gibson’s first proposal of affordances being nested in the

environment.

The purpose of affordances is to satisfy the needs of an agent. That is the claim of Shaw [18],

whose view on affordances is that they provide the harnesses for directing causes, i.e. a source

of information for the agent to make decisions, which are complemented by effectiveness. In

this view, affordances remain dormant in the environment until complemented by the agent’s

effectivities. Ultimately, the argument follows the idea that affordances are referenced in the

environment.

Contrary to the latter views, Heft [19] sees affordances as dynamic functional relationships

between the environment and agent-related factors such as physical attributes (e.g. body size,

strength, posture), intentionality and perceptual learning. This point of view sees affordances

available percepts that an individual “picks-up” in a historical and reciprocal series of processes.

The idea of the agent-environment system is also shared by Stoffregen [20], who defines affor-

dances as emergent properties that do not reside in either the environment nor the agent alone.

In contrast to Turvey, Stoffregen argues that if affordances were only in the environment, the

agent would need to reason, or infer from other sources of information, the actions available to

him; a process that would contradict Gibson’s direct perception of affordances.

This agent-environment system is also considered in the definition of Chemero [21], yet not

as properties but as relations between specific aspects of the involved parts. He defines the

affordance perception process as the placement of features in the environment, meaning that

perceiving an affordance is a matter of perceiving that the situation has a certain feature that

supports a certain kind of action. In his work, Chemero argues that affordances exist without

the presence of an agent, however, in order to describe and study the real physical entity, an

affordance requires the potential existence of at least one observer that can perceive it Similarly,

the definition brought up by Michaels [22], regards affordances as existing independently from

perception but subjective to the agent. The agent is needed to actualise or make affordances

manifest via its effectivities.

Finally, one of the most popular definitions of affordance comes from industrial design. Here,

Norman [23] merges concepts of ecological psychology and ergonomics to define affordances as

the properties of objects that make visible how they can be used. Whether perceived or real, these

properties should easily convey information about the actions that are possible to perform with
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the object being designed.

2.2.1 Computational Formalisms

Efforts have also been made to formalise the concept of affordances in the areas of computer

science, artificial intelligence and robotics; thou often ignoring the problem of perception. One

of such formalisms was provided by Steedman [24], who uses Linear Dynamic Event Calculus

to provide a computational interpretation of affordances. In this formalism, actions related to

objects are linked to events in the environment; thus, Steedman considers pre-conditions, actions

and post-conditions that allow for action planning by forward-chaining. Noticeably, this formalism

uses the concept of object entities (e.g. door) but does not make any link with the perception

aspect. Examples of an action/event function in Steedman’s formalism would be if x is shut

and you push it, it becomes open (and vice versa) and if you are in and you go through x then

you become out. The set of such functions for a particular object constitutes its affordances, for

instance: if x ← door , af f ordances(door)= 〈push, go− through〉.

Remarkably, one of the most used formalisms in robotics is the one proposed by Sahin et al.

[25]. Taking inspiration from Chemero, affordances are viewed as relations between an agent and

the environment. Using a symbolic notation of the form (effect,(entity,behaviour)), this formalism

describes the effect of applying certain behaviour to an entity; such representation would allow

an agent to build a knowledge base based on its experiences.

One more popular formalism is that of Montesano et al. [26], who proposed a developmental

formalisation that uses a probabilistic representation for affordances: Bayesian Networks. In this

formalism the nodes of the network represent motor actions A , robot features Fr, object features

Fo and perceived effects E ; the edges of the network are the parameters of the conditional

probability distributions. Once the structure of the network and the parameters (edges) can be

learned/updated by robot exploration or observations, which allows for the computation of e.g.

the probability of observing effects given a robot action a for object features f : p(E |A = a,Fo = f).

Finally, one more relevant formalisation is that of the Object-Action Complexes (OACs) [27].

OACs attempt to link low-level sensorimotor knowledge with higher-level reasoning, which allows

for planning in cognitive systems. Kruger et al. define OACs as triplets of the form (E,T, M)

which refer to motor executions E, a function prediction about the environment’s state change

after executing E, and a statistical measure M of the success of previous executions. In this
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formalism, affordances are considered implicitly in the prediction function, since T only maps

the relevant portions of the environment, e.g. the perceptual invariants of affordances.

2.3 Evidence from Neuroscience

As discussed by Jamone et al. [14], studies in neuroscience supporting the concept of affordance

have provided evidence which can be summarized in : i) the fast perception of the object properties

that are related to actions, ii) that there is a strong link between actions and perception represen-

tations and, iii) that recognition and semantics are not required to perceive the affordances of

objects.

Visual information in primate cerebral cortex follows two separate pathways in order to be

processed [3, 28–30]. Semantic information about objects such as categorisation and recognition

is processed by the ventral pathway [4]; whereas information to control actions such as grasping

or reaching is processed comparatively faster [31] by the dorsal pathway [32]. Specifically, the

dorsal pathway carries out important sub-processes for affordance representation [33], i.e. the

representation of geometric features such as depth, surface and axis [9].

Neurons in the ventro-dorsal substream respond to somatosensory (e.g. sensation of pain,

temperature, touch, proprioception) and visual stimuli [34]. More precisely, F5 neurons are

involved in the organisation of grasping, manipulation and movements that require space [34];

actions that according to Jeannerod et al. [7] require computations of size and shape of the

objects.

Murata et al. [35], conducted experiments with monkeys and tested four conditions: object

grasping in light, object grasping in the dark, object fixation, and fixation of a spot of light. In this

work, two types of neurons were identified: motor and visuomotor neurons. Their results showed

that a high percentage of F5 neurons responded to the presentation of 3D graspable objects; the

response was present even in the absence of subsequent movement towards the objects. Later,

further distinctions in the F5 visuomotor neurons were made [36]: canonical neurons responding

to observation of 3D objects and mirror neurons responding to action observation. In a more

recent work [8], it was detected that F5 visuomotor neurons are involved with the perception of

orientation, size and form (e.g. of the object or hand) that are relevant for the visual control of

movements.
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Perhaps even more interesting are the similarities shared with studies on human subjects.

For instance, the detection of motor neuron activations shortly after observing graspable objects

[37], which is more pronounced when the objects being observed are within reachable space [38].

As for semantics, although studies showed that both visual pathways interact in visually

guided behaviours [39], experiments have demonstrated that motor affordances (e.g. action

related regions of the brain) are more activated by visual stimuli from the objects’ physical

appearance rather than semantic category [40], objects’ name or symbols (i.e. written words) [41]

2.4 Affordances in Robotics

Works considering affordance perception appeared in the computer vision and robotics commu-

nities during the early 1990 decade [42, 43]. Since then and over the last 20 years, these fields

have given an important amount of attention to the study of affordances. One main benefit of

the affordance concept in these fields is the potential to alleviate the need for complex models of

the world, allowing the systems to focus on the most informative or task-relevant regions of the

environment.

Horton et al. [11] made an early review of works in robotics and artificial intelligence that

incorporated ideas from affordance perception and learning. In Horton’s review can be found

that roboticists were already considering the ecological design of agents, even before affordances

became a popular topic in the area. Robotic systems where simple yet efficient perception systems

were tightly coupled to mechanisms for planning and acting; for instance, the work of Brooks

[44], who took inspiration from ideas of reactive or behaviour-based robotics and developmental

robotics.

In fact, a big body of research in affordances for robots comes from the developmental robotics

field [12, 14, 45, 46]. This area of robotics takes inspiration from studies in ecological psychology

and psychophysics about the developmental principles observed in children in order to design

cognitive and behavioural capabilities for robots; for instance, using sensorimotor knowledge,

attentional mechanisms as well as factors related to the environment and the robot interactions.

Generally speaking, the focus of affordances in developmental robotics is on the representation

and learning of robot’s actions and their consequences in the environment. The early work of

Fitzpatrick and colleagues [47, 48], showed that a robot is able to learn rollability and replicate

demonstrations by executing exploratory actions (e.g. push and pull) on four different objects.
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Another important amount of research has been dedicated to the detection and learning

of grasping affordances, which is a key skill for robots that need to interact with the world.

However, only those works that explicitly work under the affordance concept are briefly reviewed.

Lastly, works that do not investigate grasping-only affordances or do not involve a robot actively

interacting with the environment are discussed. Example of these systems are approaches that

work towards understanding what the environment affords to humans; for instance, in the field

of Human-Robot Interaction. Another example of works that are presented in Subsection 2.4.3 is

those aiming to understand the affordances of tools by “observing” examples of these tools.

2.4.1 Affordances from robot exploration

Here are introduced works in robotics research where the direct perception of affordances is

translated into a direct linkage between sensory data and motor skills. A first example of this

is the work of Fritz et al. [49], who used a crane-like robot with the ability to pick objects up in

order to learn lift-ability affordances based on the objects’ appearance (e.g. colour) and pose (i.e.

distance and orientation). The system is then extended to use generic visual features, i.e. Scale

Invariant Feature Transform (SIFT)[50], in a reinforcement learning framework [51].

Another group of works studied the problem of robot navigation, where the concept of

traversability affordance was used to allow robots to navigate in indoor and outdoor environments.

A good amount of approaches [52–56] build on the formalism for affordance learning introduced

by Sahin et al. [25], this allowed a mobile robot to navigate indoor environments using basic

behaviours (e.g. turns, go-forward). Objects with regular geometries such as boxes, spheres and

cylinders are perceived and avoided by computing shape features (e.g. surface normal vectors)

and distances from a depth image. The outdoor navigation problem is studied by Kim et al. [57],

who represented the world by visual appearance features of the environment (Law’s masks [58])

and geometric information (xyz coordinates) using a stereo camera system. The model is then

extended[59] to include move-ability and support-ability affordances which are grouped into

categories identifiable as ground, table, rollable, pushable, amongst others.

Hermans et al. [60–63] proposed a method to learn push-able and pull-able affordances for

objects in a table-top manipulation task. The robot learns a mapping from the state of the world

(e.g. object shape features) to the contact location that best achieves the desired trajectory. The

object’s shape features capture the contact-point local shape and the object’s global shape using
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2D projection over the table.

The work of Montesano et al. [26, 64, 65] studied the problem of affordance learning as a

problem of structure learning, representing affordances as the (probabilistic) relations between

actions, objects, and effects. The object-effect-action relations are shown in Figure 2.1, with this

model a robot is able to learn a mapping between basic exploratory actions, such as tap and grasp,

and the effects that those actions have on an object.

Figure 2.1: Relations between objects(O), actions(A) and effects(E) for affordance learning in
works such as [26, 64–69]. Figure taken from [65]

Multiple works [66–69] have built on this model and have used statistical relational learning

to encode relations between (afforded) actions and percepts. The experiments showed that the

robot is able to replicate demonstrations of humans interacting with an object by exploiting the

acquired knowledge. Moreover, the model is extended by encoding the effects of single-object

actions relative to other objects, which allows the robot to learn two-object relational affordances

[66], higher-level manipulation actions such as makeSpace or moveAround [67], and two-arm

manipulation [69]. In [68] a list of object properties and afforded-actions is used by a similar model

to learn co-occurrence probabilities for occluded object search. The affordance model Montesano

et al. is further developed to account for co-occurrence of verbal(speech) descriptions [70].

To a certain extent, these earlier approaches do not focus on the perception problem and

assume knowledge about the (simulated) scene, where the objects’ shape (e.g. cylinder, prism, etc.),

position, size and type (e.g. glass, cup, bowl) is provided by the simulator [68, 69]. Alternatively,

the simulations consider a stereo camera system that allows to localise objects in 3D space using
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colour segmentation and triangulation [66, 67].

Relational affordances have also been studied for learning tool usage [71–79]. In these

approaches, the main idea is to learn, also via exploration, the effect that one object (i.e. tool) has

over or relative to another. These systems focus on capturing the position and shape of objects in

table-top manipulation scenario to plan and achieve a target effect or object configuration, the

state of the environment (i.e. objects) is represented by 2D shape features of colour segmented

blobs. Features such as area, convexity, circleness, squareness etc. are considered to identify

objects in [73, 74, 77, 79]. More complex feature combinations [76] and more tool options [80] are

considered by Mar and colleagues, who additionally take into account the way in which the tools

are grasped (e.g. rotation around handle). In [72] the system leverages several modules for object

segmentation, detection and recognition to represent and track the effects of the tools over other

objects. Figure 2.2 shows an example scenario of these approaches.

Figure 2.2: Images show a typical scenario for relational affordance detection for tool usage
learning. Image on the left shows the visual perception system (i.e. object segmentation and
tracking). Image on the right shows an interaction example where a robot is asked to grasp an
object. The robot has learned that a particular tool allows him to bring the target closer. Images
taken from [78] and [72] respectively.

Griffith et al. [81, 82] showed a robot able to learn objects’ contain-ability affordance. Similar

to the previous works, the robot executes a series of basic behaviours such as pushing, grasping,

dropping, etc. and visually [83], or visually and acoustically [81] identifies the effect of apply-

ing such behaviours. The system is able to classify objects as containers or non-containers by

(unsupervised) clustering the features observed after interacting with objects.

Similarly, works have used low-level learned behaviours to bootstrap complex affordance
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learning (e.g. stackability) [84–88]. Here, a robot learns rules and object-effect categories (rollable,

unstable, hollow, solid, inserted, etc.) that allow him to build a plan in a tower-building task.

Information is acquired from an RGB-D camera by computing position, size and 3D shape (e.g.

histogram of surface normals) for every object on top of a table.

Whole-body affordances are studied in [89–92] by Kaiser and colleagues, where a humanoid

robot generates affordance hypotheses (e.g. leaning-on, grasping, support) using pointclouds from

an RGB-D camera. In [89], affordance hypotheses are used for planning according to end-effector

reachability. In [90], the proposed affordance hypotheses are validated via robot exploration,

which allows the robot to learn push-able,lift-able affordances. These unimanual affordances are

then used to learn higher-level affordances (e.g. prismatic grasp) [91]. The affordance detection

system employed by this series of works is based on geometrical attributes of the detected/fitted

primitive surfaces, i.e. planar, cylindrical, spherical and circular surfaces. The process that allows

to obtain the surface primitives is shown in Figure 2.3. The pipeline involves the temporal fusion

of RGB-D images to obtain a “clean” pointcloud representation, normal vector estimation, surface

segmentation based on curvature information, the categorisation of surface segments according

to curvature and size, and the fusion with inertial sensor data in order to find planar surfaces.

Figure 2.3: Affordance hypotheses for planning according to Kaiser et al. Figure on the left shows
the perception pipeline for the affordance hypotheses generation based on geometric primitives
(e.g. planar, cylindrical). Figure on the right illustrates a manipulation scenario whit the surface
primitives used for affordance prediction. Images taken from [89] and [91] respectively
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An affordance type is predicted by considering a set of rules which take into account the area

or extension, orientation and reachability of a primitive surface. For instance, a planar surface

that extends sufficiently is considered to afford support; or a cylindrical surface with or radius

between a specific range of values and within certain distance affords grasp or hold. Using such

rule-based system and robot kinematic constraints a set of stability maps can be obtained, these

maps encode the available affordances for the robot within its actual workspace. In [91] the

rule-based detection of affordances is replaced by sigmoid activation functions which encode how

certain the system is about the perception of the affordances. The parameters of these functions

include the extension and orientation of the primitive surfaces. Operators that take as input

the activations of sigmoid functions and the parameters of the end-effector pose are proposed to

compute certainties for manipulation planning. In more recent work [92], the affordance certainty

functions are used in so-called affordance belief functions which are Dempster-Shafer belief

functions [93] in terms of the perceived attributes of primitive surfaces and end-effector poses.

With this extension, the proposed system allows for multi-contact whole-body pose sequence

planning. Although no information is given regarding the computation times of surface primitives,

one they have been computed the authors report an average of 578 ms per scenario to produce

hypotheses when only supportability affordances are considered.

2.4.2 Grasping affordances

For robots to be capable of manipulating objects in the environment, they need to be able to

grasp those objects reliably. Motivated by this, a big amount of research has focused on detecting

and learning grasping affordances for example for manipulation or pick and place applications.

Typically, works studying grasping have tackled the problem based on two general approaches:

a data-driven and an analytical. Analytical approaches [94] compute grasp poses and finger

placements assuming prior information about object class or category, full known geometry or

pre-computed physical properties such as material or mass; thus, they are further away from the

affordance perception concept. On the other hand, data-driven approaches [95] that study grasp

synthesis for unknown or familiar objects are closer to the affordance perception and learning

problems.

Earlier works such as Sweeney and Grupen [96] presented a hierarchical, statistical, genera-

tive model to represent hand and finger poses learned via teleoperated human demonstrations.
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Grasp affordances are defined as the joint distribution over position and orientation of the hand

relative to the object, this distribution is conditioned on objects’ location in 3D and visual appear-

ance (i.e. image second moment). Stark et al. [97] presented a system that learns finger contact

points from observations of humans manipulating objects. The system leverages local geometric

features (k-Adjacent segments) and SIFT features to build a codebook of objects’ contact points.

Though the robot fails to grasp the objects successfully, the experiments show that it is able to

predict the hand pose necessary for grasping similar objects correctly.

Learning to grasp based on trial and error was also explored in early approaches by Montesano

and Lopes [26], who proposed an algorithm to learn local visual descriptors of good grasping points

for a humanoid robot. The system applied a large bank of 2D filters (e.g. Gaussian, Laplacian,

Sobel, etc.) to the images of the target object, learning the probabilities of an object-part affording

grasp via a Bayesian Network. In [98–100] a method to generate grasp hypothesis densities is

developed. The method allows to generalise over partly-similar objects by learning a dictionary of

object parts, the perception of these object parts is based on 3D segments encoding colour and

edge information; features that are matched against new objects using an alignment error metric

(ICP-like).

Song et al. [101] proposed a Bayesian Network model for learning task constraints in grasp

selection. The model links the semantic requirements of manipulation tasks (hand-over, pouring,

tool-use) to the continuous feature space of the objects and grasp actions. Learning is performed

with a simulation-based grasp planner that generates a set of hand-specific, stable grasp hy-

potheses on a range of objects (25 models in pointclouds), grasps are then labelled by a teacher

with the suitable manipulation task(s). The robot is able to infer the intended task of a human

demonstration, choose the object that affords this task, and select the best grasp action to fulfil the

task requirements. The approach is then extended [102] to include a more challenging simulation:

a larger dataset (e.g. more objects), one more task (dish-washing), and different embodiments (e.g.

two hand designs). Further extensions [103] allow a real-world setup by considering a markerless,

vision-based 3D hand and object tracking system to extract parameters of human hand motion in

interaction with objects. In [104] the model is extended to allow a robot to learn from humans

demonstration despite the differences in their embodiments.

Kroemer and Peters [105] proposed a framework that represents manipulation tasks in a

modular and hierarchical manner. By incorporating notions of the affordances of the objects (e.g.
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pushable, rollable, etc.), a system adapts its grasps type depending on the subsequent actions in

a plan. In [106], Kroemer and colleagues focus on learning a mapping from object-part geometric

features to specific actions such as grasping and pouring. Object-part geometries are encoded as

a non-parametric representation of surfaces (e.g. a weighted Gaussian distribution on each of the

3D points), and similarities are computed via a non-parametric surface kernel: the normalized

inner product of the two surface distribution functions. With this approach, a robot is able to map

object sub-part features to specific motor primitives.

Dan and Allen in [107, 108], learned a mapping from object geometries to semantic grasps

(i.e. constrained grasps), this allows to generate grasp poses for new objects (total of 4); which

is done by matching the recovered full models against a database of grasp/object pairs using

shape context features [109]. In [110] grasping constraints are given by the task of pile clearing,

where a robot needs to perform the grasp with the lowest risk of disturbing the pile. Objects

are represented with the spatial relationship between 3D facets that are estimated using depth

discontinuities and surface normal vectors.

Enveloping grasp affordances and antipodal grasps are studied in by Pas and Platt [111, 112].

A method based on fitting geometrical shapes to pointcloud regions is used to generate grasp

hypotheses. By using curvature, normals and quadric surfaces fitted to pointcloud patches[111],

and then HOG features on pointcloud 2D projections [112], a robot is able to grasp objects in

cluttered scenarios with high rates of success. Parallel and suction grasp affordance proposals are

considered by Zeng et al. [113] in a Pick and Place scenario, where affordance hypotheses are seen

as a probability map encoding the confidence score of a pixel in the image affording a particular

type of grasp. The method, illustrated in Figure 2.4, uses deep convolutional neural networks

(CNNs) to learn the visual features that make an image region graspable or suctionable; these

CNNs are trained with 1837 pixel-wise annotated images which are rotated 16 times to allow

the prediction of grasps at 16 different orientation. Once the object has been grasped the system

used a two-stream CNN to classify the objects and place them in the right container.

2.4.3 Affordances from observation

The works described in this subsection also study affordances for robotic applications; however,

either the affordance categories are provided via labelled data in images or pointclouds, or

affordances are learned by observing others (i.e. humans) interacting with the environment.
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Figure 2.4: Pixel-wise grasping affordance prediction based on visual features learned by two
CNNs. The output of the system is a confidence score, xyz coordinates of pixel, width and
orientation of the end-effector. Image taken from [113]

Generally speaking, these approaches are concerned about perceiving the properties in the

environment that make it useful for others. Perceiving affordances in that way allows for a better

understanding of humans actions in the environment or to learn what the environment affords

to humans. A robotics field that has benefited from this approach to the affordance concept is

Human-Robot Interaction.

The work of Saponaro et al. [114] uses the statistical model Montesano [26] to perform human

gesture recognition (i.e. tap, push, grasp), which allows a robot to predict human actions in a

collaborative object manipulation scenario. The system tracks the 3D hand position on RGB-D

video with gesture annotations; whereas the objects are tracked using shape features of colour

segmented blobs. Pandey and Alami [115, 116] proposed to encode perspective and effort in an

affordance graph, where the idea is to model what an agent affords to do with an object (e.g.

touch, pick, putOnto and putInto), and what an agent affords to do for another agent (e.g. make

accessible, show, give and hide). The approach takes into account reachability, visibility and effort

while keeping track of human poses. Objects in the environment are identified by a tag-based

stereo vision system.

Human-robot interactions are also considered in the work of Chan et al. [117], where a

method is presented to determine proper grasp configurations for object handover. The system

builds a knowledge base from demonstrations of humans using and handing-over different objects

such as knives, screwdrivers, etc.. Affordances representing transport, slide, screw, cut and

grasping-point are learned by clustering (k-means) features that encode the relative position

and orientation of the observed objects and hand contact points. In order to classify new objects
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(based on functionality) and determine the grasp configuration, a nearest-neighbour search is

performed on the knowledge base.

In [118], social affordances are learned by a robot observing humans interacting with other

humans on RGB-D video. Affordances are regarded as action possibilities that follow basic social

norms (e.g. expected motion or pose); thus, the perception part of the approach relies on human

pose detection and tracking. With the proposed spatio-temporal graph model, the robot is able

to show human-like behaviours in human-robot interaction scenarios such as waving, shaking

hands, etc.

Pieropan et al. learn object functional classes (e.g. tool, ingredient, support, container) in

[119] and pairwise object relationships in [120]. These categories are learned from observations

of humans in a food preparation scenario. The approach generates object hypotheses based on

a connected components algorithm [121] that finds segments with colour and depth disparities

relative to the table plane. Objects are tracked over time, and their functional categories are

learned by tracking their spatio-temporal relationship with the human hands and other objects.

In [122], the authors encode the spatio-temporal relationships in the so-called Functional Object-

Oriented Network (FOON), which is learned by observing object state changes and human

manipulations with the objects on instructional cooking videos. The proposed algorithm builds

a graph (i.e. a network) encoding the inter-object relations, motions and manipulation goal

(cooking).

Human activities are also studied in by Koppula and colleagues in [123–127], who proposed

a graphical model that learns spatio-temporal relationships between objects and humans per-

forming activities with those objects, an example of their approach is shown in Figure 2.5. The

system learns so-called semantic affordances (e.g. movable, stirrable, pourable, etc.), spatial

affordances (i.e. object contact points) and temporal affordances (i.e. object trajectories) which

improves performance on activity recognition[124, 125]. The approach is later developed to allow

for anticipation of human activities [123, 126, 127] which showed beneficial in a human-robot

interaction scenario. The system is called Anticipatory Temporal Conditional Random Field

(ATCRF), and is trained with a manually-annotated RGB-D dataset of humans poses and object

bounding boxes.

Another line of research has followed the approach where affordance categories are provided

to the system in the form of labelled pointclouds or images. In this way, the problem becomes
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Figure 2.5: Image on the left shows affordance heatmaps learned by human observation in the
approach proposed by Koppula et al., figure on the top-left shows placeability affordance, figure
on the bottom-left shows pourability. Image on the right shows a scenario example for reactive
robot response through anticipation. Images taken from [127]

that of learning a representation or mapping that is able to generalise to previously unseen data.

An early example of this is the work of Aldoma et al. [128], who proposed the concept of 0-order

affordance. This concept refers to a hidden affordance (e.g. rollable, containment, stackable-onto

and sittable) that objects are known to have but not in the current pose. Thus, the idea is to first

recognise the object and estimate its current 6D pose; then, the transformation that achieves

a “stable” pose is computed, which is later used to predict the objects’ affordance. Affordance

predictions are shown on 20 real objects (pointclouds) based on the Princeton Shape Benchmark

[129]. A manually annotated dataset is generated to test various classifiers (e.g. Random Forest,

SVM and Boosting) using combinations of 3D shape descriptors: PFH[130], Spin Images [131],

SHOT [132]).

Kim and Sukhatme [133], introduce an algorithm to enhance object segmentation and reduce

manipulation uncertainty for a PR2 robot. Geometric features such as planarity, normal vectors,

centroid, etc. computed from point cloud segments are used to train a logistic regression that

allows predicting pushable, liftable and graspable affordances. The system is able to use multiple

views to improve object segmentation based on the previous geometric features and the object’s

colour.

A method to learn three functional classes, e.g. drinking vessel, table and sittable based

on physics simulations is presented by Hinkle and Olson[134]. A weighted nearest neighbour

classifier is trained on 200 CAD models by counting the number of spheres that remain stable on

top of the objects after being dropped from a certain height. Results of the algorithm are shown
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on pre-segmented real RGB-D scenes. With a similar approach, Yu et al.[135] use a physics-based

simulation to learn containability affordance on 3D CAD models. Fluid mechanics methods allow

the system to predict the best direction to transfer the contained liquid while avoiding spillages.

Authors show prediction results on real data using RGB-D scans of objects such as bowls, mugs

and spoons.

Tool-part or object-part affordances (i.e. segmentation) have also been studied in robotics.

Myers et al. [136] proposed two methods for associating local shape and geometry information

from 105 objects to affordances such as grasp, scoop, support, pound and cut. The proposed

methods train with shape features such as surface normals and principal curvatures computed

from RGB-D images with pixel-wise labels of the corresponding affordances. In [137], tool-part

affordances are used to find substitute tools to accomplish a specified task. The method relies on

pointcloud geometry (i.e. superquadric fitting) to classify a previously unseen object by matching

against a database of manually-defined object-task pairs. The method is then developed [138] to

consider a more extensive collection of synthetic objects (e.g. 70) and simulations of the tasks

that improve the substitute tool predictions. More recently, methods have been proposed [139] to

leverage Markov Random Fields in tool-part affordance segmentation problem.

Finally, just as in many other fields in Robotics research, deep learning methods have been re-

cently introduced to tackle the problem of object-part affordance segmentation. These approaches

leverage the ability of deep CNNs to learn features from annotated data in fully-supervised [140,

141] or weakly-supervised [142] manners. Further development of such affordance segmentation

approaches has included object detection [143] with larger datasets of RGB images, as well

as object detection and recognition using multi-stream deep neural networks [144] to increase

the affordance detection performance. Deep CNNs were also used for scene functional-region

prediction by Ye et al. [145], where a two-stage CNN is trained on manually-labelled bounding

boxes from kitchen scenes of the SUN dataset [146]. The approach leverages object detection and

recognition architectures first to generate thousands of region proposals that are then classified

according to functional types such as sittable, turn on/off and various types of grasp. The network

is trained with 250K annotated images, though only one class (i.e. affordance) per region is

assumed.
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2.5 Affordances in Computer Vision

This section presents an overview of works that approach the problem of affordance detection

and learning from a computer vision perspective. In other words, these works primarily use the

concept of affordances in order to boost performance for human action/activity recognition, object

classification or recognition, improve semantic scene understanding, or build a knowledge base

that includes objects functionality attributes which are linked to visual appearance attributes.

Functional regions in objects are studied by Desai and Ramanan [147], who compared several

models on the RGB images of the PASCAL VOC dataset [148]. The models compared include

’Blind’ methods trained with object spatial priors and functional region priors, Bottom-up methods

based on colour, spatial position, texture features and line features, and object-specific Top-down

models based on HOG features. The affordances studied have to do with objects that can be

grasped, sat-on and looked-at. They showed that models that explicitly consider object shape and

structure are worthy of further exploration. Object affordances in human manipulation tasks are

studied by Zhu et al.[149], where a spatio-temporal graph representation is proposed to predict

substitute tools based on the task to accomplish (e.g. cracking nuts) The model is learned by

observing RGB-D video of human performing the task. The method used 3D mesh and material

information of tools as well as object, hand and human-pose tracking to learn the spatio-temporal

relations among these elements during manipulation tasks.

Object classification and recognition have also been studied using affordance “cues”. Srikantha

and Gall [150], present a weakly supervised learning algorithm for object classification in human

activities. Affordances are identified as the spatio-temporal relations between objects and human

hands/joints. The system is trained and tested in RGB-D and RGB videos where a heavy detection

and tracking pipeline (e.g. two tracking algorithms running in parallel) accounts for appearance

and shape features. In [151] a multi-stream CNN architecture is proposed to perform object

recognition by fusing appearance features with spatio-temporal relations between objects and

human hands. A combination of 13 human interactions with 14 objects is considered in their

study, which includes affordances such as grasping, pushing, rotating, hammering, squeezing

amongst others. In [152] an encoder-decoder architecture is used to learn an embedding from

11,505 videos of people interacting with everyday objects. The proposed method allows to predict

objects’ interaction region and action label for same-object images, the prediction pipeline is

shown in Figure 2.6.
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Figure 2.6: In the method proposed by Fang et al., video demonstrations are tracked and embedded
into a feature vector (demo2vec). This vector is then used to predict affordances (i.e. region and
interaction label) over an image of the same object used for demonstrations. Image taken from
[152]

Objects and their relations with humans are studied by Jain et al. [153], who proposed the

combination of spatio-temporal graphs and recurrent neural networks to model human-object

interactions in RGB video sequences. The model is trained and tested on the CAD-120 dataset

[124], where the affordance annotations include objects that are movable, pourable, containable,

placeable, amongst others (12 in total). The hybrid approach shows better performance on the

same dataset when compared with earlier approaches [124].

Many computer vision approaches have studied what objects afford for humans by observing

video of humans interacting with objects in their surroundings. In contrast, the work of Grabner

et al. [154] proposed to hallucinate humans interacting with objects in a scene to detect sitting

affordances. The proposed method computes distance fields using 3D triangular meshes of the

objects and detecting the degree of intersection between triangles. The performance of sittable

object detection is further improved by considering an appearance-based chair detector. Sitting

and reaching poses for indoor environments are also studied by Gupta et al.[155], where a

method based on the correlation between volumetric representations of the scene and human

pose (e.g. cuboids) is used to predict human poses on RGB images. In [156, 157] the problem

is reframed to learn scene functional regions and object locations (e.g. semantic segmentation)

from images of people interacting with the environment. Human pose hallucinations and scene
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geometry are used to determine object affordances (i.e. placement/location relative to human) in

synthetic indoor scenes [158, 159]. In [160] the system is applied to object labelling for 3D scenes

(pointclouds).

The works that address sitting affordance are further extended to include comfort and social

goals. For instance, Zhu et al. [161], where sitting location preference and pose are learned

from RGB-D videos showing how humans sit in different environments; then, the system’s

affordance hypotheses are further refined and validated using physics-based simulations. In

[162], a data-driven method learns a pose probability distribution from 100M RGB images of

humans interacting with indoor environments (e.g. sitting, standing). The method capitalises

on face and person detectors to train a variational autoencoder[163], which allows generating

human poses in previously unseen scenarios.

Social norms are considered for agent interactions with the environment in the work of

Chuang et al. [164], who proposed a knowledge base (i.e. dataset) with action-object pairs (e.g. sit-

stool, grasp-bag, run-floor) and consequence explanation annotations (e.g. One cannot take other

people’s property since One could go to jail). This knowledge base is used with a GNN (Graph

Neural Networks [165]) to “learn to act properly”. The GNN leverages state-of-the-art object

segmentation methods to build a graph encoding spatial relations and the social consequences of

executing actions on objects.

Locations suitable for human whole-body affordances have been studied by Piyathilaka and

Kodagoda [166, 167], who introduced the concept of affordance map to encode locations in a 3D

scene where a human could stand or sit. The method is based on collisions and distance between

a human skeleton ( 15 joints) and a voxel representation of the scene. In [168] a joint distribution

is learned over function (semantic label), geometry (cuboids) and appearance features, this allows

to detect objects that afford sitting, storing and sleeping. The work is further developed to learn

affordance maps that consider RGB-D video of humans interacting with the environment [169]

and simulated human trajectories in indoor environments [170]. An example of the affordance

predictions by Qi et al. is shown in Figure 2.7.

Using RGB-D images of indoor scenes, Roy and Todorovic [171] perform pixel-wise segmen-

tation for human affordances. The approach uses multiple CNNs to extract mid-level features

or “cues” namely depth, surface normals and semantic segmentation. These cues are then used

as input to another CNN which classifies the segmented regions as walkable, sittable, lyable,

26



2.5. AFFORDANCES IN COMPUTER VISION

d) A✁ordance heatmaps

c) Activity prediction

a) RGB input b) Depth input

Use computer

Get water

Use microwave

Figure 2.7: Images on the left (a-c) show human affordance predictions learned by observing
people on RGB-D video. Affordances are regarded as the most likely human pose in a specific
activity. Image on the left(d) shows affordance maps learned by simulating human activities in
synthetic indoor scenarios. These maps are obtained by accumulating human positions across
different activities. Images taken from [169] and [170] respectively.

reachable or movable. The system is trained and evaluated with the NYUv2 [172] dataset with

annotations of the features mentioned above in addition to planes and surface heights. Figure 2.8

depicts a diagram summarising the approach for human affordance segmentation.

Lastly, there have been efforts to incorporate affordance information for vision systems in the

form of a knowledge base that allows making higher-level inferences. An example of this is the

work of Zhu et al. [173], who build a knowledge base representation for object affordances via

Markov Logic Network. The model learns relationships between objects’ affordances (a total of 14

e.g. grasp, push, ride, sit on, etc.), visual attributes (texture, shape, material), physical attributes

(size, weight) and semantics. The method allows to learn rules such as “objects that look metal

are less likely to be feed-able”. Chao et al., [174] propose to link object classes with actions classes.

Three methods are proposed to fill a matrix representing the relations between 20 objects and

957 action classes: text mining (e.g. noun-verb frequency on Google Syntactic N-Grams), visual

mining (e.g. visual consistency on Google Image search) and collaborative filtering (WordNet

similarities). Patterson and Hays [175] provide an attribute database with affordance annotations

(e.g. playing, cooking for objects appearing in the SUN[146] dataset. Varadarajan and Vincze

introduced the Affordance Network (AfNet), a database with knowledge ontologies of over 250

common household objects. The database is formed by a set of visual features that the authors

divide into structural affordances and material affordances. One set accounts for the features
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Figure 2.8: Multi-scale CNN approach for human affordance prediction in indoor scenes by Roy
and Todorovic. Various CNNs are employed to learn and merge cues such as depth, normals,
semantics, etc. at different levels. The prediction results are presented as pixel-wise labels of
affordances such as sittable, walkable and lyable. Image taken from [171]

defining the structure of objects, the other accounts for the visual features that describe the

material of the objects.

2.6 Other interactions

Interactions between entities (e.g. objects or agents) in the environment have also been actively

investigated in the field of computer graphics. Many works in this research area have been

concerned with proving tools and methods that allow the design and simulation of artefacts in a

scene. In recent years, an increasing number of approaches that consider functional information

about the objects interacting in a scene have been proposed [176–178]. While many of these

approaches assume precise information about locations, pose or detailed geometry of the objects

or entities in 3D space, they serve as a valuable source of inspiration for methods that study the

problem of affordances.

Works in computer graphics typically investigate shape and object functionality based on the

geometry of the artifacts in a scene, there have been approaches that predict the functionality
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class of an entity (e.g. 3D object model) by studying how an object reacts to rigid motions [179]

or the spatial configuration of the object parts [180]; however, given that these approaches do

not consider interactions in their methods they are further away from the concept of affordance.

Works have also tackled object-part functionality; these are analogous to methods in robotics

that learn tool-part affordances [136–138]. In other words, given a collection of labelled object-

segments, they use geometric features to learn and predict functional regions in novel objects.

An example of such approaches is [181], where part context (e.g. relation with other parts) is

considered in addition to geometric features in order to build a graph representation of the parts’

functionality.

On the other hand, works that do consider interactions have proposed a number of rules,

features and representations to encode the spatial relationship of the elements in the scene.

Earlier work used spatial arrangements to enable users to quickly lay out complex scenes with

multiple objects using interior design guidelines [182], or placement constraints (e.g. proximity,

support), pseudo-physics and semantics [183]. Fisher et al. introduced methods to learn, from

multiple scene arrangement examples, the spatial relationships of furniture based on a co-

occurrence model [184] or based on a graph encoding semantic information [185].

Richer representations, allowing to capture more complex interactions accurately, can also

be found in the computer graphics literature. An important example of these approaches is the

work of Zhao et al. [186], where a method for retrieval and indexing of 3D scenes is proposed.

The method is based on topological and geometric features of the Bisector Surface between two

interacting entities, i.e. the Interaction Bisector Surface (IBS). Authors proposed a similarity

measure which uses the IBS mesh data via the computation of Betti numbers [187], Point Feature

Histograms (PFH), angles between normal vectors and the vertical as well as the distance

between the objects. Inspired by works using graph kernels [185], a hierarchy (i.e. graph) is built

on the basis of pairwise similarities in local and extended regions. Then, given a target input

scene and a scene database, the method allows to retrieve another scene with a similar object

arrangement. The IBS was later used with Interaction Regions [188] to further characterize the

interactions between the objects’ fine-grained geometry.

In the approach of Zhao et al. [189], IBS features combined with the so-called space coverage

feature (SCF) allow to synthesize scenes using a template matching algorithm with a large

database of 3D models. Figure 2.9 visualises the general idea behind their approach; details are
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presented below.

Figure 2.9: Example-based approach of Zhao et al. to synthesise scenes with similar interactions
based on the Interaction Bisector Surface. Image taken from [189]

Using a template interaction, the IBS is computed among all objects in the scene. Features

are computed over 200 points on the IBS similarly to [186]. Sampling is based on a weight

assigned to every triangle T on the IBS mesh; specifically, weights are defined by W(T) =

Warea(T)×Wscene-distance(T)×Wangle(T), where Warea(T) is the area of triangle T and where

Wangle(T)=















1 i f α< 45◦

0 otherwise

Wscene-distance = (1−
2×d

ddiag
)n

where, α is the angle between the normal vector of triangle T and a vector pointing towards the

object, d is the distance between the centre of triangle T and the object, ddiag is the diagonal of

the bounding box of the whole scene. n set to 20 empirically. Then, a set of features is computed

over the points sampled on the IBS: fdis, fdir, fscf. These features are: the shortest distance from a

point on the IBS to the object, the direction at which the object is located relative the point on

IBS, and the space coverage feature, respectively. The space coverage feature is computed by first

fitting a sphere centred in every IBS sampled point; then, n×n points are uniformly sampled

in this sphere and rays are cast from the centre of the sphere towards each one of the sampled

points. For every sphere, a volume diameter function is computed with

Fvd f (i, j)=
{

dmin + e

d(i, j)+ e
| 0≤ i, j ≤ n−1

}

where n is set to 30 empirically, i, j are ray indices along the sphere’s longitude and latitude

directions, dmin is the minimum distance among all rays, e is an offset whose value is set to the
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mean of all distances. Fvd f is normalised to [0,1] and used to compute the space coverage feature

(SFC), which is the spectrum power of the volume diameter function expressed in terms of the

spherical harmonics at 5 levels. Formally, SFC(Fvd f )= {a0,a1, ...,an} where

al = |
∑

|m≤l|
al,mY m

l |2 =
√

∑

|m≤l|
(al,m)2

where al,m are the spherical harmonic coefficients at frequency level l.

Using these features (distance, direction and SCF) a similarity function is used to evaluate

how well a novel object fits the template. The similarity function is given by:

Sfinal = (1−ddist)(1−ddir)(1−dsc f )

where

ddis =
1

N

Ni
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where Ni = 200, i.e. the number of points sampled over the IBS, (fdis, fdir, fscf) are the features

of point p j on the template,
(

f ′dis, f
′
dir, f

′
scf

)

are the features of the novel object. 1(X ) is the

indicator function which returns 1 if X is true and 0 otherwise, αdir = π
2 is a manually defined

threshold within which orientations are considered similar, and αdis,αsc f are normalisation

parameters to bound ddis and dscf in the range [0,1]. In order to decide whether a novel object

would generate a similar interaction, space coverage features are computed in regions of interest

(ROIs) surrounding the novel object. These ROIs are generated by sliding a ”window“ across the

empty space around the novel object and comparing the features against the template’s mean

feature. This process allows to pre-select good ROIs that are later used to effectively match

against the template using geometric hashing [190]. The match is further refined by treating the

distance feature as a distance field and updating according to the gradient. Finally, additional

criteria such as contact, collision and height constraints are taken into account to synthesise a

new scene. Although some of the computations (e.g. features) are performed offline, the process is

iteratively repeated for every object that needs to be added to the scene.
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Dynamic functionalities have also been studied, where entities are tracked over time in

order to capture the abstract dynamic characteristics of the interactions. An example of such

approaches is Interaction Landscapes [191], which represents the interacting objects as sets

of particles of which motion is tracked by treating the surrounding space as sensor regions.

These sensor regions detect particles passing by; thus, the representation of the interaction is

obtained in the form of vector fields that encode the position of the particles over time. The

distance between two interaction landscapes is computed by comparing histograms that encode

the attributes of the vector fields inspired by fluid dynamics (e.g. vorticity, dilatation, shear strain

rate).

Another type of dynamic interactions studied in computer graphics are agent-environment

interactions. In SceneGrok [192], a method to predict action maps in indoor scenes is presented.

The approach trains a classifier for various human activities (e.g. using-laptop, watching-tv) that

are observed in RGB-D video. The method reconstructs a mesh representation of the scene, tracks

the human skeleton and the mesh segments in contact with skeleton joints. Clustering geometric

features of the mesh segments in contact with human joints allows to learn a segment dictionary;

this dictionary is then used to predict the likelihood of an action for a previously unseen scene

segment. In an agent-centric approach, Kim et al. [193] proposed a method to predict the pose

that a human would need to adopt in order to use an object (e.g. bicycle, chair). In PiGraphs

[194], human poses are used to learn to arrange objects according to their relationship with

human usage. Interestingly, features on the IBS have also been used to represent agent-object

interactions recently; tracking such features over time allows for the retrieval and classification

of motion trajectories [195].

2.7 Summary

In this chapter have been review the different definitions and interpretations of the affordance

concept, which included from the creation of the concept by J.J. Gibson to the computational

formalisms commonly used in robotic applications. Neuroscience studies that have provided

evidence supporting the affordance theory have also been presented, evidence that has served as

inspiration for the big body of research in affordance learning. Then, an overview of the previous

works that have addressed the problem of affordance perception and learning was presented;

which included approaches in robotics, computer vision as well related work in computer graphics.
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One of the most contentious aspects of the affordance concept is the role of direct perception.

Earlier works in robotics [43] interpreted this idea as making use of low-level visual information

(e.g. optic flow) for robot control (e.g. navigation). Other approaches in robotics, such as those in

the developmental robotics field, have treated the direct perception of affordances as learning

a mapping between percepts and actions available to a robot. These approaches are inspired

by learning stages observed in human infants, but also take inspiration in visuomotor neurons

discovered in neuroscience studies. The use of such direct link between perception and action

has allowed robotics systems to build a representation suitable for planning, multiple object

manipulation scenarios as well as learning tool usage.

Another important amount of effort has been made regarding grasping affordances and

human affordances (e.g. sitting). The former is a fundamental skill for robots that need to interact

with the world; the latter is a very useful ability for robots that do not need to manipulate objects

but rather assist humans in their daily life. One of the outstanding characteristics of many of

these approaches is their ability to leverage local geometric cues without the need to recognise

the object categories or labels.

In contrast, a substantial number of approaches have tackled the problem of learning object

(or tool) affordances from labelled RGB or RGB-D data. In fact, this has been an increasingly

popular approach within the last couple of years, primarily motivated by the availability of large

collections of annotated data or knowledge bases. The direct perception of affordances has been

regarded as the possibility of learning a representation directly from the data via data-driven

algorithms such as those based on neural networks, e.g. deep learning.

In computer vision research, many of the current methods that incorporate the concept of

affordances have focused on the relation of objects relative to human hands or pose (i.e. human

context). In this sense, affordance cues have shown to improve on activity recognition and

prediction, object recognition and semantic scene understanding. An alternative that can also be

found in the computer vision literature is the detection and tracking of ”blobs“ or entities in video

sequences without performing recognition. These approaches have achieved remarkable results

in the discovery of functional categories by observing the spatial relationships among ”blobs“ (i.e.

objects) through time.

Another area that has been actively studying interactions amongst agents, objects and

the environment is computer graphics. Works in this area leverage geometrical information of
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synthetic objects and their spatial configurations to perform functional analysis of virtual scenes.

These approaches take advantage of the relations between entities in the scene to characterise

and more accurately synthesise novel environments.

2.8 Criticism

The affordance concept has undoubtedly proven to be beneficial for multiple tasks in robotics

and computer vision. However, as reviewed by Horton [11], the vague definition of the concept

that Gibson provided led to many interpretations and debate regarding the true nature of the

term. To a certain extent, roboticists seem to agree that affordances should be a relation between

two (or more) interacting entities. Sahin et al. [25] enriched such definition by proposing that

these relations can be viewed from three perspectives: the agent, the environment and an outside

observer.

Many approaches in robotics learn these relations as a symbolic representation that enable a

robotic system to plan its actions. Thus, affordances become agent internal representations, which

is practical for the purposes of building plans but clearly goes against the ecological approach

proposed by Gibson. Moreover, while many of these approaches allow for human-inspired learning

stages, the applications are limited to a small set of objects and affordances. It is not clear how

the models would apply for novel objects and novel realistic environments. A similar dilemma is

faced by methods that solely focus on one type of interaction, i.e. grasping or human affordances.

Methods addressing these affordances have achieved remarkable results when facing novel

realistic scenarios, yet the question remains open about the generalisation of the approaches for

other types of interaction or scenarios that do not require manipulation.

Within the last couple of years a notorious trend has been observed for learning object or

tool affordances, that is exploitation of large collections of labelled imagery. One important

challenge faced by these methods is that they usually need to detect (and even recognise) object

instances in the environment. As reviewed by [15], these methods inherit many problems faced

by computer vision, problems such as clutter and occlusions, viewpoint and scale variations, intra-

class variations and more importantly the multiple-object multiple-label nature of affordances.

Whereas deep neural networks have proved to be a powerful tool in this area, generalisation and

scalability remain as important challenges. For instance, the models would need new annotated

data and an extensive retraining process in order to learn new affordances. Besides, the manually
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annotated datasets used for training build on the assumption that objects in the environment

have a pre-defined set of affordances; making uncertain how an agent would discover new

affordances, i.e. the absence of annotated data.

We argue that in order to truly perceive affordances in the environment in a way that is most

useful for cognitive agents, there is a need for methods that are agnostic to object categories and

free from complex feature representations; methods of a generic nature that allow for the simple

yet robust description of multiple affordances. Furthermore, affordance detection methods for

robotic systems need to allow for fast computations and be able to generalise to novel scenarios

without lengthy and costly training phases. We hypothesise that geometry on its own provides

enough information to robustly and generically characterise affordances in a way suitable for

robotic perception.

Developing affordance perception systems based only in appearance features with the inten-

tion of categorising entities in the world, provides little hope for the generalization capabilities

of cognitive autonomous agents. We argue that basing the perception of affordances in 3D

geometrical information is a far more promising alternative. A strong case for the geometric

characterisation of affordances can be found in the affordance research literature reviewed

previously, where has been shown that shape features and spatial relationships have constantly

been used as cues for the study of affordances and functional understanding of the environment.

The advantage of geometric features over alternative representations, such as texture or colour,

is that geometry provides a stronger generalisation power since the geometry of everyday objects

strongly dictates the physical interactions that are possible with the environment.

The research presented in this thesis shows that methods based entirely on geometric infor-

mation are capable of predicting high quality and meaningful affordance locations for realistic

environments. In contrast to other works considering geometric information for affordance per-

ception such as [89–92], the approach proposed in this thesis does not build on higher-level

geometric primitives nor complex features computed on the environment. Moreover, the general

purpose nature of the representation here proposed allows to characterise affordances for simple

objects such as a mug but also enables the representation of more complex interactions like a

human riding a motorcycle. Contrary to methods in computer graphics such as [186, 188, 189,

195], the approach introduced in this thesis takes into account visually perceived information,

does not require highly detailed geometries and is straightforward to compute.
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3
THE INTERACTION TENSOR

3.1 Introduction

In the previous chapter has been shown that many approaches in computer vision and robotics

have taken advantage of geometric (i.e. shape) descriptions and spatial relationships to charac-

terize interactions or identify functional categories in the environment successfully. Motivated

by this and recent approaches in computer graphics for shape functionality, scene indexing and

synthesis [186, 189], this chapter presents the affordance representation central to this thesis:

The Interaction Tensor.

Starting from a brief review of relevant computational geometry concepts such as Bisector

Surface, Voronoi diagrams and convex hull, an overview is given of the key characteristics

and computation details of the Bisector Surface between 3D object, namely the Interactions

Bisector Surface (IBS). The introduction to computational geometry fundamentals is followed by

details on how a simple yet robust affordance representation can be devised from the proposed

Interaction Tensor. In short, this is achieved by encoding in the representation information

about the expected or most relevant regions that allow the interactions to take place. Details

are provided regarding the computation of an affordance descriptor that allows for the real-time

detection of interaction opportunities in 3D environments. The speed that the method allows,

in addition to its straight-forward computation, align well with Gibson’s economical and direct

perception of affordances.
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3.2 Computational geometry fundamentals

The affordance representation proposed in this thesis takes inspiration from the concept of

Interaction Bisector Surface (IBS). This geometrical entity was conceived and has been recently

exploited within the computer graphics community, its definition and computation require

computational geometry concepts and tools that, for completeness, are briefly introduced in the

following subsections

3.2.1 Voronoi diagram

The Voronoi diagram for a set P of n points ( also known as generating points) in Euclidean space

Ed is the subdivision of the space into n regions (cells) such that all locations within any one

region V (pi) are closer to the generating point pi than to any other point in P. In two dimensions

each Voronoi cell is a convex polygon, in three dimensions a Voronoi cell is a convex polyhedron

formed by convex faces (polygons). Formally the Voronoi cell for point pi is given by:

V (pi)= {x | ‖x− pi‖ ≤ ‖x− p j‖,∀ j 6= i}

The lines (or polygons in 3D) delimiting a Voronoi cell are called ridges or edges, these are

perpendicular bisectors for every pair of points in P. The intersection of the boundary (edges) of

three adjacent cells is called a Voronoi vertex. The Voronoi diagram (red polygons in Figure 3.1-b)

is formed by set of Voronoi cells for every generating point in P: V (P)= {V (p1),V (p2), ...,V (pn)}.

The Voronoi diagram has a geometric dual structure called the Delaunay Triangulation, which

partitions the space into triangles such that no point is inside the circumcircle of any triangle

i.e. the circumcircle is empty. The relationship between the Delaunay Triangulation and the

Voronoi Diagram follows that every ridge in the Voronoi diagram has a corresponding edge in

the Delaunay triangulation, and every point in the Delaunay triangulation corresponds with a

Voronoi cell. Each triangle in the Delaunay triangulation is associated with one vertex of the

Voronoi diagram; the vertex is located at the centre of the circumcircle. These geometric entities

are illustrated in Figure 3.1-d.

Multiple algorithms exist for computing the Voronoi diagram; the one used in this thesis is

based on the computation of the convex hull [196]. Briefly speaking, the idea proposed by Brown

consists in transforming points in d-dimensional Euclidean space into d+1 space, constructing

the convex hull of the transformed points, and then transform back into d-space. This process
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can be performed efficiently with the Quickhull algorithm [197] whose implementation is readily

available in many programming languages.

The convex hull of a set of points is the smallest convex set that contains all the points [198].

The Quickhull algorithm follows a divide and conquer approach, based on the intuition that most

of the points lie in the interior of the hull. Then, the idea is to discard the points that do not lie

in this hull as quickly as possible; which can be achieved by iteratively selecting the furthest

point from the current convex hull. Figure 3.2 illustrates the idea behind the computation of the

Voronoi diagram using the convex hull. Notice that the output of the Quickhull algorithm is a

simplicial complex (e.g. triangulation of points).

a) b) c)

Figure 3.1: Illustration of basic computational geometry fundamentals. a) Set of points in Eu-
clidean 2-space, b) Voronoi diagram with cell ridges highlighted in red, blue triangles are the
Delaunay triangulation, and green circle exemplifies an empty circumcircle, c) Convex hull
highlighted in green.

a) b) c)

Figure 3.2: Voronoi diagram computation via the convex hull. a) Points are projected onto
(d +1)− space, b) The convex hull is computed for the transformed points, c) Hull faces are
projected back into d-space. The projected regions correspond to Delaunay triangulation; the
Voronoi diagram is computed by its duality relationship with the Delaunay triangulation. Adapted
from [199]
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3.2.2 Bisector surface

The Bisector Surface for any two geometric objects O1 and O2 in Euclidean 3-space E3 is defined

as the locus of equidistant points from O1 and O2. Generally speaking, O1 and O2 can be points,

curves, surfaces or solid object instances. If O1 = O2 is a solid object, the bisector surface is

usually called self-bisector, medial axis or skeleton. As a matter of fact, the medial axis (and its

transformation) have been widely used in computer vision [200, 201], pattern recognition [202,

203], path planning [204, 205] and mesh generation [206]. Much of the success or popularity

of the medial axis is due its ability to abstract the object’s shape by producing a discrete graph

structure; albeit when computed on a single object it is very sensitive to changes in the object’s

(or shape) boundary. This issue, however, does not represent a problem when the bisector is

computed between two different objects in proximity (i.e. IBS) [186].

Generally, computing the bisector surface is a complex task since it requires to solve a system

of non-linear equations [207]; however, it can be approximated by computing the Voronoi diagram

for objects O1 and O2 in space. Figure 3.3 shows in blue a few examples of bisector surfaces for

basic geometrical objects in Euclidean 3-space E3.

Figure 3.3: Examples of basic bisector surfaces (B). From left to right: bisector surface between a
point(p) a line(l), bisector surface between a point(p) and a plane (E), bisector surface between
two solids (F and G). Adapted from [207].

3.2.3 Interaction Bisector Surface

Introduced by Zhao et al. [186], the Interaction Bisector Surface (IBS) is a generalisation of the

Bisector Surface when computed between two or more 3D models in a scene. Formally, given N

point sets P1,P2, ...,PN in space where Pi = {pi
1, pi

2, ...pi
n}, an Interaction Bisector Surface divides

the space into N regions with the two properties: 1) Points from the same point set reside only

in one region and 2) If a point q 6∈ {P1 ∪P2 ∪ ...PN } resides in the same region as Pi, then the
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Hausdorff distance between set {q} and Pi is shorter than the Hausdorff distance between set {q}

and P j, where P j is any other point set.

Being a generalisation of the Bisector Surface, the IBS can be approximated by computing the

Voronoi diagram between objects. In this sense, the IBS is the set of points equidistant from two

sets (i.e. objects). After computing the Voronoi diagram over all the points in space, the resulting

simplicial complex is processed in order to detect ridges generated by points belonging to different

objects, which are the ridges effectively splitting the space into two regions. An illustration of the

IBS and its computation between two objects, e.g. a cup and a sink, is shown in Figure 3.4

Interaction Bisector SurfaceVoronoiPoint Sets

Figure 3.4: IBS between a cup and a sink. From left to right: target objects, 2D point set
representation of the objects, 2D Voronoi diagram for all points, IBS (ridges diving object regions)
is shown in red, Full 3D IBS surface in red.

Recent approaches for shape functionality and scene synthesis in computer graphics research

[186, 188, 189, 195] have made use of the IBS concept; this is due to its powerful and robust

ability to describe the relationship of synthetic object models in proximity. Figure 3.5 shows

two IBS examples of similar interactions with different objects in a 2D scenario. This figure

serves to illustrate the robustness of the IBS to geometric changes in the target scene; where,

despite variations occurring in specific locations, the IBS manages to capture the overall common

geometrical properties.

As discussed in the previous chapter, in order to leverage the robust features captured by the

IBS, current approaches compute geometrical and topological features of the surface. In order to

do so, one needs to first compute the IBS before any matching, prediction or training. Depending

on the complexity of the scene, objects and point sets, computing the Voronoi diagram for 3D

data is bounded by O (nlogn) and O (n3), where n is the number of points for both objects. When

the objects are either very large, very complex or there are many of them in a given scene, the

computation of IBS and features on its surface can be very expensive and time-consuming. For

this reason, computer graphics approaches typically pre-compute the IBS and features for every
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Sink - Bowl Sink - Cup

Figure 3.5: Two IBS examples in a 2D scenario for interactions between a sink and two different
objects: a bowl and a cup

possible object pair in a database; thus allowing to more quickly synthesise similar interactions by

only querying the pre-computed features. The following section introduces the approach proposed

in this thesis. This approach extends the IBS representation to a vector field that, among other

benefits, allows to detect similar interactions with significantly less computations. This simple

yet robust representation combined with an appropriate matching function makes the proposed

method suitable for applications in robotics and computer vision.

3.3 The Interaction Tensor

The Interaction Tensor (iT) is a vector field representation able to characterise the static interac-

tions between 2 generic entities (e.g. objects) in 3D space. This proposed representation builds on

the IBS concept and extends its robustness by three main factors:

1. Proposing a representation suitable for visually generated data, e.g. pointclouds

2. Encoding the locations in the interacting entities that contributed to the computation of

their bisector, i.e. provenance vectors

3. Introducing a descriptor that allows for real-time prediction of affordance candidate loca-

tions on RGB-D data, i.e. affordance keypoints

First, adopting a pointcloud representation brings the possibility to work not only with

synthetic models but also with data generated from robotics sensors such as, e.g. RGB-D cameras.

This gives the possibility of dropping the need for fine-grained geometries and detailed mesh
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information in order to reconstruct or compute the IBS surface. Second, embedding the provenance

of points on the IBS enables to approximate its computation at prediction time; which is done by

investigating if in a novel scene exist the regions needed to obtain the same (or a similar) surface.

Third, the introduction of affordance keypoints allows reducing further the computations needed

to approximate an iT at prediction time, since they take into account only the key locations in

the target interaction. All of this favours the application for the proposed method in robotics

and computer vision problems, avoiding the need to compute the bisector or complex surface

features in order to make affordance predictions, and enable to predict geometrically-meaningful

affordance locations in never before seen RGB-D scenarios from a single training example.

3.4 Computing the Interaction Tensor

The first step to compute the tensor characterising an interaction of interest consists in placing

two objects relative to each other simulating the affordance under investigation. For instance, a

bottle placed on top of a table to study Placing affordance. Due to the increased availability of

online collections of synthetic object models, the interaction simulations are carried out using such

publicly available1 CAD models for the simulations of interactions. The process of performing

these simulations with synthetic models is referred to as training example (or training for short).

The two objects involved in the interactions are referred to as query-object and scene-

object (or scene) respectively. For instance, in a Filling a mug interaction, the mug would be a

query object. Conversely, a scene-object is the second part of the interaction; this can be a whole

object but also just part of the scene or furniture (i.e. world) that allows the affordance to take

place. A tap and sink would act as scene-object for the Filling a mug example.

The placement of objects relative to each other is guided by selecting points or areas that

should be close together in the interacting objects . As an example, in the interaction of Placing a

bottle on a table, a point on the bottom (base) of the bottle and a point on the surface of the table

are selected. Then, the transformation required to connect these points is computed and applied;

resulting in the two objects being brought together simulating the intended interaction. The

software developed for these purposes allows to apply rotations along any axis if the interaction

under study requires it.

1https://3dwarehouse.sketchup.com/?hl=en
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Once both objects have been placed in their corresponding poses, the next step is to generate

a dense pointcloud representation. The pointclouds are obtain by uniformly (randomly) sampling

points on every face (i.e. triangle) of the CAD model, where the number of points sampled on each

triangle is proportional to its area. A point d sampled on the triangle defined by vertices A,B and

C, with 3D coordinates a,b and c is generated by: d = (1−p
r1 )a+p

r1 (1− r2)b+p
r1 r2c .Where

r1 and r2 are random numbers sampled from a uniform distribution between [0,1]. As a result of

this sampling technique, more points will be generated on larger triangles in the mesh; however,

the location of these points is left at random. This sampling technique has the advantage of

producing more “realistic” pointclouds to those produced with alternative approaches such as e.g.

Poisson disk sampling, since the randomness involved in the computation makes the distance

between neighbouring points not to be uniform or constant over the whole pointcloud.

One important requirement for the computation of the IBS, as observed in [186], is that the

pointcloud densities (i.e. number of samples) must be high enough to avoid undesired anomalies

in the IBS surface or penetrations of the IBS into the objects. Deciding on the number of points

is not trivial since it will depend on the objects’ dimension and complexity. An alternative is to

adopt a post-processing step, where noisy or anomalous data is removed from the resulting iT.

The is the approach followed for the computation of the iT, as it is more convenient given the

diversity in dimension across all affordances studied in this work.

Once the dense pointclouds have been obtained, the next step is to compute the Voronoi

diagram on the pointcloud comprised by the two objects, ridges shared by points from different

objects are computed in order to obtain the IBS of the interaction. Figure 3.6 illustrates this

process in a simplified 2D scenario for Placing a bowl on top of a table.

IBSVoronoi
Query-object

Scene-object

Figure 3.6: IBS of two interacting objects in a 2D scenario. From left to right: objects are
placed simulating the interactions, pointcloud representation of the interaction, Voronoi diagram
computed over the pointcloud of the two interacting objects, ridges shared by points from different
objects form the IBS.
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This process is carried out keeping track of the locations in the scene-object that gave origin

to every point on the IBS, i.e. the centres of Voronoi cells in the scene. These locations are encoded

in the iT in what has been named provenance vectors. A provenance vector is a vector going

from a point on the IBS to its closest Voronoi cell in the scene-object. Figure 3.7 illustrates how

provenance vectors are computed using the simplified 2D scenario.

Figure 3.7: Provenance vectors and interaction tensor a 2D scenario. A provenance vector goes
from points on the IBS to its closest Voronoi cell centroid in the scene-object. Together all
provenance vectors and points on the IBS comprise an Interaction Tensor.

The iT descriptor of the investigated affordance is comprised of points on the IBS and their

associated provenance vectors. Formally, given the interaction bisector surface B, and an object

O in the scene formed by points O = {o1, ..., oi}, the vector field characterising the interaction is

defined as

(3.1) iT(B)= P î+Q ĵ+Rk̂

where

P = Ĝ(B) î −B î

Q = Ĝ(B) ĵ −B ĵ
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R = Ĝ(B)k̂ −Bk̂

with

Ĝ(B)= argmin
i

‖oi −B‖2

In principle, the Voronoi diagram (thus the IBS and iT) extends towards infinity; in practice,

the representation is trimmed to fit a sphere of radius equal to the diagonal of the query-object

bounding box.

The interaction tensor inherits from the IBS the discriminative power in characterising the

relationships between sets of objects. It preserves key geometrical features while being robust to

changes in the geometry of the interacting objects. The top row in Figure 3.8 shows examples

of the iT for Filling affordances using query-objects with changing geometries. In contrast, the

bottom row in the same figure shows iT examples generated with the same query-object (coat

hanger) but scene-objects (coat racks) with varying geometries.

It should be said that in Figure 3.8 and all remainder figures with 3D tensors in this thesis a

few considerations have been made for ease of display and better understanding the vector fields.

These considerations include rescaling width and length of the vectors, as well as translating

them by one unit towards the tail (as in expanding the field). Altogether this is aimed at making

more evident the similarity between tensors.

Figure 3.8: The iT preserves key geometrical features despite variations in the involved geome-
tries. The top row shows iT examples for Filling affordance using different query-objects: glass,
mug and pitcher. The bottom row shows iTs for Hanging a coat-hanger with various scene-object
geometries.

The point being made with Figure 3.8 is demonstrating that despite geometrical changes in

the interacting objects the iT retains the overall shape or geometrical features characterising

the interaction. Additionally, as shall be made evident in the following chapter, the inclusion
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of provenance vectors allows to more quickly predict the likelihood of the affordance in a novel

scenario. The affordance descriptor based on the iT, with an appropriate similarity or matching

function (Chapter 4), opens the possibility to detect similar interactions in novel scenarios without

the need for fine-grained geometries or mesh information.

3.4.1 Outlier removal

Depending on the density of the pointclouds used to compute the interaction tensors, there will be

noise or irregularities present in the data. Although this problem can be avoided by having very

dense pointclouds, it is preferable to solve the problem via an outlier removal post-process. This

is because the number of points needed to meet the "high" density requirement will depend on

the object’s dimension. Larger affordances such as Sitting for a human would require many more

points than smaller interactions such as Filling. The proposed post-processing consists in keeping

the number of points sampled on the objects bounded to 100K and implement a RANSAC[208]

-like approach for the removal of outliers.

The algorithm removes spurious data by iterating through the points on the IBS and compar-

ing the provenance vectors of the current sample with those in the vicinity. After a few iterations,

the points whose provenance vector is further than 1.5 standard deviations from the mean vector

in their vicinity are removed from the tensor. The radius of the vicinity is proportional to the size

of query-object, i.e. 10% of bounding box length. Figure 3.9 shows the removal of outliers related

to errors in the computation of Voronoi diagram (e.g. quick hull algorithm errors). Figure 3.10

show examples of outliers related to penetrations that appear when lower density pointclouds

are used to compute the IBS.

3.4.2 Weighted Interaction Tensor

Points on the IBS are defined by provenance vectors from the scene-object, this information is

used to assign a weight to every location on the interaction tensor, W = {wb,∀b ∈ B}. The weight

related to any given location in the interaction tensor is computed from the magnitude of its

corresponding provenance vector. This weight or distance represents how relevant is every point

for the interaction taking place between the objects. The idea behind this weight assignment

is that locations where objects are closer together have higher importance, as opposed to those

regions where the interacting objects are further apart. An example of such scenario can be
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Figure 3.9: Outlier removal for an iT of Sitting-human affordance (only points on the IBS are
shown). These noisy data points are associated with numerical errors in the quick hull algorithm.
From left to right: interaction example and its associated IBS. Detected outliers. Cleaner data
points on the IBS.

Figure 3.10: Removal of outliers for an iT of Placing-bucket affordance. These outliers are caused
by lower density pointclouds in the interaction example. From left to right: interaction example
and its associated IBS. Detected outliers. Clean data after removal of object penetrations.

seen in Figure 3.8, which shows that the region of the iT where the coat-hanger’s hook wraps

around the "hanging racks" is assigned higher weights. At the beginning of the research various

weighting criteria were considered; the alternatives included were:

• Distance to test-point Weight is equal to the distance between the point on the IBS

and the reference point in the scene-object. The reference point is the point selected in the

scene-object to guide the interaction simulation during training (e.g. middle point under

bottle in Placing-bottle affordance)

• Distance to scene-object Weight is equal to the distance from the point on the IBS to

its nearest point in the scene-object. This is equivalent to the magnitude of the provenance

vector as introduced earlier. Also, notice that this distance is the same as calculated from

points on the IBS to their nearest neighbour on the query-object.

• Distance to both objects Weight is equal to the distance from the point on the IBS to

its nearest neighbour in the scene-object, plus the distance to its nearest neighbour in the
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query-object.

• Distance to centroid Weight is equal to the distance from the points on the IBS to the

centroid of the query-object.

Figure 3.11 shows these alternative weighting methods for different interactions. Whereas for

Placing and Filling affordances the difference is minimal, more complex interactions such as

Riding show higher variance for the high-weight concentrations. For instance, considering the

distance to the query-object centroid would regard the chest of the biker (human) as the most

relevant area of the interaction. Alternatively, distance to both objects would focus a lot on the

hands and not so much on the saddle. Another important difference is observed in Sitting, where

the distance to scene-object (i.e. provenance) is the only alternative that takes into account the

region near the legs of the human. This was corroborated by testing the weighting alternatives

in novel scenes, where the most notable difference was obtained with Riding and Sitting. The

alternatives where the human legs are not regarded as important (lower weight) predicted

candidate locations for Sitting where the legs would be inside furniture of other objects in the

scene. These predictions would not be possible to achieve in a real scenario.

Finally, Figure 3.12 shows iT examples for the affordances considered for this research:

Placing, Hanging, Filling, Sitting and Riding. These tensors illustrate the provenance-based

weighting depicted by the colouring in the vectors. High weights are coloured in red while lower

weight locations are rendered in blue.

3.5 Affordance descriptor

The iT is a high dimensional and rich representation for object interactions, employing it directly

as a descriptor for affordance detection would require costly computational resources, and

it would also deviate from Gibson’s concept of direct and economical perception. In order to

reduce computational costs and improve the generalisation capabilities of the descriptor, the

dimensionality of the representation is reduced by drawing N samples from the iT. This subset

comprises what has been named affordance keypoints X= {X1,X2, ...,Xn} where Xn = 〈bi,iT(bi)〉.

In other words, each affordance keypoint is formed by a 6-dimensional feature vector which

consists of the Cartesian coordinates (x, y, z) of the data point bi on the bisector surface, and

its associated provenance vector ~p to the scene-object. The scalar |~p| encodes the importance
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Filling

Sitting
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test-point
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(provenance)
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Figure 3.11: Weighting methods considered for the interaction tensor. Weights are shown as
colours of the points on the IBS: higher weights are depicted in red. For some affordances,
e.g. Placing, no major differences are observed; whereas for Riding and Sitting affordance the
differences are notorious and relevant.

(weight) of a keypoint in the interaction between objects; since in principle the shorter the vector,

the more significant the interaction is between them. Figure 3.13 depicts the method to compute

affordance keypoints forming the descriptor for placing a bowl on a table in a 2D case.

Each affordance descriptor Xaffordance has N × 6 dimensions, where N is the number of

keypoints sampled from the iT. For this work two sampling strategies are investigated: uniform

sampling and weight-driven sampling. These are described in the following subsections.

3.5.1 Uniform sampling

This strategy consists in sampling a target number of points N which, as the number suggests,

are uniformly distributed over a given iT. This sample set is obtained as follows. First, a voxel

grid is fitted to the pointcloud represented by the IBS. This grid is based on an OcTree structure
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Figure 3.12: 5 iT examples of affordances studied in this research. Top row: Filling-mug, Hanging-
coat-hanger. Middle row: Placing-bottle, Sitting-human. Bottom row: Riding-biker.

which splits the pointcloud into equally-sized parts iteratively until the number of voxels is equal

to the sample size N. Then, the closest point in the IBS is computed for every voxel centroid in the

final grid. Finally, the affordance descriptor is formed by the considering as affordance keypoints

the IBS points (from the previous step) and their associated provenance vectors. Figure 3.14

shows the process to obtain a uniformly sampled keypoints.
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Query object

Scene object
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Xplacing= ...
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bn=xn,yn,zn
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Figure 3.13: Affordance descriptor for placing a bowl on a table in a 2D scenario. A set of points
is sampled from the bisector surface. An affordance keypoint is obtained by computing the
interaction tensor over these sampled points. These keypoints lead to the interaction tensor
descriptor Xaffordance.

IBS

Octree grid iT sample

Figure 3.14: Uniform sampling based on an Octree fitted to IBS pointcloud. The octree structure
iteratively splits the pointcloud (i.e. grid) until the target number of samples is achieved.

3.5.2 Weight-driven sampling

The second sampling strategy samples from a distribution where probabilities are inversely

proportional to weights in the iT:
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(3.2) P(bi | w1,w2, ...,wn)=
wi

∑n
k=1 wk

where

wi = 1−
|~pi|

|~pmax|

Weights are given by the magnitude of the provenance vectors in any given iT as a proportion

of the largest vector ~pmax in the current tensor. The idea behind this sampling method is to

have a more meaningful representation (i.e. higher keypoint density ) in locations considered to

be highly relevant for the interaction. These typically are locations where objects come closer

together or touch, for instance in Figure 3.12 the saddle, handlebar grips and footrest of the

motorcycle.

Figure 3.15 shows iT descriptors obtained with the two sampling methods that have been

just described. As expected, the weight-driven sample focuses the keypoints in the regions closer

to the tap spout; whereas uniform sampling focuses on maximal coverage of the original tensor.

Full iT Uniform Sample Weight-driven Sample
Interaction

example

Figure 3.15: Affordance descriptors achieved with different sampling methods (N = 512). Columns
on the left show the interaction and its full tensors as a reference.
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3.5.3 Training pose

In addition to computing an iT and sampling from a given interaction example, some auxiliary

information such a the query-object and descriptor poses is also needed. The complete process

of extracting such information, computing interaction tensors and descriptors is referred to

as training in the Chapters 3 and 4; more specifically, this is the training stage for the one-

shot affordance prediction approach presented in this thesis. On the other hand. the process of

predicting affordance locations with the one-shot approach (Chapter 4) is referred to as testing.

The single example of the interaction, for every interaction in this research, is computed using

a single orientation of the query-object and assuming that the pose is stable under standard

gravity vector (z ↓).

Descriptor pose

As shall be detailed in the following chapter (Chapter 4), in order to test and predict affordances

in a never before seen environment the affordance descriptor should be aligned relative to a

test-point in the scene. To accomplish that, some degree of translation invariance is needed

to allow that multiple points can be tested regardless of their location w.r.t. world frame. This

translation invariance is feasible sine after training an interaction, the pose of the affordance

descriptor is stored in a local frame relative to the scene-object used to generate the iT. More

specifically, the reference point selected in the scene-object and used to guide the simulation (i.e.

interaction example). The information of this point in the scene is used to compute and apply a

transformation to every affordance keypoint such that the affordance descriptor is expressed in

Cartesian coordinates (points on the IBS and provenance vectors) relative to the reference point

in the scene.

Query-object pose

A similar approach is followed to store the pose of every query-object. First, origin in the object’s

local frame is translated such that it is coincident with the reference point(in the query-object)

used to compute the interaction example. This is an important step for two reasons:

• Many CAD models available online will have coordinate systems relative to a local frame de-

fined by either the CAD software or a human designer. In order to study similar interaction
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across different objects, a canonical (consistent) pose for every object is needed.

• Some objects afford more than one interaction, and their local frame should change ac-

cordingly. For instance, a pitcher for Placing should have its coordinates relative to the

base, whereas the same pitcher for Filling should have coordinates relative to the top;

furthermore, for a Hanging affordance, the origin of the local frame should be near the

handle.

Figure 3.16 exemplifies scenarios where having an appropriate local frame plays an important

role in the objects’ training pose. Whereas affordance prediction does not need the query-object,

the benefit of the pose convention is shown to better illustrate the predicted interactions (Chapters

4 and 5 and during scene augmentation in Chapter 6.

x

z

x

z

x
z

Figure 3.16: Objects need to have their coordinates (local frame) according to the affordance
under investigation. This local frame is set from the moment of training (i.e. interaction example
computation). From left to right are shown local frames in a pitcher for three affordances: Placing,

Filling, Hanging.

3.6 AffordanceSim

In order to compute interaction tensors, descriptors and all other relevant data, software tools

were developed based on C/C++. The set of libraries that were developed for these purposes

are referred as AffordanceSim, and these include the software needed for training (i.e. produce

interaction tensor examples) and testing (i.e. perform affordance predictions) based on the

iT algorithm. The vanilla version of AffordanceSim was made publicly available2 under the

MIT License in September 2018. Details regarding the software requirements, instructions of

compilation and usage, as well as functionality, can be found in Appendix A.1.

2https://github.com/eduard626/interaction-tensor
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3.7 Conclusion

This chapter introduced the Interaction Tensor (iT) representation to characterise static interac-

tions between any two objects in 3D space. Based on the robust description capabilities of the IBS,

the newly proposed representation allows to devise an affordance descriptor in a straight-forward

manner, i.e. by drawing samples from the iT. As shall be illustrated in the next chapter, with the

inclusion of provenance vectors and a suitable similarity measure, the proposed representation

allows to: 1) more efficiently detect similar affordance candidate locations in novel scenarios; in

addition to 2) not requiring fine-grained geometrical information in the novel scene. In contrast

to approaches in computer graphics [186, 188, 189], the proposed method 1) uses more flexible

representation (i.e. pointclouds) instead of mesh data and 2) does not need to recompute the iT

for predictions. All of this brings the possibility of more easily employ the iT method in RGB-D

data for robotics and computer vision tasks.
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AFFORDANCE DETECTION

4.1 Introduction

Being able to determine affordances in an unknown environment is a key competence for acting-

perceiving agents. In principle, it can alleviate the computational approach to visual perception

from the focus on objects and their somewhat arbitrary labels, which would need to be learned

extensively. The work proposed in this thesis focuses on a subclass of affordances between rigid

objects, specifically the interactions between objects (or a human) and the environment. The

approach proposed to do so is based on the Interaction Tensor (iT) introduced in the previous

chapter; where it has been shown that an affordance descriptor can be obtained by sampling

affordance keypoints from an iT.

First, the current chapter demonstrates how the affordance descriptor computed from the iT

representation allows to predict affordance candidate locations or hypotheses in a novel scene.

The proposed similarity function allows to quickly detect affordance locations that give answer

to perceptual questions such as “Where can I afford to place a bottle?”,“Where can I hang a

handbag?” , “Where can I fill a mug?”, etc. This testing scenario is referred to as affordance

query. Later, this chapter introduces an algorithm that enables to efficiently increment the

number of affordance-object pairs queried in any given location without heavily comprising the

detection rate. Results and evaluations of the experiments carried out with the proposed methods

are shown accordingly, including comparisons with alternative approaches.
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4.2 One-shot affordance detection

The iT representation inherits from the IBS the robust and powerful ability to capture the

geometric characteristics of the interaction between any pair of objects. Sampling from this

representation allows to build an affordance descriptor which is compact but still retains the

geometrics information captured by the iT. In this section is introduced the similarity function

and algorithm that allows to quickly determine affordance hypotheses in a novel scenario from a

single training example, i.e. one-shot learning.

Previous methods employing IBS for functionality analysis have relied on the computation

of local shape features on its surface which are then fed to a machine learning algorithm or

similarity function in order to retrieve or synthesise matching interactions. Thus, for any new pair

of objects, they need first to compute the IBS, then compute shape features at various locations

on the IBS, and (typically) build histograms representing the global shape features [186, 188, 189,

191]. All of this turns into a very time-consuming process, which also needs some form of mesh

information in order to compute the proposed local features. As seen in Chapter 3, computing an

IBS requires dense pointclouds or a post-processing step in order to remove noisy or spurious

data, process the adds extra computations to the “traditional” detection pipeline.

The alternative proposed in this thesis is to approximate the iT descriptor at prediction time

(i.e. testing) via a Nearest Neighbour (NN) search. It is worth reminding that the provenance

vectors in the iT account for regions in the scene that contributed to the computation of the IBS

surface; the proposed algorithm uses this information to investigate whether those regions exist

in a novel scenario, these regions would allow computing the same or a similar iT (if required).

In this sense, the NN-search is used to investigate if the point in the scene required to compute a

point on the IBS exists; or more precisely, if the point in the scene is where is expected to be.

Notice that the iT approximation process does not need the training objects (query-object

nor the scene-object) to make a prediction, only the descriptor Xaffordance (Xa for short) of the

interaction between such objects suffices for the NN-search approximation. In other words, after

training an affordance neither the query-object or the scene-object are required for affordance

prediction. The query-object is only needed to visualise more clearly the predicted interaction.

In order to estimate the likelihood of an affordance in a new test point ti, the descriptor

Xa needs to be aligned relative to the new location. From training, the pose of Xa relative to

a reference point in the scene is known; therefore, testing in ti is done by simply applying the
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translation corresponding to that point Tti
. It is also important to notice that from the training

example only one orientation is considered; thus, the descriptor can be rotated around the gravity

vector~z, through transformation Ro, in order to test the affordance at different orientations.

In summary, the pose of the affordance descriptor given a test-point pi is given by

(4.1)

X ′
a = RoTpi

Xa

= Ro
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Where θ is the angle at which the interaction should be tested. If θ = 0 then it is exactly the

orientation used for the training example. In this work, eight orientations evenly distributed in

[0,2π) were considered.

Once the descriptor is aligned relative to the test point, the NN-search is performed to

investigate how likely it is to afford the interaction in this location. First, the 1-NN in the scene

is computed for every keypoint in the descriptor; this allows to calculate test vectors ~vt. These

vectors are the approximation of provenance vectors at test time. Then, a score or likelihood can

be computed by comparing both sets of vectors via Equation 4.2:

(4.2) si =
N
∑

i=1

1
√

2πw2
i

e
−

∆
2
i

2w2
i

where

∆i =
‖~vt i −~pi‖

‖~pi‖
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Where N is the number of affordance keypoints in the descriptor, ∆ is the magnitude of the

difference between vectors expressed as a proportion of the expected provenance vector ~pi.

Important is to notice the inclusion of keypoint’s weight wi, which helps to relax the matching

criteria (i.e. magnitude of the difference) for regions of the interaction that are not very relevant.

In contrast, those regions of the interaction that are more relevant (i.e. higher weight) have a

stricter matching. Figure 4.1 illustrates the idea behind the similarity/matching of vectors for

Placing affordance prediction.

provenance

pi vti

test

pi
vti

pivti-

i

iT example ti

Scene

pointcloud

+
Nearest 

neighbour

search

Test vectors

vt
+

Vector estimation

Vector comparison (Eq. 4.2)

Figure 4.1: Affordance predictions are carried out by approximating the iT descriptor at a test-
point in the scene. Test vectors are computed via nearest neighbour search for every keypoint in
the descriptor. The proposed similarity function compares provenance vectors and test vectors to
produce a score based on pairwise vector differences.

More specifically, affordance location predictions are performed following Algorithm 1. First,

test points {t1, t2, . . . , ti} are uniformly sampled all over the input scene. Then, the voxel surround-

ing test point ti is extracted, the size of this voxel is given by radius ro which is equal to the

diagonal of the bounding box of the query-object associated to the affordance being queried. This

smaller scene pointcloud (voxel) is used to perform the NN-search needed to estimate test vectors;
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which are then used to compute a score via the similarity function shown above in Equation 4.2.

Figure 4.2 depicts the affordance detection algorithm from a given input scene and an affordance

of interest( e.g. Filling-mug).

Algorithm 1 Affordance query
1: for all test points T in scene do

2: Extract voxel of radius do around ti

3: for all orientations θ do

4: Estimate test vectors using NN-search
5: Compute score si at θi using (4.2)
6: if si ≥ Sprediction then

7: Predict good location at (ti,θi) with
8: probability si

It is worth mentioning that the search performed in the scene or the way test-points are

selected does not follow a particular criterion, not other than sampling from the input scene

uniformly. In a way sampling uniformly ensures covering or testing locations along the whole

scene. Whereas this could be seen as an exhaustive process, it should be kept in mind that no

prior assumption is made regarding scene or objects appearance nor surface complex features. For

instance, alternative approaches would compute curvature features or normal vector information

in the scene to speed up the discrimination process; however, this would bias the detection

towards parts of the scene that “are known” to afford an interaction. In other words, the approach

proposed in this thesis is agnostic to scene shape features, and instead computes the likelihood

of the interaction by hallucinating the interaction; it is until the interaction is carried out (by

hallucinating) that the affordability of the interaction is discovered.

It should be mentioned that surface normal vectors in the scene were considered to guide or

prune the search in early stages of this research; however, estimating scene normal vectors is

a research problem in itself. The idea of such approach was to associate each affordance with

an expected normal vector orientation in the scene, for instance, a normal pointing upwards

for Placing affordances which should come from the surface supporting the object, or a normal

pointing downwards for Filling affordances (e.g. in taps/faucets). The problem with such approach

is noisy or wrong normal estimates. In general, the absence of a mathematical principle to solve

for the sign of the normal, causes its orientation to be ambiguous, and often times not consistently

oriented over an entire point cloud. This causes that promising locations are not explored if the

normal vector in that surface is not correctly oriented (or as expected).
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Scoring

function
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Test vector
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A ordance keypoint
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Input scene
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Figure 4.2: Affordance detection example for Filling-mug. Test-points are sampled from the scene
(red). Affordance keypoints (green) are aligned relative to the test-point. Test vectors(blue) are
estimated using a NN-search. Test vectors and provenance vectors are compared to produce a
score.

4.3 Affordance query

In the following subsections are presented the experiments carried out in order to perform affor-

dance detection (affordance query). The experiments comprise predicting affordance candidate
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locations over a set of 20 publicly available synthetic scenes1 which include living-rooms, kitchens,

offices as well as motorcycles. Examples of these scenes are shown in Figure 4.3; the full dataset

can be found in Appendix A.2. As mentioned earlier, eight orientations are tested for every point

in the input scenes. Pointclouds are generated from the synthetic scenes following the same

approach to produce dense pointclouds for training, i.e. uniformly randomly sampling points on

the surface of the CAD models.

For these experiments, eight affordance-object pairs were considered: Filling-mug, Filling-cup,

Placing-bottle, Placing-bowl, Hanging-hanger, Hanging-handbag, Sitting-human, Riding-biker,

from which N = 512 keypoints are sampled; this value was obtained empirically and proved to

be a good balance between quality and speed of the predictions. A method to learn the optimal

sampling for affordance prediction is presented later in Chapter 5.

Kitchen Living-room

O ce Motorcycle

Figure 4.3: Examples of scenes used to query affordances. The scene dataset includes: living-
rooms(5), offices(5), kitchens(5) and motorcycles(5).

4.3.1 Sampling methods

The two sampling methods used to generate an affordance descriptor were assessed in a first set

of experiments. As a reminder, these sampling methods are: 1) Weight-driven and 2) Uniform

1https://3dwarehouse.sketchup.com
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sampling. For these experiments, predictions are made while the individual scoring of provenance

vectors and timings are tracked. This allowed to generate Figure 4.4, which shows the scores of

the top 20% affordance predictions made with both methods.
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Figure 4.4: Plots show the performance of two keypoint sampling methods. For most affordances
weight-driven sampling achieves the prediction score threshold faster than uniform sampling
(fewer comparisons made at test time). For some affordances the difference can be subtle, whereas
in some others such as filling affordance, the difference goes to 80%.

In these plots can be seen that when weight-driven sampling is used to compute scores, the

algorithm reaches the prediction score threshold faster than uniform sampling in four out of

5 affordances. This because by making sure that higher-weight keypoints are presented, the

algorithm becomes confident enough to make a prediction sooner than with uniform sampling.

High-weight keypoints are compared first by the algorithm; hence, the score threshold is achieved

performing fewer computations. On the other hand, uniform sampling achieves similar perfor-

mances using on average 40% more comparisons (i.e. 200 keypoints more); which in most cases

means all the keypoints in the descriptor. It stands out the plot from Riding which shows a "noisy"

behaviour on both sampling methods. This, however, is related to the nature of the interaction.

All the other interactions typically have one concentration or cluster of high-weight keypoints,

which usually is where object come closer or contact each other. In the case of Riding, there are

5 of such high-weight clusters: motorcycle handle grips(2), footrests(2) and saddle; depending

on the scene being tested some of those locations might not be there which can cause a jittery
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behaviour in the plot. For instance, if a complete motorcycle is found in the scene the plot would

be smooth; but if only the "saddle" is present in the scene (like in Figure 4.5(d)), the graph will

not show the same response.

Figure 4.4 also shows the thresholds used to predict a good location for the affordances.

Different values were considered depending on the target interaction, whereas this is not ideal,

it should be reminded that the main interest here was to find out the performance of different

sampling methods over the iT. Later in this chapter will be introduced the single value of this

threshold that produces the best predictions across all affordances.

Notice that, due to the fact that a search is performed on test-points located all over the scene,

it is crucial to quickly asses the affordability of the interactions in any given location. There lies

the advantage of using a weight-driven sampling approach to compute affordance descriptors.

If the computing resources are limited (e.g. no GPU available) most calculations are done in a

sequential manner, which further emphasises the importance of implementing a fast method.

Even when parallelisation is introduced, the advantage of the same method is important since the

computations are made using ordered batches of affordance keypoints and vectors. If at an early

stage of the prediction (i.e. first batches) there are not favourable scores, the computations for

the current test-point can be stopped; or one could only to pursue those that are more promising.

Whereas this behaviour has not been implemented yet, it is a relevant consideration when testing

on multiple locations all over the input scene.

4.3.2 Baseline comparison

In a second round of experiments, the proposed iT method is compared against two baseline

algorithms: 1) IBS-only and 2) Naive matching. The former uses the query-object to compute

the IBS at every test-point in the scene, producing a score by comparing the two pointclouds:

training IBS and current IBS. This comparison is made by computing the best transformation

that aligns both pointclouds via Iterative Closest Point (ICP) [209]. The second baseline is a

Naive matching algorithm, which computes the pairwise distances between the query-object

and the scene pointcloud. The idea behind this approach is to resemble template matching in

traditional computer vision methods or methods that use distances between objects instead of a

representations of the interaction between them. For fairness, both of the baseline algorithms

sample points uniformly from all over the scene similarly as the affordance query algorithm (i.e.
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uniformly all over the scene).

In addition to being slower or more computationally intensive, the method based only on the

IBS as a descriptor is much more strict by trying to find only interaction opportunities closely

similar to the training example. One first advantage of the iT approach is that, by considering

a weighted vector field, there is a more relaxed matching criterion in parts of the interaction

that are not critical to the affordance; this allows the detection of affordance candidate locations

despite variations in the scene geometry. In order to achieve a performance similar to the iT

descriptor, it is necessary to relax the matching threshold for IBS-only method; however, this

increases the number of bad predictions (i.e. false positives). Figure 4.5 shows an example of such

circumstances for hanging a coat-hanger on a rack.

a) b) c)

Figure 4.5: The iT descriptor (a) allows more flexibility in the prediction of affordance location
candidates. The IBS-only method (b) predicts affordance in locations more closely similar to the
training example (centre of the hanging rack). Similar performance with IBS-only method can
be achieved by relaxing the matching threshold(c), but this is at the expense of increasing the
number of false positives (red coat hangers).

The second alternative method computes the best match by computing the pairwise distance

between the two entities, query-object and scene, at the current test-point but without any
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explicit representation of the interaction between the objects; therefore the goal is to find the best

possible “alignment” at test time by minimizing the distance error between example and current

interaction. Figure 4.6 shows results contrasting the Naive algorithm and the iT approach. One

important thing to notice about the Naive approach is that it does find some expected locations;

yet it also predicts as good the locations with object penetrations, occlusions or intersections. This

kind of predictions would not be useful or achievable in reality. For instance, 4.6(d) and 4.6(e)

show Naive predictions for sitting and riding where the legs or parts of the body (query-object)

are inside furniture. Similar cases are observed in Figure 4.6(a) - 4.6(c), where the predicted

locations would make the query-object collide or to be inside other objects in the scene.
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(a) Filling cup

(b) Hanging coat-hanger

(c) Placing bottle

(d) Riding biker

(e) Sitting human

Figure 4.6: Results on the middle column show predicted positions using the iT descriptor.
Results in the column on the right show predictions made with the baseline Naive algorithm.
Naive algorithm predicts good locations with equal probability as bad or unachievable
configurations (red).

During these experiments, two remarkable and unexpected predictions were observed. First,

the iT algorithm suggests edges of flat surfaces as good candidates for Hanging a coat-hanger.

Take into account that the training example consisted of an actual hanging rack, as shall be

shown next, hanging a coat hanger from the edge of a shelf is regarded as possible according

to human criteria. A second noteworthy outcome was the prediction of Riding affordances in
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living-rooms, especially in sofas. The algorithm is able to detect the saddle-like structure of the

furniture and predicts it a good candidate for Riding. All of this highlights the generalisation

power of the proposed method. Finally, Figure 4.7 shows example predictions for this latter

affordance made in actual motorcycle scenes. Notice the important changes in the motorcycles’

geometry.

Figure 4.7: Predicted Riding affordance in never seen before motorcycles.

Affordance validation

The affordance predictions are further evaluated through Amazon Mechanical Turk, where the

performance of the iT method according to human criteria was investigated. Due to the fact

that no prior assumptions are made regarding objects in the scene affording the interactions,

the predictions consists of locations that an agent would choose to accomplish an action. As an

example, one can afford to place a bowl on a chair as much as one can sit on the kitchen’s table.

These are arguably valid placings but need to be validated by an “agent”, in this case, a human.

Human "annotators" were asked to select good locations for each one of the five generic

affordances considered in these experiments: Filling, Hanging, Placing, Sitting and Riding.

People were presented with six different options (2 candidate locations in 3 views each) at

a time. From these options, they had to choose the ones that according to them were good

locations for the interaction to take place. A total of 60 persons were involved in this validation of

affordance locations; each person provided 10 annotations per affordance. Performance metrics

were computed for the iT approach as well as for the baseline methods using the consensus of

human annotations as ground truth. Results of this evaluation are shown in Table 4.1, which

shows that on average the approach based on the iT achieves an accuracy of 84.90% and f-score of

.825; outperforming the baseline methods in nearly all the affordance predictions. In other words,

the iT method consistently predicts top geometric affordance locations in previously unseen

69



CHAPTER 4. AFFORDANCE DETECTION

scenarios that agree with human criteria approximately 85 per cent of the time.

iT Naive IBS
Accuracy F-score Accuracy F-score Accuracy F-score

Filling 96.00 96.30 87.50 88.89 87.50 90.91
Hanging 85.71 82.35 75.00 80.00 37.50 54.55
Placing 80.30 81.16 66.67 66.67 66.67 40.00
Sitting 72.00 63.16 77.78 50.00 88.89 66.67

Riding 90.48 90.00 75.00 75.00 37.50 54.55
Average 84.90 82.59 76.39 71.48 63.61 61.34

Table 4.1: Affordance prediction performance evaluated according to human annotators criteria
(in terms percentage).

It is worth noticing that in the case of Riding, which could be considered the most complex

interaction, iT outperforms the baseline methods with a more significant difference over IBS.

As discussed previously, the baseline IBS algorithm mainly detects affordance at locations with

scene geometries very close to the example. When there is no motorbike-like geometry (e.g. living-

rooms), it struggles to predict such affordance. A similar situation occurs for Placing affordances,

which remains challenging for the baseline algorithms. This is mainly due to the scene geometry

at specific places; for instance, baseline algorithms will not place the query-object if the area is

not completely clear (flat clear surface). Notably, all the algorithms have a high performance with

Filling, which can be explained by the fact that locations affording such interactions have a more

distinctive geometry (e.g. taps and sinks); these geometries are found very seldom (one in most

kitchen scenes) which makes easier to detect the Filling affordance correctly. Another remarkable

result can be observed for Hanging affordances; where, according to humans, hanging a coat-

hanger on edges of flat surfaces is regarded as possible. Interestingly, iT and Naive approaches

predict these type of interaction successfully. Traditional methods based on object appearance

would fail to detect these cases.

For now, predictions have been made base on thresholds established individually per affor-

dance. Ideally, there should be a single value for the detection threshold that yields the best

performance in the general affordance (i.e. all affordances) prediction; for this purpose, the

”human labelled“ data is used to obtain the value of this parameter. The results from this process

are shown in Figure 4.8, where is shown that the best performance across all five affordances is

obtained with a threshold value of 0.52. In other words, a prediction made by the iT algorithm

with a score above 0.52 is valid 82% of the time according to human criteria, regardless of
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the affordance being queried. It is interesting to see that in some points the baselines perform

worse than random. When considering the every-affordance case, the overall performance of the

baselines is penalised or heavily influenced by the low performance on complex affordances such

as Hanging or Riding.
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Figure 4.8: ROC plot on top shows the performance achieved when considering the every-
affordance case. The plot shows iT considerably outperforming the baseline methods with an
accuracy of 80.30% and a precision of 84.85%, with a prediction threshold of 0.52. Images on the
bottom illustrate the validation task faced by human evaluators.
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4.3.3 Detection on RGB-D data

Experiments were also carried out using pointclouds captured with an RGB-D camera (Asus

Xtion sensor) and using a publicly available dense mapping system [210]. Additionally, publicly

available data containing indoor scans [211] and five motorcycle scans [212] were considered for

these affordance detection experiments. Using the same pipeline explained before, affordances

are queried in a total of 20 scenes using the very same training example from the synthetic data.

The only pre-processing step carried out to the input scenes is ground plane calibration. Figure

4.9 shows affordance heat-maps for these scenes and examples of the predicted locations.

Notably, the proposed method performs favourably with this type of data; which is attributed

to the fact that the similarity function used to compared vectors can handle noisy estimates

by fitting a Gaussian model to the expected difference (error) in the vectors. In this way, the

method does not need further modifications in order to account for the irregular or possible noisy

pointcloud from the mapping system. This again highlights the robustness of the proposed method

and that fine-grained scene geometry is not essential for its performance. As an example, Figure

4.10 illustrates a close-up to the kitchen pointcloud shown in 4.9, notably the tap geometry is very

noisy or inaccurate yet the iT method manages to predict a meaningful affordance successfully.

Figure 4.10: Filling a mug detection in the RGB-D scanned kitchen of Figure 4.9. Notice the noisy
pointcloud for the tap, despite not being a very accurate or fine-grained reconstruction the iT

method successfully predicts the affordance location.

4.4 Multiple-affordance detection

Up to this moment, different affordances candidate locations can be detected with the help of their

specific descriptor individually . That is, if the task is to detect Placing-bowl affordance, the input

to the system is the descriptor of this interaction and the scene. If the task at hand is to detect
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Placing-bottle

Filling-mug

Hanging-coathanger

Sitting-human

Riding-biker

Figure 4.9: Affordance heatmaps with predicted locations in RGB-D scenes. From left to right:
placing a bottle in office environment, filling a mug in a kitchen, hanging coat hanger in an office
desk, sitting in a reading room and riding a motorcycle.
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Sitting affordances, the input to the detection algorithm should change. This section presents

a scalable algorithm to enable multiple-affordance detections with a single representation (i.e.

one descriptor). The proposed algorithm follows the same one-shot learning approach as before

in that it uses a single example from every affordance to devise the multi-affordance descriptor.

With such representation and algorithm, one can give answer to questions such as “What can I

affford to do here?" on multiple point locations of an input scene without the need to individually

test affordances. The approach proposed next allows to increase the number of affordance-object

pairs queried simultaneously at test time without heavily compromising detection rates.

Briefly speaking, the algorithm for multiple-affordance detection agglomerates several affor-

dance descriptors and performs a grid-based clustering to select a reduced number of keypoints

(centroids) required to make predictions at test-time. This is aimed for parallelisation and effi-

cient evaluation. For this work a total of 92 affordance-object pairs are considered, they include

CAD models of multiple household items from a wide range of geometries and dimensions, and

its inspired by standard robotic manipulation datasets such as [213]. Human models for Riding

and Sitting are also included in order to test "human" affordances. The specific affordance-object

pairs are in Table 4.2 with information regarding their spatial dimensions (e.g. bounding box

diagonal). It should be stated that only objects with bounding box diagonal was larger 10cm long

were considered for this experiments; this decision was taken in the knowledge that standard

RGB-D sensors would fail to recover pointclouds for such dimensions, for instance, a screw, a

washer or a coin.

It is important to note that each sample interaction is an affordance on its own right, as it

has been established before, this is an intimate relation between object and scene. It should also

be noticed that some objects afford more than one interaction, e.g. Fill-Pitcher and Hang-Pitcher.

Additionally, it is also possible to consider some top-level clustering with conventional generic

labels for affordances such as Placing, Hanging, Filling, etc, for which performance metrics are

presented as well.

4.4.1 iT agglomeration

Naively, one could detect several affordances by testing individual descriptors one after the other.

However, this quickly becomes a problem, for instance in order to detect 92 affordances in a single

location one would need to search for n = 92x512x8 nearest neighbours (92 affordances, 512
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Affordance Object
Dimension

[metres]
Affordance Object

Dimension

[metres]
Affordance Object

Dimension

[metres]
Affordance Object

Dimension

[metres]

Filling bin 0.40 Placing bowl 0.20 Placing hat 0.35 Placing plate 0.25
Filling bowl 0.20 Placing brick 0.25 Placing headphone-stand 0.20 Placing pot 0.40
Filling bucket 0.50 Placing bucket 0.50 Placing headphones 0.28 Placing printer 0.61
Filling cup 0.17 Placing cap 0.35 Placing keyboard 0.50 Placing pudding-box 0.17
Filling glass 0.21 Placing casserole 0.41 Placing knife 0.17 Placing saucepan 0.41
Filling mug 0.15 Placing cell-phone 0.14 Placing lamp 0.48 Placing scissors 0.15
Filling pitcher 0.35 Placing chair 1.00 Placing laptop 0.54 Placing screwdriver 0.20
Filling saucepan 0.41 Placing clamps 0.18 Placing lemon 0.08 Placing spam-can 0.15
Hanging cap 0.35 Placing coat-hanger 0.47 Placing magazine 0.39 Placing spatula 0.35
Hanging coat-hanger 0.47 Placing coffee-can 0.20 Placing marker 0.13 Placing sponge 0.13
Hanging handbag 0.40 Placing coffee-maker 0.33 Placing mug 0.15 Placing spoon 0.17
Hanging hat 0.35 Placing crackers-box 0.25 Placing mustard-bottle 0.19 Placing stool 1.00
Hanging headphones 0.28 Placing credit-card 0.10 Placing nail 0.10 Placing tablet 0.29
Hanging mug 0.15 Placing cup 0.17 Placing notebook 0.27 Placing tape 0.12
Hanging pitcher 0.35 Placing detergent 0.40 Placing orange 0.10 Placing tea-pot 0.33
Hanging saucepan 0.41 Placing drill 0.32 Placing padlock 0.11 Placing toaster 0.36
Hanging umbrella 0.90 Placing flower 0.25 Placing pc-case 0.69 Placing tool-box 0.41
Placing apple 0.12 Placing football 0.22 Placing pc-monitor 0.66 Placing tv-remote 0.17
Placing banana 0.18 Placing fork 0.17 Placing pc-mouse 0.13 Placing umbrella 0.90
Placing big-box 1.00 Placing frying-pan 0.43 Placing pear 0.12 Placing wine-bottle 0.32
Placing bin 0.40 Placing glass 0.21 Placing pencil 0.17 Placing wrench 0.23
Placing bleach 0.31 Placing hammer 0.45 Placing pitcher 0.35 Riding biker 1.32
Placing book 0.20 Placing handbag 0.40 Placing plant 0.50 Sitting human 1.61

Table 4.2: Query-object collection used for multiple-affordance experiments. A total of 92
affordance-objects are shown with information regarding their size in meters (bounding box
diagonal).

keypoints, 8 orientations); which would imply in the best case scenario O (logn). Alternatively,

and is presented below, one could take advantage of the overlapping pattern found when many

affordance descriptors are agglomerated in a single location.

The general idea behind the proposed method, i.e. the iT agglomeration, is to leverage the

overlap or pattern that appears when affordance keypoints from multiple descriptors are stacked

(or agglomerated) on top of each other. By taking advantage of this overlap among keypoints one

can efficiently group or cluster neighbouring keypoints, which allows to drastically reduce the

dimension of the points in a descriptor that encodes multiple interactions.

As a starting point and similarly to the work presented earlier, interaction tensors are

computed and affordance descriptors are obtained by sampling N = 512 keypoints from their

associated iT. Appendix A.3 shows all the 92 interactions tensors and the object models used to

generate them.

For this time, instead of rotating the descriptor at test-time to detect affordances at different

orientations, every individual descriptor is rotated 8 times around the gravity vector from

the beginning. This produces a representation that already accounts for the interaction at 8

orientations from the outset. In this manner, every affordance is represented by a 4096 keypoints

(points on the IBS and provenance vectors, i.e. 4096x6). In addition to allow for the exploitation

of overlapping patterns, this new 8-orientations representation enables to leverage hardware

parallelisation during tests and perform a more efficient clustering during training.
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Once all the descriptors have been computed, they are agglomerated in a single pointcloud

on which clustering is applied following Algorithm 2. First, a grid of uniform-size cells is fitted

to the pointcloud, making sure that every single affordance keypoint is inside a cell. Then, the

centroids of non-empty cells are used as seed-points for clustering. For every one of these cells,

the closest keypoint to the cell centroid is kept on a per-affordance manner. For instance, one

cell could contain 100 keypoints, all coming from the descriptor of Placing-bowl; after the iT

clustering process is carried out this cell will only contain the one keypoint closest to the cell’s

centroid. Finally, the centroid locations are updated by considering the keypoints within each cell.

Additionally, information regarding the number of keypoints and their associated provenance

vectors is stored for every cell. Figure 4.11 depicts the cell-updating process for the iT clustering

algorithm (steps 6-9 of Algorithm 2)

Algorithm 2 iT clustering
Input: Affordance keypoints X = {x1, ..., xi}, cell size e

Output: Cluster centroids C = {c1, ..., c j}
1: Initialize C with centroids evenly distributed in [xmin, xmax] according to e.
2: Assign xi to cluster argmin j‖xi −C j‖2 ∀xi ∈ X

3: Remove empty clusters
4: Initialize update sets Y1, ...,Y j to empty
5: for all Clusters C do

6: for all Affordances A = {a1, ...,ak}6= in C j do

7: Recover all x from affordance ak

8: Assign argmini‖xk
i
−C j‖2 to Y j

9: Update centroids: c j ← 1
|Y j |

∑

y∈Y j
y

The clustering process leads to a reduced number of 3D points (cell centroids) that represent a

large number of affordance keypoints. This reduced number of new keypoints and their associated

provenance vectors are used to compute and predict affordance candidate locations at test time in

a similar manner as before. As discussed earlier, the focus is now in answering the question of

"What can be afforded here?" or "What can I do here?" in any given location of an input scene. In

order to answer that for up to 92 affordances (k = 92), an approach similar to single affordance

queries (Algorithm 1) is followed, that means:

1. Uniformly randomly sample a test-point in the input scene

2. Apply the transformation (translation) to the descriptor to align it relative to the test-point
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a)

b)

c)

d)

Figure 4.11: Agglomeration of affordance descriptors and grid-based clustering of an example
agglomeration of 3 affordances. a) single-affordance keypoints are agglomerated (affordances
shown as different colours) and a uniform-size cell grid is fitted, b) one cell can potentially contain
many keypoints from multiple affordances, c) only closest keypoint (per-affordance) to the cell
centroid (green) is taken into account during the update process, d) an updated cell with the
provenance vectors associated to the keypoints kept after clustering.
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3. Perform a 1-NN search for every keypoint in the agglomerative descriptor using the voxel

surrounding the test-point

4. Estimate test-vectors and compare against provenance vectors to produce a score using the

similarity function shown in Equation 4.3 below

(4.3) sk =
1

Nk

Nk
∑

i=1

1
√

2π(wk
i
)2

e
−

(∆k
i

)2

2(wk
i

)2 ,

with

∆
k
i =

‖~vt j −~pk
i
‖

‖~pk
i
‖

,

where wk
i

is the weight of i-th keypoint of affordance k, the value of the weight is computed from

the provenance vector associated with that keypoint. ∆k
i

is the difference between test vector ~vt j

(estimated using the j-th cell-centroid) and provenance vector pk
i
. Figure 4.12 depicts the steps

followed at test-time in order to predict affordance candidate locations.

a) b) c) d) e)

050.0

0.04

0.00

Figure 4.12: Illustration of affordance prediction at test-time. a) a test-point is sampled from
the input scene (red), b) the agglomerative representation (green) is aligned relative to this
test-point, c) The closest scene point (yellow) for every centroid in the agglomeration, d) an
example test-vector (blue) from a cell centroid to its closest scene point, e) test-vector is compared
against the stored provenance vectors pk

i
associated with affordance keypoints in that cell. In

this particular cell, three scores are obtained.

Notably, the approach is very similar to the previous method (i.e. single affordance query),

where a NN-search forms part of the main pipeline in order to estimate test-vectors. In order to

make such approach more efficient, the NN-search and the scoring (i.e. vector comparison) are

implemented using parallel computing libraries (e.g. CUDA and PCL::GPU [214, 215]). First, the

nearest neighbour search is optimized by building an Octree structure with the scene pointcloud.

The access to this data structure is shared across all computing threads inside the GPU; therefore,
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a single call of the NN-search function is able to provide up to 2048 nearest neighbours (e.g.

Nvidia Titan X). Once the 1-NN for every cell centroid is computed, the data is shared with the

scoring module (i.e. vector comparison) which also runs in the GPU. In this module, one GPU

thread computes Equation 4.3 for one cell; meaning that 2048 scores can be computed in a single

run this module.

Remarkably, the method results straight-forward to compute thanks to the compact, robust

and efficient affordance descriptor presented in Chapter 3. In the following subsections are pre-

sented the evaluations and experiments carried out to test the agglomerative multiple-affordance

representation that has been just described. These experiments and evaluations include the

predictions rates, the validation of the affordance candidate locations and the evaluation of the

parameters involved in the method, e.g. cluster size.

4.4.2 Evaluation

Cluster size and detection rates

One important parameter of this approach for multiple-affordance prediction is the cell size

employed to cluster affordance keypoints. This is somewhat a compromise of parallelisation

capability and framerate operation. One first consideration of this work explored non-uniform

spatial representations of the keypoint agglomeration, representations such as those in e.g.

Octrees. However, the diversity in dimension and sparsity of the affordances considered in this

research made very challenging the selection for the right positioning of centroids, which did not

perform as well as sparse yet uniform-sized cells.

In principle, the smaller the cell gets, the closer it is to the original descriptor since in the

limit every cell will contain only one keypoint; in practice, the smallest cell size to study during

experiments is obtained following Algorithm 2 with a single-affordance descriptor (i.e. 4096

keypoints). First, a cell size of 2 cm3 is used, then the cell size is gradually reduced until the

number of clusters remains stable. Figure 4.13 shows that at a cell size of 0.5 cm3 the number

of clusters remains roughly the same. This figure also shows the size in meters of the diagonal

of agglomeration’s bounding box as more affordance descriptors are added, the 92 descriptor

agglomeration occupies a volume of approximately 2.7 cubic metres.

The affordance query algorithm for multiple affordances is executed on the scene dataset

introduced previously, which is comprised of 20 RGB-D scans of indoor environments and 15
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Figure 4.13: Plot on the top-left shows the increment in the size of the agglomerative representa-
tion (bounding box) as the number of affordances contained in it grows. The plot of the bottom-left
shows the number of clusters produced by considering various cell sizes in single affordance
agglomeration. The plot on the right shows the per-cluster density (number affordance keypoints)
for various cell sizes.

synthetic scenes from publicly available CAD models. As a reminder, these scenes consists of

living-rooms, kitchens, offices and motorcycles. Figure 4.14 shows the dimensionality of the

multiple-affordance representation and the average prediction rates according to the cell size.

Looking at this figure, it stands out the large reduction that is achieved with the proposed
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Figure 4.14: Bar plot shows the dimensionality reduction achieved with the agglomerative method
for different cell sizes. The number of keypoints required to make predictions is reduced up to 6
times. Numbers above each bar show prediction time (milliseconds) per test-point of the input
scene.

approach, which is nearly six times smaller (344K vs 60K keypoints). The prediction rates on

the same figure show that using grids with a cell size of 1 cm3 allows the detection of up to

92 affordances at 10 different locations per iteration on the input scene. This is significantly

faster (7x improvement) than predicting affordances by trying descriptors individually at test
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time one after the other. Because the prediction algorithm performs a NN-search in order to

estimate test-vectors and compare them against provenance vectors, the complexity of such

operation depends heavily on the dimension of the multiple-affordance representation (i.e. the

number of centroids/keypoints). More points in the representation require more computations;

thus, reducing the representation allows for faster evaluations at test-time. Even with such a

reduction in dimensionality the approach, as shall be shown later, is able to produce top quality

affordance predictions.

In an effort to further emphasise the scalability of the iT agglomeration method, Figure 4.15

shows the computation times observed during affordance predictions of 92 affordance-object pairs.

The green curve in this figure corresponds to the computation time measured by progressively

incrementing the number of affordances represented by an agglomerative representation of

0.5cm3 cells. That is, the time shown in the far right corresponds to an agglomerative descriptor

of 92 affordances, whereas the first value on the left corresponds to an agglomerative descriptor

formed by agglomerating keypoints of 1 affordance (Sitting-human). Observe that the time grows

sub-linearly on the number of keypoints added to the agglomeration. This figure also shows the

time required to predict affordances by testing individually one after the other, which requires

approximately 644 ms per test-point in the input scene.
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Figure 4.15: Plot in green shows the computation time (milliseconds) observed by testing an
agglomerative descriptor of different sizes (number of affordances) on one thousand randomly
sampled test-points. In dark blue, the plot shows the time measured when predictions are
performed by testing individual affordance descriptors one after the other.
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iT agglomeration vs Single affordance prediction

Previously, the good performance of the iT method for detecting affordance candidate locations

on an individual basis, i.e. querying one affordance at the time, was validated via crowdsourcing.

This information is leveraged in order to asses the performance of the agglomerative approach.

In this sense, the affordance predictions made with the agglomerative representation were

compared against those predictions produced in a single-affordance scenario. This was done with

the intuition that achieving a good performance with this baseline would reflect in the predictions

of meaningful affordance location according to human criteria.

First, Algorithm 1 (single affordance query) is executed in order to produce affordance

predictions for every affordance-object pair in Table 4.2; these predictions are then treated as

"ground-truth" in order to compute performance metrics for the multiple-affordance approach

based on the agglomeration of iTs. Notice, however, that this dataset does not strictly constitute

a set of target locations to be classified or discovered; however, the good performance achieved

by the method in single affordance predictions motivates to investigate if the newly proposed

multiple-affordance representation is able to produce predictions of a similar nature (i.e. quality).

Later on, this is further corroborated via human validation.

Figure 4.16 presents the performance achieved for all interactions under investigation. In this

figure can be seen that 1cm-cells perform better for Sitting and Placing of medium-to-big objects,

the exceptions being Placing pc-case. All cell sizes seemed to struggle with Placing coat-hanger,

fork, tv-remote and pc-mouse. Also, notice that for all Hanging and Filling affordances predictions

the precision is roughly the same for the three agglomerative representations. Another interesting

result is that Placing smaller objects such as a knife, scissors, plate, spoon and pencil are predicted

more reliably with the smallest cell size. This is explained by the fact that iTs of smaller objects

are comprised of shorter provenance vectors; these vectors are not well represented when the cell

size is increased. As suspected, smaller objects require a more fine-grained representation, such

as the one achieved with 0.5 cm cells.

It should also be noted that Figure 4.16 shows only 84 interactions. During tests, it was found

that Placing thin and flat objects, such as a magazine, a credit card, a mobile phone or a tablet,

required many short (less than 1 cm long) and vertical provenance vectors (e.g. under the objects).

This type of vector is hard to match due to the density of the pointclouds used for testing.
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CHAPTER 4. AFFORDANCE DETECTION

Table 4.3 shows performance metrics for top-level generic affordances and the average perfor-

mance of the agglomerative approach for various cell sizes. It can be seen that the agglomerative

approach overall performs best for Filling and Hanging affordances, where every single prediction

made with the agglomerative representations was also a good location for the single affordance

baseline. It is also worth noticing that Riding, which is regarded as the more complex interaction

in this study, has the best performance with a cell size of 0.5 cm3. In contrast, the predictions

for Placing affordances, which are arguably the least complex interactions, are better when a

larger cell size is employed. This can be explained by the fact that Placing an object relies on

vectors located under the objects; these vectors are very small (i.e. millimetric) when the cell size

gets smaller. Vectors estimated a test-time rarely present such magnitudes due to the density of

the scene pointcloud. In other words, agglomerative representations of larger cell sizes comprise

larger provenance vectors that are more easily matched during test-time.

0.5cm 0.75cm 1cm

Precision Recall F-1 score Precision Recall F-1 score Precision Recall F-1 score

Filling 94.28 49.44 0.6261 98.19 27.55 0.4224 99.74 5.6663 0.1063
Hanging 97.08 18.11 0.2792 98.69 10.17 0.1724 98.69 2.2375 0.0418
Placing 92.34 59.48 0.6853 90.48 32.44 0.4613 84.13 5.5334 0.0954
Riding 73.24 60.70 0.6646 65.00 47.26 0.5473 64.30 33.51 0.4406
Sitting 23.85 16.76 0.1968 50.00 14.95 0.2302 91.57 13.15 0.2300

Average 76.16 40.90 0.4904 80.47 26.48 0.3667 87.68 12.02 0.1828

Table 4.3: Average performance for different cell sizes.

Optimal detections

As discussed earlier, affordances predictions on their own are elusive to ground-truth without

subjective judgement or evaluation of the likelihood of an interaction. In this work, affordance

location predictions are made by setting a threshold to the output (score) of the algorithm.

Amazon Mechanical Turk is used to determine the threshold that produces the best results. Here,

people are asked to evaluate the predictions made with the agglomeration algorithm based on the

smallest cell size. A total of 2.4K example predictions representing different scores were shown

to 42 humans evaluators (turkers). These subjects had to select a "winner" from two possible

options showing the same affordance-object pair resulting from different scores. A "true" ranking

based on human evaluation is computed by fitting a Bradley-Terry model [216] to the pairwise

comparisons, with this ranking the performance of the iT agglomeration algorithm was assessed
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4.4. MULTIPLE-AFFORDANCE DETECTION

and the optimal threshold that resulted in the optimal detections was obtained. Figure 4.17

shows the family of classifiers induced by setting different threshold values at the score of the iT

agglomeration and algorithm.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Th=0.7

FPR

TPR

ROC curve
iT agglomeration

Figure 4.17: Mechanical turk evaluation. ROC plot shows the family of classifiers generated by
setting different thresholds bands to the prediction score; the best result is obtained with a value
of 0.7. Images on the bottom exemplify the type of judgement humans had to make: choosing the
image that best depicts the interactions (query-objects in green).

The ROC plot shows that the method achieves a good performance according to human

criteria when considering predictions made with a score above 0.7. In other words, the affordance

predictions with a score above this threshold are deemed as good candidates according to humans

all the time. This contrasts with the value found in earlier experiments for predictions made

with individual descriptors. The increase in the threshold value can be explained by quantisation

error introduced by the agglomeration. This error would cause false positives to appear if the
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CHAPTER 4. AFFORDANCE DETECTION

threshold was set to 0.52 as was previously found. However, by considering predictions on the top

end (i.e. score >=0.7), the method detects meaningful affordance locations.

4.4.3 Predictions on RGB-D data

This subsection presents qualitative results of multiple-affordance predictions performed on a

publicly available RGB-D scans dataset, i.e. ScanNet [217]. This dataset is comprised of more

than 1500 scans from which 150 are randomly sampled to illustrate affordance predictions. In

addition to these, the five motorcycle RGB-D scans introduced in section 4.3 are also included

to show example predictions for Riding affordances. Overall, the scenes used to query multiple

affordances include living-rooms, kitchens, offices and lounges. It should be kept in mind that

these predictions are made using agglomeration of single example iTs (i.e. one-shot) and that the

input scenes are never before seen environments. Figure 4.18 shows examples of top predictions

made by the agglomerative approach. These images were generated offline by considering top

score predictions and checking placements of query objects that are free of collision. The reason

for this post-processing generation of images is that the prediction algorithm has the potential to

detect many interactions in a single location, the job of deciding on-line ”what happens where? “

is regarded as a different problem. However, recall that these type of affordance predictions are

made at a fast rate (e.g. 150 ms per test-point).

4.5 Conclusion

This chapter presented the proposed approach for one-shot affordance detection in novel scenarios.

The affordance descriptor and the similarity function allow to detect up to 84 affordances in just

over one second at any point location of the input scene. The affordance hypotheses generated

with the proposed method have been validated using crowdsourced human evaluations, which

showed that on average the methods agree with human criteria 92% of the time. Evaluations also

showed that the algorithm based on the iT representation outperforms alternative approaches,

such as those in computer graphics that inspired the proposed method. By taking advantage of a

state-of-the-art publicly available dense mapping system, multiple affordance detections can be

produced in real indoor environments.

In the following chapter, it is shown that the combination of the iT approach with a data-
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4.5. CONCLUSION

Figure 4.18: Multiple-affordance detection on never -before seen environments.

driven method allows to: 1) overcome the limitations produced by implementing a one-shot

learning approach , and 2) optimise the representation to allow faster and top-quality affordance

detections.
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LEARNING AFFORDANCE DESCRIPTORS

5.1 Introduction

The one-shot iT approach presented in this thesis is inspired by Gibson’s call for direct and

economical affordance perception methods. This, in addition to the lack of 3D data for the type of

affordances investigated in this thesis, lead to compromises such as empirically-defined para-

meters in the proposed method, namely the location and number of affordance keypoints in

the descriptor. The current chapter presents a method to optimise a multiple-affordance repre-

sentation for 3D data by leveraging the abstraction power of current deep learning techniques,

specifically a state-of-the-art deep neural network that consumes 3D data. First, this chapter

explores and evaluate the performance of one deep learning architecture when applied to the

affordances that this thesis investigates. The selection, evaluation and comparisons of the method

are motivated by the increasing number of approaches for visual perception employing deep

learning techniques; the comparisons against the iT approach are followed by the introduction

of a hybrid algorithm that leverages the ability of the neural network to learn salient locations

in the input and the generative capabilities of the interaction tensor representation. Briefly

speaking, the hybrid approach produces faster and meaningful detections as it uses an optimal

and compact description of multiple affordance-object pairs. Specifically, the work presented in

this chapter starts by providing the motivation and details regarding the use of a deep learning

method over alternative machine learning approaches. Then, results are presented showing the
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CHAPTER 5. LEARNING AFFORDANCE DESCRIPTORS

underwhelming performance of the deep network on its own when used for the traditional classi-

fication task. Later, details are provided regarding the combination, experiments and evaluation

of the proposed methods.

5.2 Learning on pointcloud data

Besides aiming to formulate a simple and direct method for affordance perception, one more rea-

son that motivated a one-shot learning approach was the lack of 3D data for the type affordances

that this thesis investigates. When available, and as discussed in Chapter 2, annotated data is for

very specific interactions such as human affordances or object-part affordances for grasping. One

of the shortcomings of adopting a one-shot learning approach with a handcrafted representation

is the often likely sub-optimal selection of the parameters in the method or the difficulty of

finding the best possible values. One way to overcome such issue is by having humans evaluate

or "label" data to then optimise with those annotations as a target. Using large collections of

annotated data to learn features or an optimal affordance representation has been a common

approach in robotics and computer vision; those data annotations, however, turn out to be costly

and time-consuming to produce.

As shown in the previous chapters, the iT’s hand-crafted nature relies on sampling affordance

keypoints in order to form a descriptor. The location and number of such keypoints have been

determined empirically. Whereas a sparse and empirically-found sample has shown to work well,

improvements can be made by investigating and learning based on the ability of the method to

produce multiple affordance candidate locations from a single training example. That is, learning

from the data generated with the proposed method; which, as shall be detailed later, allows to

efficiently sample and obtain insight into the optimal representation of affordance descriptors.

In Chapter 2 was shown that approaches for affordance learning have followed two paths in

order to learn a mapping or representation: learning on hand-crafted features or more recently

deep learning. The former is concerned with first computing a set of features on the available

data to then apply machine learning algorithms; the latter attempts to learn features directly

from the data. Notably, deep learning architectures have recently been one of the dominating

techniques in visual perception since they can overcome the non-trivial problem of selecting a

good representation from the available data (i.e. features). Naturally, recent works in affordance

perception and learning have also taken advantage of the outstanding progress of deep neural
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5.2. LEARNING ON POINTCLOUD DATA

networks; particularly the great progress in object detection, recognition and segmentation (see

Section 2.4.3 of Chapter 2 for details). Generally speaking, these techniques (deep networks) allow

to learn the object’s features (or object-part) that afford certain interaction; however, approaches

using this techniques have been limited to 2D representations of the world or well structured

data (i.e. 2D images). Only recently, deep learning architectures have started to work with 3D

input aiming to catch up with the progress achieved on 2D imagery. Examples of recent works in

deep networks for 3D input are[218–225], which use voxelization to transform irregular data into

occupancy grids that allow 3D convolutions to be applied. This quantisation or voxelization is due

to the fact that typical deep learning architectures require regular input formats, a requirement

that does not hold for pointcloud data.

Pointcloud data structures are sets of unordered data points and only recently researchers

have made efforts to bring to the pointcloud domain the power that deep networks have shown

on images. Among these latest approaches are [226–229], which present deep learning archi-

tectures for tasks such as object classification, object-part segmentation and scene semantic

segmentation. These architectures seem to cope well with pointcloud irregular and unorganized

nature, achieving impressive results in benchmarking datasets. Specifically, the PointNet+++

architecture [228] has shown a remarkable performance for shape classification on 3D data due

to the architecture’s ability to capture local structures induced by the metric space points live in

as well as its robustness against non-uniform sampled (e.g. noisy) pointclouds.

First, utilizing a deep learning architecture for the data of the affordances under investigation

serves as a baseline analogous to state-of-the-art approaches to affordance learning (e.g. [144,

171]), approaches who let the deep networks learn the mapping from input data to an affordance

label or class by exploting large collections of annotated data. The advantage of the recently

proposed PointNet++ architecture is that it allows to devise such baseline algorithm for the 3D

input (e.g. pointcloud) with which the iT works; thus, comparisons and evaluations can be made

in the same domain. Furthermore, authors of PointNet++ have made publicly available imple-

mentation details and the data needed for testing and training the architecture, which makes

the comparison more fair and less prone to implementation errors. Additionally, considering a

deep learning approach allows to bypass the selection and evaluation of feature representations

that other machine learning methods would require; thus, enabling to work directly on the “raw”

pointcloud representation similarly to the iT method.
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One more motivation to employ a deep learning architecture is the big amount of data that

can be generated with the iT method. These pointcloud data can be easily obtained by running the

algorithm over multiple scenes and storing the pointclouds related to the predicted interactions.

Moreover, the evaluations and validations presented in the previous chapter allow to use these

predictions (above the optimal threshold) as ground-truth for the training and testing processes

(i.e. annotated data); in other words, the large collection of data needed by the deep network

approach can be automatically produced with the iT method.

In the following subsections is presented the series of experiments carried out in order to

evaluate such deep learning approach for affordance learning on pointclouds, this includes details

on the PointNet++ network, parameter values and experimental setup as well as results on a

first comparison against the iT methods for single and multiple affordance determination (e.g.

pointcloud classification). Later on, this chapter introduces the steps taken in order to leverage

abstraction power of the PointNet++ architecture and the geometric features captured by the

interaction tensor.

5.2.1 The PointNet++ architecture

PointNet++ is a deep neural network architecture that processes points in a hierarchical fashion.

The architecture extracts local features from all over the input pointcloud by partitioning it

into overlapping regions. This partitioning is based on the distance metric of the underlying

space in which points are defined. The extracted features are meant to capture fine geometric

properties from neighbourhoods all around the input; these features are then grouped into a

more abstract representation and further processed to produce high-level representations. In

order to obtain the attributes characterising the complete point set, the process (sampling and

grouping) is repeated at different scales or hierarchies all over the pointcloud. In doing so, the

PointNet++ architecture is able to improve on alternative methods by dropping the assumption

that pointclouds are uniformly sampled and by relying on features extracted and processed from

multiple regions and hierarchies, instead of single max pooling operations to aggregate the whole

point set such as previous approaches [226].

Figure 5.1 shows an overview of the PointNet++ classification architecture, the numbers

above each block represent the dimensionality of the input and output for each layer, which will

be detailed later on (implementation details section). There are three main building blocks or
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5.2. LEARNING ON POINTCLOUD DATA

layer types in the architecture: Sampling, Grouping and PointNet.

Sampling layers select points which are used as centroids of the regions from where

features are extracted. Specifically, PointNet++ implements a farthes point sampling technique

which ensures a maximal coverage over the input pointcloud,this also ensures that the samples

are evenly distributed all over the surface of the pointcloud. Keep in mind that the architecture

relies on computing features from overlapping regions.

Grouping layers gather data by sampling points within local regions, these local regions

and their centroid data are concatenated to build new (internal) point sets which form a hierarchy.

The size of the local regions is controlled by setting a radius which is then used to group data

within the spheres centered at the points sampled in the previous layer.

PointNet layers is where the regions’ data is encoded and represented in terms of centroids

and local features in the form of vectors. The layers are inspired by the work of Qi et al. [226], a

pioneer approach in deep networks for pointcloud data, an architecture that learns local patterns

across the whole input. The PointNet layers or modules are composed of a series of convolutions,

pooling operations (e.g. a multi-layer perceptron) that allow to transform and abstract the

information contained by the pointsets within local regions. Formally, the pointnet modules are a

function that maps an unordered set of points {x1, x2, ..., xn} with xi ∈R
d to a vector f : X →R

f (x1, x2, ...xn)= γ(MAX i=1,..n{h(xi)})

where γ and h are a multi-layer perceptron. The set function f is invariant to permutations in

the input and the h can be interpreted as the spatial enconding of a point. For full details on the

PoinNet classification architecture of Qi et al. see [226].

Fully connected 

layersSampling and grouping

PointNet

Sampling and grouping

N x K x d+C N1 x d+C1 N2 x K x d+C2 N2 x d+C2 C4x1 k

PointNet PointNet

Figure 5.1: The PointNet++ architecture [228]. Red circles illustrate sampling regions, which are
used in the set abstraction levels (green) to build hierarchical features. The output is a set of k

scores or probabilities for the classes present in the data.
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5.3 Data collection

One first difficulty is gathering the large amounts of data that the deep neural network requires

in order to train. Conversely, one of the benefits of the iT method is its generative capabilities. In

other words, the iT method allows to obtain, training from a single instance or single example,

multiple instances of pointclouds that afford a target interaction. For instance, one could run

the affordance query algorithm on a living-room scene and obtain thousands (potentially) of

pointclouds that afford Placing different objects. This is exactly the approach followed to acquire

enough affordance data to train a deep network.

It should be mentioned that for this part of the work only the affordances that were actually

(more than 1K detections) predicted by the iT agglomeration method in the previous chapter

are considered. That is, all affordances in Table 4.2 except for Hanging mug, Placing cellphone,

Placing credit-card, Placing headphone-stand Placing magazine, Placing tablet. Also, as explained

previously, the Riding affordance is no longer found for indoor scenes when multiple affordances

are to be predicted; this interaction is also dropped out of the collection. This means that for the

current part of the work a total of 84 affordance-object pairs are considered for the experiments.

As shall be shown later, this allows for a fair comparison among all the methods.

Using the set of scenes introduced in Chapter 4 comprised of 20 synthetic scenes and 20

RGB-D scans, a large dataset is built by running the affordance query algorithm for 84 affordance-

object pairs individually. Figure 5.2 shows the data distributions according to interaction and

scene type.

PlacingFilling Hanging Sitting

Kitchens

O ces

Living

rooms

Figure 5.2: Affordance data distributions according to the type of scene and interaction.

By default, the output of the affordance query algorithm is the probability of a point location

in the scene of affording the interaction. The pointcloud that actually allows the interaction

94



5.4. DEEP LEARNING ON AFFORDANCE DATA

to take place in that location is obtained by extracting the voxel surrounding the test point

detected as a good location. That is, voxels are computed just like it is normally performed during

affordance query algorithm, i.e. the voxel inside a sphere of radius equal to the query-object size

(diagonal of the bounding box). Although, due to the fact that the aim is to represent multiple

affordances for every pointcloud, the size of the voxel extracted for every affordance prediction is

regulated by the largest query-object in the collection: the human model for Sitting affordances.

A dataset is formed by sampling up to 10K pointclouds per interaction with the pointclouds

associated with affordance predictions. Additionally, for each affordance dataset, background or

"negative" examples are generated from affordance detections made with a score lower than the

optimal value introduced in Chapter 4 (i.e. s ≤ 0.5). Training and validation sets are created by

considering an 80/20 split on these data.

Pointclouds come from several scenes which most of the times have coordinates defined w.r.t.

to different coordinate systems or world origin. In order to have every pointcloud in the dataset

within the same coordinate system, all pointclouds are "zero-meaned" by translating the centre of

the voxel to the point (0,0,0). In this way, every pointcloud is centred in the origin which, as shall

be shown later, allows to conveniently track the data across multiple affordances from different

scenes. At the end of the process, a large affordance dataset is gathered which contains 84 binary

collections with approximately 10K examples each. This data is used to train and test the deep

network architecture.

5.4 Deep learning on affordance data

5.4.1 Implentation details

The following two subsections describe experiments and show results of the evaluation and

comparison of the deep learning architecture for affordance data. For all sets of experiments

(unless otherwise stated) training is carried out using the Adam optimiser with initial learning

rate of 0.001, momentum 0.9, batch size 32 and a decay rate of 0.7. Batch normalisation is used

for every fully connected layer and dropout with a keep ratio of 0.5. Training is carried out for

at least 250 epochs and until convergence is achieved. All layers (except for the last) work with

ReLU activations and have dimensionality parameters as shown in Table 5.1 (see Fig 5.1 for

correspondance).
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Parameter Value

N 512
N1 128
N2 256
K Variable according to r1 and r2
d 3

C = C1 = C2 = C4 0
r1 20% of input
r2 40% of input

Table 5.1: PointNet++ layers dimensionality parameters

Note that K corresponds to the number of points taken into account to extract features in

each local region of the input pointcloud, this number varies according to the pointcloud density

at that particular region and the size of the spheres used to extract such regions r1 and r2. Where

r1 is the radius for the local regions at the lowest level of the hierarchy and r2 at the highest;

both expressed in terms of the bounding box’ diagonal of the input pointcloud. Both training and

testing are performed in a single Titan X GPU similarly to experiments with the iT method of

the previous chapter (Chapter 4), i.e. same PC specifications.

5.4.2 Affordance learning as shape classification

The first experiments carried out were designed to investigate the performance and behaviour of

PointNet++ on individual affordances. In this regard, the first set of experiments correspond to a

conventional classification task (e.g. shape classification) where the neural network is presented

with an example pointcloud and its corresponding binary label. Thus, the label indicates whether

the current pointcloud belongs or not to the affordance class being trained. One important

observation should be made though; most 3D shape classification approaches normalise the

training data to a unit-sphere or unit-box; this is not feasible in the 3D affordance learning

approach studied in this work given that the interactions studied here are in real-world scale. To

put it differently, having a pointcloud of a chair of 1 meter-height is substantially different from a

toy chair with a height of 10 cm; the latter would not afford Sitting for a human adult. For this

reason, and in contrast with [228], the network architecture is modified to allow the sampling

regions to change proportionally to the current training pointcloud. These regions (red circles

in Figure 5.1) are used by the network to learn features at different hierarchies and pointcloud
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5.4. DEEP LEARNING ON AFFORDANCE DATA

densities. The value of this parameter is set to be 20% at the lowest level and 40% at the highest

(relative to pointcloud bounding box). Other than parameter tuning, no further modifications are

made to the network for this set of experiments. Figure 5.3 shows the performance achieved by

the network when trained on binary data (i.e. 84 classifiers trained, one per affordance). Table

5.2 shows the average performance according to the top-level generic affordance categories.
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Figure 5.3: Performance of 84 binary m-Pointnet++ classifiers for training and validation data.

With a few exceptions, the network performs favourably training for affordance data for
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CHAPTER 5. LEARNING AFFORDANCE DESCRIPTORS

Train Validation

Precision Recall F1-score Precision Recall F1-score

Filling 98.16 98.22 0.9819 78.91 73.62 0.7553
Hanging 99.22 99.02 0.9912 67.32 68.37 0.6702
Placing 98.12 98.60 0.9834 87.33 58.72 0.6771
Sitting 100.00 100.00 1.0000 80.95 80.31 0.8063

Average 98.87 98.96 0.9891 78.63 70.26 0.7272

Table 5.2: Average performance of 84 m-PointNet++ networks trained in a binary classification
setup. One model per affordance.

binary classification. Bear in mind that these results come from training the network separately

for every affordance, the idea behind this batch of experiments was to test that the data is suitable

for predicting affordances in a similar way to that of the first iT method; that is, answering

whether a particular location (i.e. pointcloud) affords a target interaction.

The second set of experiments is carried out in order to investigate the performance of

the network when multiple affordances are present in the pointcloud. The dataset for these

experiments is created by merging the binary data into a single dataset with k = 85 classes (i.e. 84

affordances and background). Again, as in the standard shape classification problem one example

of dataset has the label of the affordance that it belongs to, i.e. a multiple class single-label

classification setup.
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Figure 5.4: Performance observed in the network for training 84 affordances. No convergence
is observed during training. The confusion matrix on the right gives some insight for possible
explanations.
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5.4. DEEP LEARNING ON AFFORDANCE DATA

Figure 5.4 shows observed behaviour in the network while training for multiple class single

label data, where it is shown that the network performs rather poorly. Looking at the confusion

matrix on the right of Figure 5.4, which shows the top-level affordances categories, gives insight

into the issue causing this behaviour. The reason for the low performance (no convergence) of

the learning task is that the similarities shared by pointclouds from different affordances cause

the network to get confused. Upon closer examination, it was observed that very often the same

pointcloud is presented to the network with a different label, for instance, a pointcloud extracted

near the edge of a dining table. This type of pointcloud affords Placing objects (a bottle for

instance) on top of it, but also affords Hanging some other objects (for example an umbrella)

and even Sitting for a human. Another example would be a pointcloud from the tap in a kitchen;

this pointcloud affords Filling of several objects while also affording Hanging objects such as a

handbag or even a pitcher. An example of this “confusing” pointcloud is shown in Figure 5.5.

Figure 5.5: Multiple interactions afforded by the same pointcloud (tap/faucet)

These underwhelming results motivated for a change in the approach taken towards the

task of multiple affordance learning, given that the affordances that concern this work precisely

fall into such extended and natural conditions, where a single pointcloud can afford multiple

interactions.

5.4.3 Multiple-affordance learning

In order to account for the multiple interactions that any given pointcloud can afford, the learning

task is framed as multi-label, multi-class classification. In this respect, the training label of a

pointcloud should encode all the affordance classes of the current example. In order to obtain

such training pointclouds and labels, the data created for single affordance predictions is post-

processed; since now the network needs to be presented with prediction examples shared by

multiple affordances. The post-processing step is carried out by searching for common test-points

regarded as good candidate locations. Whereas this process could be regarded as trivial, since all
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CHAPTER 5. LEARNING AFFORDANCE DESCRIPTORS

the data has been already gathered, it is important to note that the iT agglomeration method does

not need such "multiple-affordance" training examples. Clustering affordance keypoints from

individual interactions (from a single training example) allows to predict multiple affordances in

any given pointcloud.

m-PointNet++

Sit-human

Place-book

Place-cap

Place-hat

...

Filling

bowl

Hanging

coat-hanger

Placing

plant
Sitting

human

............

Multiple a ordance dataset

(multi label)

Figure 5.6: The modified version of PointNet++ is trained with multiple affordance labels per
training example. This dataset is built using the single affordance predictions of the iT method.

Another important consideration is that the network architecture needs to be adapted for this

classification task. For that purpose, the softmax layer at the output of PointNet++ is replaced

with a sigmoid layer, and the training carried out with cross-entropy

L =−
k

∑

i=1
yi log(p̂i)+ (1− yi)log(1− p̂i)

with k = 85 (84 affordances and background). Additionally, L2-norm regularisation is imple-

mented since over-fitting was observed during preliminary experiments. This modified network

architecture (sampling regions, sigmoid layer and regularisation) is referred to as "m-PointNet++"

in the remainder of this work. Figure 5.6 illustrates the training process for the modified Point-

Net++ architecture in a multiple class multiple label setup.
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5.5. LEARNING AFFORDANCE DESCRIPTORS FROM SCENE SALIENCY

After processing the data from individual affordance predictions, the dataset for m-PointNet++

is comprised by 918K pointclouds (10K per-affordance on average) with an 80/20 split for training

and validation. Data augmentation is performed on-line by rotating the pointclouds around

the vertical axis by a random angle between [0,2π), adding jitter and randomising the points

sampled at the input. The idea behind such augmentation techniques is to increase the number

of examples presented to the network but also to account for noise in the input pointcloud (i.e.

jitter and randomisation). The performance per affordance of the network in these multi-class

multi-label classification experiments is shown in Figure 5.7. Table 5.3 shows the performance

observed for the 4 top-level interactions.

Train Validation

Precision Recall F1 Precision Recall F1

Filling 90.36 73.99 0.8116 78.31 60.63 0.6795
Hanging 81.29 75.80 0.7843 80.69 77.82 0.7893
Placing 88.57 45.58 0.6003 80.78 8.39 0.1386
Sitting 81.97 37.19 0.5117 1.14 0.84 0.0097

Average 85.55 58.14 0.6770 60.23 36.92 0.4043

Table 5.3: Performance of the m-PointNet++ architecture on the multiple-affordance dataset

5.5 Learning affordance descriptors from scene saliency

In this section is shown how the deep network architecture can be employed to learn an optimised

multiple-affordance representation, i.e. a descriptor. This is achieved by investigating what the

network is learning from the training data as a function of the input pointcloud, i.e. 3D point

sets. As explained before, the PointNet++ architecture learns an abstract representation (e.g.

feature vector) of the data by grouping local features at different hierarchies. In order to extract

such information in an interpretable form, one can track the points at the input that derive

the feature vector for an affordance class. These locations are actually used by the network to

compute features at the lowest level of the hierarchy; these regions eventually account towards

the global pointcloud feature. In other words, there are specific locations at the input that are

used by the network in order to make predictions. These salient regions can be understood as

scene saliency given that they come from pointclouds from scene data use to make predictions.

Scene saliency is thus obtained by keeping track of the points in the input that activate
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Figure 5.7: Performance achieved in validation set by the m-PointNet++ architecture in terms of
precision for 84 affordances.

the network’s neurons. This is analogous to the concept of critical pointsets presented in [226],

which are the 3D points that contribute to the max-pooled features in the network’s first level

filters. Due to the fact that the iT relates points in the two interacting objects (i.e. scene and

query-object), it is possible to easily project (scene) salient points back into their associated iT

location. Briefly speaking, this projection is achieved by computing for all scene-salient points

their nearest neighbour on the iT of the interactions afforded by the current pointcloud. This
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5.5. LEARNING AFFORDANCE DESCRIPTORS FROM SCENE SALIENCY

is the inverse procedure of that involved in the computation of an interaction tensor (Figure

3.7-right). As a reminder, an iT is formed by points on the IBS and provenance vectors that go

from a point in the IBS to a point in the scene. Therefore, the process of projecting back scene

saliency can also be seen as estimating the inverse of a provenance vector for an iT.

Given that the interaction tensors are very dense entities, a grid representation (i.e. cell

grid) is employed to alleviate the back-projection process. Thus, the back projection is carried

out by computing the nearest cell centroid for every salient point learned by the network. This

process is performed for every salient point in every pointcloud in the dataset. Once all salient

locations have been projected into their associated iT, a new multiple-affordance representation is

generated by considering as affordance keypoints the locations in the cell centroids that received

projections the most; that is that received least 50% of the projections. Figure 5.8 illustrates the

back-projection of scene saliency into an iT agglomeration.

Notice that since all the pointclouds in the dataset have been “zero-meaned”, the saliency

projection process is straightforward to perform, as the interaction tensors themselves are

expressed with respect to the reference point in the scene used to generate them. In other words,

both the saliency points and interaction tensors use the same coordinate system.

Similarly to the iT agglomeration method introduced in Chapter 4, using 3D scene saliency

allows to reduce the dimensionality of the representation greatly. This translates into the ability

to provide candidate locations for multiple affordances (i.e. affordance prediction) at fast rates.

Figure 5.9 shows examples of the descriptors achieved with different sampling methods. The

descriptors for all the remaining interactions can be found in Appendix A.3.

One of the first things noticeable in Figure 5.9 is that, as speculated, different interactions

need a different number of keypoints; which differs from the sample size used at the beginning

of this research (N = 512). It is also interesting to see that the sample related to scene saliency

seems to be halfway between uniform sampling and weight-driven sampling. This can be seen in

the descriptors for Placing and Filling, where affordance keypoints seem to take into account

what was regarded as high-weight regions but also seems to account for regions further away

in the interaction (lower-weight). Notice as well that Hanging seems to agree more with the

uniform-sampling method, whose affordance keypoints more spread around all the way down.

In contrast, the descriptor for Sitting affordance seems to agree more with the one obtained

using weight-driven sampling, where the keypoints are concentrated the central part of the
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m-PointNet++

3D

Saliency

Sit-human

Place-book

Place-cap

Place-hat

...

Back projection

into iT agglomeration

a) b) c)

Figure 5.8: Diagram on the top illustrates an example of 3D salient points used by the network
to correctly classify the pointcloud. Images in the bottom row show the back-projection of saliency
into iT agglomeration. a) Scene saliency (red points) for an example pointcloud. b) The nearest
neighbour in the agglomeration (pointed by yellow arrows) is computed for every salient point
(red points) in the scene c) This projection is carried out for every pointcloud in the dataset, the
new affordance keypoints (red points) are comprised by the cell centroids that received projections
the most.

descriptor, i.e. the parts closer to the human legs. Lastly, note the large reduction in the number

of keypoints when compared with previous descriptors. As an example, the descriptor for Filling

a mug is reduced from 512 keypoints down to only 47; this represents a reduction of nearly 90%.

Even the affordance descriptor for the largest object, i.e. the human model for sitting, can be

reduced roughly 8 times. Perhaps more striking in the reduction of the dimensionality when

compared with the original iT dense representations, for instance, Placing a laptop has a tensor

of dimension 203K, whereas the descriptor devised via saliency only needs 118 keypoints.

It should be noted that a similar approach can be followed to optimise individual affordance

descriptors, that is following the experiments of subsection 5.4.2. In that case, the scene saliency

extracted from the network corresponds to single affordances and can be projected back into
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Uniform Weight-driven Saliency

Hang coat-hanger

Fill mug

Place laptop

Sit human

N=47

N=87

N=118

N=64

N=512

N=512

N=512

N=512

N=512

N=512

N=512

N=512

Figure 5.9: Examples of iT descriptors based different sampling methods, from left to right:
uniform sampling, weight-driven sampling and saliency-based sampling. For uniform and weight-
driven sampling the number of keypoints is the same as introduced in Chapter 3, i.e. N = 512.
The reduction of keypoints in these examples goes from 90% (Filling) to 77% (Placing).

the iT of such interaction. Results of affordance prediction when considering this alternative

approach are shown in the following subsections and is denoted as "Individual". This alternative

representation is achieved by first extracting saliency and then projecting into the iTs on an

individual basis. That new set of keypoints, extracted from saliency of individual affordances,

is then agglomerated and clustered to form a multiple-affordance descriptor. In other words,

following the multiple-affordance approach presented in Chapter 4.
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5.6 Evaluation

In a similar fashion to the first multiple-affordance approach (i.e. iT agglomeration), the aim here

is in giving an answer to the perceptual question of "What can I afford to do here?". Therefore, the

algorithm to answer such question is the same as that used to perform affordance queries shown

earlier (Algorithm 1). Though, this time the representation used in the pipeline corresponds to

the saliency-based descriptor. In this way, the experiments carried out aimed to predict up to 84

affordances or interaction possibilities in any given location of an input scene.

Optimal detections

Affordance location predictions are made by setting a threshold to the output (score) of the

querying algorithm. Human validation via Amazon Mechanical Turk is used to determine the

threshold that produces the best results with this new multiple-affordance representation. Just

as in the previous experiments, people (turkers) were asked to evaluate the predictions made

with the descriptor. A total of 2.4K example predictions representing different scores were shown

to 69 turkers. The task for these turkers consisted in selecting from two options the image that

best depicted the described interactions. Using these pairwise preferences, a Bradley-Terry model

[216] was used to compute the "true" ranking of human evaluations. This ranking is used to asses

the performance of the new descriptor. Figure 5.10 shows the family of classifiers induced by

setting different threshold values at the score of the saliency-based algorithm. Note that many of

the lines (i.e. classifiers at different scores) in this plot go through the top-left corner; however

they cannot be easily discerned as they are stacked on top of each other.

From this assessment can be observed that predictions with a score s >= 0.5 are regarded

as good every single time by the turkers, a value that contrasts with the threshold of the iT

agglomeration method. The method based on agglomeration and clustering of iT descriptors

needs a threshold of 0.7 in order to produce predictions that agree with human criteria; on

the other hand, the saliency-based method performs equally with a lower threshold. This is

related to the fact that, as shall be shown in the following subsection, the saliency-based method

achieves higher precision rates; meaning that the prediction threshold can be relaxed without

compromising the quality of the predictions.
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Figure 5.10: Mechanical Turk evaluation. ROC plot on the top shows the family of classifiers
generated by setting different thresholds bands to the prediction score. Affordance predictions
with a score above a threshold of 0.5 are deemed as good candidates according to humans every
single time. Images on the bottom row show an example of the evaluation task presented to
humans: select the option that best illustrates the intended interactions.

Individual vs Multiple predictions

Similar to the evaluation made for iT agglomeration method, the predictions generated with the

saliency-based method are compared against those produced in a single-affordance scenario. As a

reminder, these ”baseline“ predictions are obtained by individually querying the 84 affordances

individually, i.e. single-affordance descriptor. For fairness, for this round of experiments was

used only the data that was not previously considered to generate the affordance dataset for
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m-PointNet++. All the predictions ( made with si >= 0.5) are treated as "ground-truth" in order

to compute performance metrics and make comparisons across all the methods. It is also worth

keeping in mind that this comparison is motivated by the good performance observed and

validated previously for single affordance predictions (Chapter 4).

Another important aspect to bear in mind is the likely imbalance that scene pointclouds have.

For instance, all the vertical surfaces such as walls, cabinet doors, etc, represent negative exam-

ples or the background class which dominates the scene. One could achieve very high accuracy

by predicting no-interaction or background every time. These negative predictions, however, do

no represent valuable information since the aim here is to investigate the interactions that are

actually possible in a scene. Is for this reason that evaluations are made with precision-recall

metrics, as one would do in an information retrieval task. Figure 5.11 shows the performance

achieved for every affordance considered in the representation for three cell sizes. Table 5.4 shows

the performance of the saliency-based method when for the top-level affordances.
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CHAPTER 5. LEARNING AFFORDANCE DESCRIPTORS

0.5cm 0.7cm 1cm

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Filling 99.73 42.71 0.5856 99.78 14.97 0.2553 99.93 14.08 0.2457
Hanging 100.00 10.54 0.1583 99.85 7.38 0.1262 99.98 6.61 0.1145
Placing 99.25 12.81 0.2247 99.95 11.12 0.1983 99.98 8.81 0.1591
Sitting 95.34 23.57 0.3780 96.91 22.98 0.3715 89.71 24.84 0.3890

Average 98.58 22.41 0.3366 99.12 14.11 0.2378 97.40 13.58 0.2271

Table 5.4: Performance metrics for the saliency-based method when compared with single affor-
dance predictions in the top-level affordance categories

From these results can be observed that the saliency-based method achieves very high

precision rates for almost all the affordances. It only struggles with Placing big-box for the

smallest cell size. Interestingly, in terms of precision, there was no major difference across the

different cell sizes used during the saliency back projection step of the method. Having said that,

the recall achieved by the method does change across the different cell sizes. This behaviour is

similar to the one observed for the iT agglomeration method, where larger cell sizes show a lower

recall rate. Generally speaking, all cell sizes manage to make "good" predictions; however, not as

many as those generated by single affordance descriptors.

In order to get more insight from this comparison, one more evaluation was made. This

consisted in computing performance metrics for data ranked according to the prediction score.

For this last round of evaluations, two additional versions of the multiple-affordance algorithms

were included:

• iT-All This alternative version of the agglomerative approach consists in keeping all the

keypoints (and their associated provenance vectors) inside the cell during clustering. The

intention of this alternative method was to investigate the possible loss of information

(i.e. performance) caused by only considering the closest per-affordance keypoint inside

each cell. Thus, the iT-All alternative still uses cell centroids to estimate test-vectors (via

NN-search), but all the keypoints (4096 per affordance) are used to compute a score.

• Single The alternative version for the saliency-based approach is produced by learning

scene saliency on an individual basis (i.e. per affordance); and then agglomerating the asso-

ciated keypoints to produce a multiple-affordance representation. The saliency extracted in

this way corresponds to one learned by training 84 PointNet++ binary classifiers.
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5.6. EVALUATION

In summary, the evaluation compares the results ranked by their predicted score for the iT

agglomeration and saliency-based methods of 1 cm and 0.5 cm cells, their variations explained

above as well as the performance achieved by m-PointNet++ when tested on its own. Figure 5.12

shows precision-recall curves and the average performance for the methods under investigation.
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Figure 5.12: Figure on the top shows Precision-Recall curves for the multiple-affordance detection
methods. Table on the bottom shows the average performance of the methods in terms of Area
Under the PR Curve (AUC)

Noticeably, the methods with the smaller cell sizes showed an overall better performance.

However, perhaps the most interesting phenomenon is the fact that precision drops to zero at

specific recall values; which is associated with the quantisation error introduced by fitting grid

cells to the iT agglomerations. The issue of precision dropping to zero can be explained as follows:

1. Due to quantisation errors, the affordance locations detected by the individual descriptors

are also found by the multiple-affordance descriptors but with a lower score, e.g. si = 0.99

for individual vs si = 0.9 for multiple-affordance.
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CHAPTER 5. LEARNING AFFORDANCE DESCRIPTORS

2. In order to recover or predict affordance locations at lower scores (as detected with the single

affordance descriptors), the prediction threshold of the multiple-affordance representations

needs to be lowered.

3. Lowering the prediction threshold would go against the validations of humans, as this

would cause false positives to appear, i.e. bad predictions according to human criteria.

In short, none of the methods achieves 100% recall when compared against individual

affordance predictions; meaning that none of them is able to recover or predict every possible

affordance in every location as single descriptors can. In a way, this is the compromise made

so that fast and multiple-affordance predictions can be produced. To put it differently, these

methods are optimal if the task at hand is to quickly evaluate the affordance possibilities in a

location of interest with a high precision rate. Conversely, if the task is to retrieve all possible

"combinations" or every affordance that exists across all the scene, while speed is not crucial,

performing single-affordance predictions is perhaps a better approach.

Despite such differences, it is possible to show that the predictions made with the multiple-

affordance descriptors are equivalent to those produced individually. In order to do so, the

predictions are evaluated through human judgement by asking human evaluators to select from

two options the one that best depicted the intended interactions. The options showed to humans

consisted of the following:

• Top predictions made by the single affordance algorithm (i.e. single affordance descriptor)

• Top predictions made with the saliency-based algorithm.

• Top predictions made with a naive baseline method

The Naive baseline algorithm uses ICP to compute a score from the best alignment between a

target pointcloud (interaction training example) and the pointcloud being tested (input scene). A

total of 1200 pair-wise comparisons were shown to 48 turkers, where it was found that 48% of the

time people chose the multiple-affordance predictions as the best option when compared against

single-affordance predictions. On the other hand, when compared with the baseline method (ICP),

the predictions made with the methods (single and saliency-based) were chosen 87% of the time.

The important thing to notice here is that a random guess is 50%, which would mean that the

predictions regarded as good as the "ground truth" (i.e. single affordance predictions). According

112
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to the results from pair-wise comparisons, most of the time (48% vs 50%) people were not able

to distinguish the interactions generated by the single affordance predictions from the saliency-

based methods. In contrast, the two of them were preferred most of the time over the baseline, i.e.

87%.

Finally, it is worth mentioning that the iT agglomeration method performed favourably even

when a single training example is considered. What is more, the combination of the interaction

tensors with the salient locations learn by the deep network allowed to improve the performance

and, as shall be shown next, more quickly asses the interaction opportunities of a given location

in the scene. On the other hand and somewhat surprisingly, the network on its own showed a

rather poor performance; when compared with single affordance predictions the network was

outperformed by all other methods. This highlights the importance of the geometric features that

the interaction tensor is able to describe.

Frame rates and quantisation

The effect that the size of cells in the grid has in terms of speed or prediction time for the

saliency-based method was also analysed. The experiments were carried out using the same

hardware setup from the previous chapter: a desktop PC with an NVIDIA Titan X GPU. Figure

5.13 shows the dimension of the multiple-affordance representations and the prediction rates

according to the cell size. Results from the iT agglomeration method are also shown as a reference.
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Figure 5.13: Bar plot shows the dimensionality reduction achieved with the proposed methods
for different cell sizes. A reduction of up to 6 times in the number of keypoints required to
make predictions is observed. Numbers above each bar show prediction time (milliseconds) per
test-point of the input scene.
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Looking at this figure, it stands out the large reduction achieved by the proposed proposed

approaches: a decrease in the number of keypoints in the representation of nearly 6 times (344K

vs 60K keypoints). The prediction rates on the same figure show that using grids with a cell size

of 1 cm3 allows to detect up to 84 affordances at 10 different locations in just over 1 second. This

is significantly faster (7x improvement) than predicting affordances by trying 84 descriptors at

test time, which would require 644 ms per test-point if individual descriptors were tried one

after the other (Figure 4.15 in Chapter 4). Due to the fact that the prediction algorithm performs

a NN-search in order to estimate test-vectors and compare them against provenance vectors,

the complexity of such operation depends heavily on the dimension of the multiple-affordance

representation (i.e. the number of centroids/keypoints). Reducing the representation greatly

benefits the method, as it allows to perform faster evaluations at test-time. Even with such a

reduction in dimensionality, the method is able to produce top quality affordance predictions.

5.6.1 Predictions on RGB-D data

In order to show the quality of the predictions made by the multiple-affordance representation

based on scene saliency, affordance queries are carried out for the publicly available dataset

introduced in Chapter 4, i.e. ScanNet. Figure 5.14 shows example predictions made with the

saliency-based method using cells of 0.5 cm. Just as before, these example images are gener-

ated via a post-processing step. The algorithm implemented to produce such images reads the

affordance predictions results and produces query-object placements while checking for collisions.

Recall that the problem of deciding on-line (i.e. at test time) ”what happens where? “, or which

affordance should take place at a particular location (out of all the possibilities) is regarded as

non-trivial and has not been addressed in this research.

Geometrically plausible predictions

Due to the fact that the approach for affordance detections is purely based on the geometry of the

interaction, there are predictions that seem unlikely in the context of real-world physics. These

predictions are caused by challenging scenes with noisy or missing data, i.e. bad or incomplete

reconstruction. Common causes for unlikely predictions are caused by pointcloud boundaries,

concavities and holes, as well as unobserved (unavailable to the sensor) regions of the scene.

Keep in mind that the affordance prediction algorithm is not aware of semantic nor physics
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Figure 5.14: Example predictions made with the saliency-based method in RGB-D scans.

information; therefore, assuming that the pointcloud is a good representation of the environment,

the algorithm will predict all the interactions that the geometry allows. Examples of these

geometrically plausible affordance predictions are highlighted in Figure 5.15

In Figure 5.15, notice that the boundary of the pointcloud appears to afford hanging objects

due to the thin and elongated geometry of the walls. Another example shown in this figure is

Placing objects on flat surfaces originated by scanning the room’s ceiling. A third example shown

in the figure is Hanging an umbrella, which is afforded by the small gap between the wall and

the curtains. The hole in the wall affording Hanging affordances is caused by the sensor not

being able to observe or recover that area of the room. These type of prediction examples could be

straightforward to avoid by considering height constraints in the predicted interactions, or by

restricting the search area to a region of interest actually available to the sensor.
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Figure 5.15: Image shows highlighted in red prediction examples that could be regarded as
unrealistic yet geometrically valid. The highlighted predictions correspond to (from left to right):
Placing a hammer, Hanging an umbrella, Placing a screwdriver and Hanging headphones.

5.7 Conclusion

This chapter has presented the hybrid approach proposed to devise an optimal multiple-affordance

representation. The proposed algorithm leverages a state-of-the-art deep neural network archi-

tecture to learn salient locations in the scene (i.e. scene saliency) associated with an affordance of

interest. The combination of saliency knowledge with the iT’s description power allows to obtain a

compact representation for fast affordance detection on RGB-D scans of real indoor environments.

Evaluations and comparisons showed the advantage of the proposed method against alternative

approaches; this was additionally corroborated by crowdsourced evaluations, which showed that

87% of times humans preferred the predictions made with the method. The quality of the results

and the rate at which affordance predictions enables the application of the algorithm in robotics

and computer vision, as shall be shown in the following chapter.
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6
AFFORDANCE DETECTION IN REAL-TIME SYSTEMS

6.1 Introduction

Previous chapters have shown that the methods proposed in this thesis allow to predict meaning-

ful affordance candidate locations as validated by human criteria. The methods presented so far

have also been evaluated and compared with alternative approaches, in this chapter is presented

an outlook of applications for the proposed approach for affordance detection in Robotic and

Augmented Reality systems. This is motivated by the proven ability of the approach to quickly

evaluate the likelihood of an interaction taking place in previously unseen scenarios. First, in

this chapter examples are shown for affordance detection in simulated robotic scenarios. These

include detections carried out using the virtual robot’s on-board RGB-D camera while navigating

different indoor environments. In such examples scenarios, the robot can perceive locations which

answer questions such as “Where can I afford to place/hang/sit ?”. In a way, this is analogous to

the affordance query experiments introduced earlier, with the important difference that this time

the input to the system is directly the pointcloud obtained with the sensor.

Later, examples of affordance predictions are shown for an augmented reality system which

has been called “Affordance Lantern”. This system enables the detection of affordances in

previously-unseen, real indoor environments. An important feature of the iT method is that

enables the scene augmentation to be performed dynamically (i.e. on-line) at the location pointed

by an RGB-D camera; for instance, given answer to the question “What can I afford to do here?”.
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6.2 Affordances for real-time systems

The Interaction Tensor representation with the prediction algorithm proposed in previous chap-

ters has the ability to produce meaningful affordance candidates in novel scenes with high rates

of precision and in a fast manner. The research presented in this thesis aims to investigate

and develop methods suitable for robotic systems yet predictions examples and experiments

have considered RGB-D and synthetic datasets. This was primarily due to the fact that datasets

allow for a more controlled or principled way of performing multiple experiments with different

methods and parameters. In contrast, the following subsections present two example applications

for the affordance detection method in systems that require real-time performance and that

need to dynamically detect where and how to interact with a novel scenario. In this example

applications, affordance predictions are performed within the environment immediately available

to the robot (or camera) and not across the whole scene; thus, results are shown just as they are

discovered by the system. This is interactive setup is closer to a real-world scenario for affordance

detection.

Whereas the robotic applications is limited to a simulated environment, it serves to illustrate

that the combination of conventional hardware and robotic tools allow to incorporate the affor-

dance detection method into the perception pipeline of a robotic systems. Furthermore, the second

application example (affordance lantern) provides an even more realistic demonstration as it

uses an out-of-the-box RGB-D sensor, a commodity desktop configuration and standard robotic

software tool to perform affordance prediction in real indoor environments.

It is worth mentioning that this chapter serves as a demonstration of the capabilities of the iT

approach rather than more evaluations of its performance. The evaluations and validations can be

found previously in chapters 4 and 5, for now on only illustrative examples are considered for the

application of the method in realistic and simulated interactions; in a way this highlights venues

for future work and limitations of the current methods. Overall, this chapter aims at showing, via

example cases, that the proposed methods have great potential for their utilization in dynamic,

noisy and unstructured environments; this has been the motivation of the research presented

in this thesis since the beginning, the development of visual perception methods designed for

robotic systems that need to interact with their environment.
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6.3 The Interaction Tensor for robotic perception

A key objective of Robotics is to devise systems that can operate in previously unknown envi-

ronments. This has so far been a stumbling block for autonomous and cognitive robots; which,

as discussed in Chapter 2, largely fall back onto either well-scripted scenarios or scenarios for

which the amount of training needed undermines the notion of little prior knowledge. In the

context of affordances, visual perception can be described as a process to understand what can be

done where. Which is fundamentally different from asking the two separate questions of "what is

this?" and subsequently asking "how can I use it?". Such a unified approach to the perception

of the world is immediately useful, as by definition it is one that already takes into account the

possible interactions that the robot can perform within its environment without requiring to

semantically identify surfaces or shapes in terms of categories and specific features.

As shown in Chapter 4, by taking advantage of modern commodity PC hardware, i.e. GPUs,

the iT method allows evaluating the likelihood of an affordance taking place at a location in the

scene in 10 ms on average. This frame rate motivates for the integration of the proposed algorithm

in the perception pipeline of a robotic system, in this particular case a robotic simulation with

standard robotic software tools.

Experimenal setup

The simulations were carried out in the Robot Operative System ROS [230] and Gazebo1 frame-

work, which is a collection of open source software libraries and tools that allow the development

of robotic applications. Specifically, a robot navigates a virtual scene and makes short pauses to

look around and investigate ”Where can I place a bottle? “, ”Where can I fill a mug? “, ”Where can

I sit¿‘, etc. Using the Gazebo simulator, a virtual world is built using CAD models of the scenes

introduced earlier in Chapter 4, e.g. kitchens, living-rooms, etc; a total of 15 scenes were tested, 5

of each type (see Figure A.6 in Appendix A). Among the many features of the Gazebo simulator

is the fact that allows to simulate the robot sensors realistically, this feature was exploited

to demonstrate affordance detections performed in pointclouds generated by a Kinect sensor

mounted on a PR2 robot’s head. In this sense, the input to the affordance detection algorithm is no

longer a pointcloud generated by sampling a full CAD model but a more realistic pointcloud pro-

vided by the sensor (obtained via ray tracing). Other robot sensors in the simulation, e.g. optical

1http://gazebosim.org/
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encoders in the robot’s joints, allow to compute and apply the transformation required to obtain

the pointcloud w.r.t. the robot’s reference frame; thus, allowing to recover the gravity-aligned

pointcloud required by the iT algorithm.

Once the scenario is prepared, the robot recieves remote commands to navigates the environ-

ment, this commands are generated usen the PC keyboard and an open source motion planning

framework2. The whole system runs in a single PC with a Titan X GPU, a quad-core processor

running at 3.4 GHz and 16 GB of RAM.

Qualitative results

Figures 6.1-6.4 illustrate examples of the simulations for the robot exploring different indoor

environments. Similar to previous images of detection results, the images shown in this chapters

show in green the query-object illustrating the predicted interactions. From the figures it can be

observed that Placing, Sitting and Filling affordances do show meaningful predictions; notably,

this interactions do not require highly detailed pointclouds thus the ”raw” pointcloud captured by

the sensor suffices. This is important because it highlights and reinforces the characteristics of

the method, an affordance perception method that is economic and does not rely complex repre-

sentations of the world for the agent to be able to dynamically discover interactions immediately

available in the environment. An example a real world scenario where the simulated scenario

could happen would be a service robot deployed to assist the eldery suggesting the best place

to sit in a room. Thus, the examples shown in Figures 6.1-6.4 show simplified yet illustrative

scenarios of the possibilities that the iT method provides.

2Ioan A. Sucan and Sachin Chitta, ”MoveIt!”, [Online] Available:http://moveit.ros.org
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Figure 6.1: Placing-bottle detection for kitchen scenes in a simulated environment

Figure 6.2: Filling-mug detection for kitchen scenes.
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Figure 6.3: Sitting detection in a simulated environment of a living room

In contrast, interactions such as Hanging affordances were found to require better scene

reconstructions or estimations of the underlying geometry in the scene, an explanation for this is

as follows. Hanging interactions typically take place in regions of the scene with thin geometries

(such as edges of tables or bookshelves); or geometries with cylinder-like structure, such as

hanging racks or pipes. If the pointcloud coming from the sensor contains such structure, the iT

algorithm will predict Hanging interactions. However, this structure is very commonly found in

noisy or incomplete captures from the sensor. As an example of such situations Figure 6.4 shows

a pointcloud of a kitchen sink which is only partially detected by the sensor, this makes it look

like there is a hole and the prediction algorithm suggests it as a good candidate for hanging a

coat-hanger. This interaction would not be possible in reality given that the ”detected“ hole is not

there in the real scene. Similarly, pointcloud boundaries seem to afford Hanging objects given

that they "appear" to be edges of flat surfaces such as tables or bookshelves. The next section

introduces an alternative to mitigate bad predictions for this type of interactions, which consists

on focusing the search space or area of interest for the algorithm in the a region of the input

pointcloud that is more likely to have good geometric estimates. Chapter 7 builds more in this

topic and lays out more alternatives to solve these challenges.
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Figure 6.4: Affordance detection for hanging require a richer surface reconstruction from the
environment; noisy pointclouds give raise bad or unrealistic predictions.

6.4 Affordance Lantern

One of the advantages of the speed at which affordance predictions are performed is the ability to

make such predictions in an interactive mode. This, in addition to the validated good quality of

the predictions, motivated for the application of the proposed approach in an augmented reality

(AR) system. For instance, one could enter into a room, point a sensor (e.g. Kinect) to a location

of interest and investigate "What can be done here?". This application where scenes can be

augmented using dynamically (i.e. online) discovered affordances is named ”Affordance Lantern“.

Generally speaking, AR systems aim to insert virtual objects or entities into an image

sequence in a seamless manner. Azuma in [231] provides what is perhaps the most widely

accepted definition of an AR system: a system that combines real and virtual objects, has real-time

interaction capabilities and is registered in 3D. For decades, most of the work in AR systems was

focused on techniques for Tracking, Calibration and Registration, Display and in the Interaction

interfaces [232]. However, as pointed out by Kim et al. [233] the latest trends incorporate new

areas of interest for the AR community, among them are Perception, Reconstruction and Modelling
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as well as Evaluation on the AR systems. The emergence of such areas reflects the importance

that the community has found on providing systems that are perceptually accurate, not only in

that they provide a realistic graphical visualisation or rendering but in the sense of observers

being able to perceive realistic interactions with the world. It is here where affordances result

appealing as they naturally take into account the interactions opportunities in the environment.

Despite the benefit that affordances can provide, AR systems have made a scarce use of

affordance perception as part of them. Among the approaches that leverage the environment’s

features to offer interaction opportunities to the user is Opportunistic Control[234], which provides

passive haptics that facilitate the gesture input and recognition in a maintenance inspection

task. In [235–237] authors showed that affordances are useful to assess the perceptual fidelity

of AR environments for tasks such as walking-through and stepping-over, where the perception

of size and distances (i.e. 3D space) is highly relevant. The concept of afforded consequences

introduced in [238] uses physics simulations to predict the outcome of perceived affordances (e.g.

support, move, roll) in a cube stacking scenario. An AR-based system that allows interacting with

out-of-reach objects was presented in [239], in what the authors called UBII: Ubiquitous interface

and interaction. Another interesting approach, albeit not explicitly invoking the affordance

concept, is the work of Salas-Moreno et al. [240], which presents an AR-capable system that

allows for virtual characters to navigate a scene and find places to sit based on the prediction of

3D semantically meaningful geometries (e.g. chairs).

Note that these approaches build on the assumption that the useful set of affordances is

already in the environment; then, the detection of such affordances consists in detecting the

objects or markers of which affordances have been pre-defined. As discussed along this thesis,

one big advantage of the affordance detection approach based on the interaction tensor is the

ability to work on completely novel scenarios. Additionally, in contrast with methods based on

traditional computer vision, affordance predictions do not rely on specific instances or classes of

objects and shapes.

Affordance-guided scene augmentation

Just as it has been discussed at various points in this thesis, one requirement for affordance

detection with the iT descriptor is the ground plane calibration. Another aspect to consider is

the quality or density of the pointcloud that is used to query affordances. Due to these reasons,
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a decision was made to use a state-of-the-art dense mapping system that allows to track the

camera pose and provides a dense reconstruction of the scene. As reviewed in [232, 233, 241],

Simultaneous Localization And Mapping (SLAM) systems paired with RGB-D cameras are a

common approach for camera tracking and scene reconstruction in AR systems. In particular,

this application makes use of the ROS implementation of the dense mapping system presented in

[242].

The goal of the scene augmentation application is to embed the predicted interactions (

query-object with its pose) in the real world, i.e. the image stream from the camera pointing

to a location of interest. The virtual objects must be precisely aligned with the world in the

perspective of the camera/user. Figure 6.5 shows how the real world is augmented with the

affordance predictions in the virtual world.
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Figure 6.5: Affordance lantern working principle with the coordinate systems involved in scene
augmentation. A dense mapping system provides the camera pose used to map the scene point-
cloud from real-world w to virtual-world vw, i.e Tw

vw. The inverse transformation (Tvw
w ) allows to

embed the predicted affordance locations (displayed as query-objects) back into the real-world.
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Implementation details

The mapping system does not provide an absolute position relative to the world but rather the

camera pose relative to a local frame manually established. The lack of pose relative to the global

or world frame is not an issue for the iT algorithm since the descriptor only cares about the

gravity being consistent with real-world, i.e. ground plane in the scene and ground plane in

the world have the same normal vector. In order to meet such requirement, an initialisation

step is included where the RGB-D camera is pointed towards the floor or any other flat surface

parallel to it. Using this surface a virtual ground plane is computed and used to correct the pitch

angle of the camera, i.e. corrected to reflect the real angle w.r.t. to the floor (XY plane). After the

calibration step, the pose of the camera is used to compute the transformation that aligns the

real-world (w) pointcloud with the virtual world (vw) Tw
vw. The inverse transformation is applied

to map the affordance detections back into the real-world frame, i.e. Tvw
w .

The scene reconstruction available from the mapping system is provided by an external pack-

age that implements meshing through OpenVBD3 libraries, which slow down the whole system if

requested constantly. One one hand, mesh representation can be useful in AR systems to handle

occlusions and collisions between real and virtual worlds. On the other hand, the iT method

has proven to handle undesired collisions with the scene, provided that scene representation

is a dense enough pointcloud. In light of these circumstances, it was decided to add some extra

functionality to the mapping system so it could provide access to a dense representation of the

scene in the form of pointcloud. This dense pointcloud is constructed from the depth maps that

the mapping algorithm already builds as part of its pipeline, the extra functionality added to the

algorithm consisted of the code to efficiently extract and share the dense pointcloud from the

mapping system’s internal data structures.

Occlusions are handled by ray-casting with an occupancy grid fitted to the scene pointcloud.

Fitting this occupancy grid does not constitute a problem for prediction speeds due to the fact that

the grid is based on the Octree structure that the iT algorithm already requires for NN-search.

This allows to only make predictions on the actually visible parts of the scene. The visibility

test consists in verifying that a ray from the camera to the predicted query-object follows a

collision-free path, i.e. not intersecting scene neighbouring voxels. This is similar to the approach

presented in [243].

3http://www.openvdb.org/
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The working principle of the affordance lantern is similar to that of an actual lantern (i.e.

light source) that needs to be pointed to a target location in order to light-up that location. In

this way, the iT algorithm focuses the search or prediction on a region of interest (ROI) in the

centre of the image currently being captured by the camera. The location in the pointcloud that

corresponds to the ROI is computed from a neighbourhood (20 cm radius) around the middle

point of the image provided by the camera. This ROI is used only to sample test-points since the

dimension of the voxel used by the prediction algorithm is dictated by the size of the descriptor (i.e.

query-object). The benefits of considering only a ROI for prediction are that 1) avoids expensive

computations required to search all over the input scene, 2) reduce the number of collision checks,

and perhaps more importantly 3) avoid the previously observed f aulty predictions that occur

on the pointcloud boundaries. Figure 6.6 shows an overview of the processing pipeline with the

computation times involved in the main stages.

Depth

image

RGB

image
Dense

reconstruction

Pointcloud

extraction

A ordance

prediction

Scene

augmentation

0.32 0.15 0.02
Time

[seconds]

Figure 6.6: Affordance lantern pipeline. The input to the system is the RGB and depth images
of the current scene. The red circle in the RGB image on the left illustrates the ROI used for
detections

All the modules run within the ROS framework, which allows to easily integrate and execute

in parallel the multiple computing modules comprising the affordance lantern, in addition to

enable the recording/playing/processing of RGB-D video, camera poses, pointclouds, etc. in an

automatically synchronised manner. The affordance lantern system runs in a desktop PC with

a Titan X GPU, where the graphics rendering is implemented through OpenCV and OpenGL

libraries. The scenes used for this demonstration are of a similar nature of those presented

along this thesis: indoor environments such as offices, kitchens and living-rooms/lounges. More

concretelt, the experiments are carried out within the University of Bristol at the 1CS building.

In order to be able to capture the necessary data (i.e. RGB-D video), an Asus Xtion sensor and

laptop running Linux OS are used to first record video which is later used as input the affordance

lantern system in the desktop PC.
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Qualitative Results

Example predictions of the Affordance Lantern system are presented in Figures 6.7-6.10. As

it has been discussed earlier, the prediction algorithm is able to provide multiple affordance

candidates for every test-point in the scene; however, for ease and clarity in the display of results,

predictions are shown individually, i.e. one query-object per image. Also, notice that these images

represent a video sequence showing multiple viewpoints of the same object along the columns for

every row. Examples for Filling affordances were purposely tested in a kitchen scenario as they

would not be seen in other type of environments (see Figure 6.10). The examples shown below

are drawn with a basic rendering, keep in mind that the goal of this chapter is to show that the

proposed method is able to dynamically discover or predict interactions in realistic and unknown

environments. Figure 6.8 and 6.9 show a video sequence with prediction examples for Placing and

Hanging predictions in a office desk environment. Figure 6.7 shows Sitting, Hanging and Placing

affordances in a similar environment, an office with a desk and chair. Results are promising

although there were important challenging situations mainly attributed to the mapping and

camera tracking system, these challenges scenarios are discussed next.

Sitting human Placing hammer Placing bucket Placing laptop

Hanging umbrella Hanging cap Hanging handbag Hanging hat

Figure 6.7: Affordance lantern example predictions for Sitting, Placing and Hanging objects in
an office environment.
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Placing

apple

Placing

bowl

Placing

plant

Placing

screwdriver

Placing

teapot

Figure 6.8: Affordance lantern example predictions for Placing affordance. Rows show different
affordance predictions, i.e. query-objects and columns show multiple viewpoints extracted from
the same video sequence.
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Placing

scissors

Placing

notebook

Placing

fork

Hanging

coat-hanger

Hanging

umbrella

Figure 6.9: Affordance lantern example predictions for Placing and Hanging affordances. Note
the lack of occlusion rendering for the Hanging objects; this issue could be avoided by having
access to mesh information from the scene.

Challenges

During the scene augmentation experiments in this application, errors in the camera pose caused

two main issues. First, because the plane calibration step was only carried out at the beginning,

errors accumulated over time in the camera pose estimation provoke that the query-objects are

not optimally displayed or embedded into the camera’s image stream. This phenomenon can be

seen in the third column images of Figure 6.8, which show the query objects with a slight tilt to

the right. If the video sequences were longer, the error would be larger causing the query-objects

to be misplaced in the camera’s viewpoint. The effect of errors in camera pose estimates is also

evident in the example predictions for Filling affordances in Figure 6.10, where the query-objects
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show a slight tilt away from the camera.

Filling

saucepan

Filling

pitcher

Filling

bin

Figure 6.10: Affordance lantern example predictions for Filling affordances. Notice that the tilted
pose of the query-objects is due to errors in the camera pose estimates, despite the noisy camera
pose estimates, the affordances are correctly predicted in the tap.

Second, given that the camera pose estimate accumulates error over time, the pointcloud

provided by the mapping system will gradually lose the required gravity-aligned pose. This

gives rise to a virtual ground floor that progressively deviates from the required orientation. An

example of this situation is shown in Figure 6.11, where can it be seen that the pointclouds’

ground plane is tilted towards one side. Although the iT algorithm manages to predict many

interactions correctly, other affordances are not discovered since they rely on short provenance

vectors; these vectors are not sufficiently matched when flat horizontal surfaces in the scene are

not horizontal in the pointcloud. A more accurate camera estimation and mapping system would

reduce this effect and allow for more and better affordance predictions to be made.

The effect caused by the lack of mesh data to correctly render partial occlusions between

scene and query-object is shown in Figure 6.9 for Hanging a coat-hanger. In this example, the

candidate location is predicted on the edge of the desk; however, in this position, the lower part of

the coat-hanger would be under the desk (i.e. not visible). The current system does not take into

account such occlusions between parts of the scene and parts of the query-object; thus, the coat

hanger appears to be placed on top of the desk image. A similar scenario is illustrated in Figure
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Figure 6.11: Errors in the camera pose estimation accumulated over time give rise to incorrectly
orientated pointclouds in the virtual world (i.e. for prediction). The image in the centre illustrates
an attempt to Place a big cardboard box to highlight the error in the orientation. The image in
the right shows the expected virtual world coordinate frame as the X-Z axes in red, and the frame
estimated using the camera pose (cyan).

6.7 for Sitting, where the human model appears to be sat on the chair’s armrest even though the

predicted location for this affordance is the actual seat. These issues, though, are mostly related

to the realistic rendering of the interactions and not to the quality or precision of the predicted

affordance.

6.5 Conclusion

This chapter has presented two applications of the affordance descriptor based on the inter-

action tensor. Motivated by the fast and high-quality predictions achieved with the proposed

method, examples have been presented for the application of affordance detection for robotic and

augmented reality systems. These examples serve to highlight the potential of the affordance

perception method based on the interactions tensor for systems that require detections at a fast

rate. Using open-source software libraries, the implemented systems showcased how a robot

can explore a scene searching for candidate locations to Place, Sit, Fill, etc. by only using the

pointcloud perceived with its sensors. It has also been shown that, with the help of a dense

mapping system, an interactive scene augmentation (i.e. augmented reality) application can be

devised to investigate the interaction possibilities at a location of interest in real indoor scenarios.

The following and final chapter summarises the work presented in this thesis, presents the final

discussion and introduces avenues for future work.
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Affordance perception is a fundamental ability for agents that need to interact with their envi-

ronment, or more generally, understand the interactions that take place (or could take place)

in their surroundings. Perceiving the world in this way can lay the basis to learn more complex

concepts. Whereas there has been much progress in building models and systems for affordance

perception and learning in the fields of robotics and computer vision, there are still significant

challenges that remain open. Examples of these challenges are the imposition of specific geometric

parametrizations (e.g. planes or cubes), or the need for complex feature representations that

can compromise real-time performance of the system in realistic and novel scenarios. Additional

challenges faced by current affordance perception systems are their restriction to small sets of

objects and affordance categories, and the requirement for large amounts of training examples or

costly learning stages.

As reviewed in the related literature in Chapter 2, works investigating affordances have used

a variety of features computed usually from visual information. However, the representation that

remains present across multiple approaches is shape or geometry. Geometrical information has

an outstanding power to richly represent functional cues for objects in everyday tasks, as it is

geometry who usually determines the possible physical interactions that objects afford.

This thesis addressed the problem of the determination of affordance locations in 3D envi-

ronments based purely on geometric information. Inspired by ideas for functional analysis in
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computer graphics, methods have been presented for the prediction of affordances from visual

information, i.e. pointclouds from RGB-D sensors. The problem of affordance detection has been

framed as the problem of answering questions such as “Where can I afford to do this?” and “What

can I afford to do here?” in a fast manner for a multitude of interactions, while remaining agnostic

to semantic information and complex surface features. A fundamental part of the proposed

approach is that it builds on the characterisation of the interaction between two entities, not in

the study of the elements in isolation, i.e. scene and query-object.

7.1 Summary of Contributions

The details on the contributions made during the development of this research are as follows:

• A 3D geometrical representation for the characterisation of interactions between two rigid

entities in space, namely, the Interactions Tensor. The approach, introduced in Chapter

3, is able to robustly characterise the interaction between two rigid, solid entities in 3D

space. Moreover, the generality of the method not only allows to study everyday objects

such as a cup or a screwdriver but also to model human interactions with the environment,

e.g. Sitting or Riding, by considering a 3D model of a human body. The ability to represent

this kind of human affordances can be useful, for instance, for robotic assistants suggesting

to the elderly the best place to sit; or more generally, scenarios where the task or objects

do not require manipulation by the robotic platform. Figure 3.8 of Chapter 3 shows the

outstanding capabilities of the interaction tensor to capture key geometrical information

across similar interactions. More examples can be seen in Figures A.8-A.14 in Appendix

A.3.

• An affordance descriptor that can be conveniently obtained by sampling keypoints from an

interaction tensor representation. These weighted and sparsely-sampled affordance key-

points allow for a fast evaluation of the likelihood of an affordance taking place in a novel

scenario. The proposed similarity function takes advantage of the provenance component

embedded in the descriptor, i.e. provenance vectors, in order to avoid expensive compu-

tations at prediction time. The similarity function accounts for possible noisy geometric

estimates in the input data, which provides the possibility of predicting affordance location

in never-before-seen RGB-D scenarios from one shot, i.e. from a single training example.
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This is a central part of the proposed approach: the ability to perform one-shot affordance

predictions. As a result of the proposed detection algorithm and taking advantage of GPU

computing power of a commodity PC, affordance predictions can be made at rates suitable

for robotic applications. The general view of the proposed algorithm for one-shot affordance

prediction approach can be seen in Chapter 4 Figures 4.1 - 4.2.

• A scalable one-shot learning algorithm that allows to efficiently query multiple affor-

dances at any given location in novel environments. The approach leverages affordance

keypoint clustering and a highly parallelisable algorithm that enables the detection of

over 80 affordance-object pairs in just 150 ms per test-point. Results of these fast-rate

affordance predictions for a publicly available dataset of indoor scenes were shown in Figure

4.18 of Chapter 4. These predictions purely based in the geometric information of the input

pointclouds were validated via crowdsourcing, which showed that the proposed affordance

locations align well with the human criteria, and those above the optimal threshold are

regarded as good all of the time.

• A hybrid approach that combines data-driven abstraction power and rich geometric

information to learn compact, multiple-affordance representations that allow to predict

meaningful interaction opportunities at high frame rates. This hybrid approach, presented

in Chapter 5, leverages the ability of the one-shot detection algorithm to generate in an

automatic manner pointcloud data collections suitable to train a state-of-the-art deep

neural network. The network allowed to learn an optimised and compact descriptor of

the interactions opportunities between multiple objects and the environment. The devised

descriptor enabled the ability to produce multiple-affordance predictions at high frame

rates that outperformed both methods in isolation, as well as surpassing the performance

of alternative approaches.

Lastly, and as a demonstration of the quality and high prediction rates of the proposed

representation, Chapter 6 showcased two applications of the affordance detection algorithm.

These applications included simulations of a robotic platform that is able to detect interaction

possibilities in its surroundings while navigating a novel scene. Then, the affordance lantern

concept was presented, which demonstrated an affordance-based scene augmentation application.

This application uses a standard RGB-D sensor with open source dense mapping systems to
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dynamically discover affordance candidate locations; the predicted interactions can later be

embedded in the image stream of the camera, i.e. an augmented reality system.

7.2 Limitations and Future work

The current approach uses only geometry to compute the likelihood of a location in the scene of

affording an interaction. This assumes that the sensor is able to perceive the scene correctly;

errors in the sensing could affect the performance or quality of the predictions. Whereas most of

the interactions do not need a high-quality reconstruction of the scene geometry, some others

do. For instance Hanging affordances, where the system will "try to hang" objects from edges

of flat surfaces or from thin and elongated patches of points. The former is very common when

the sensor does not see certain parts of scene correctly; as an example, a hole in the middle of

a pointcloud would "appear" to be apt for hanging objects (e.g. an umbrella or a coat hanger)

around the edges of the perceived opening. One way to avoid such artefacts is, as shown for the

affordance lantern, by performing visibility check with the object in the predicted pose. If the

objects were to be hanged from a non-existent hole, they would not pass the visibility test, and

therefore those predictions could be avoided. This type of problem could also be mitigated by

assuming an active perception approach [244], where the agent can explore or examine parts

of the scene that seem interesting regarding its need (e.g. to hang an umbrella). By doing so,

the agent could obtain a better geometry estimate through the sensor and consequently better

affordance predictions. Alternatively, and as shown for the affordance lantern application, it is

possible to mitigate some of this issues by focusing the detection on the “eye’s fovea” or region of

interest (e.g. centre of the image), where the pointcloud geometry is usually closer to the real

scene.

In a related issue, it is a known fact that state-of-the-art RGB-D sensors do not cope well with

reflective surfaces such as those commonly found in taps and sinks in kitchen environments, or

glass in windows or cabinet doors. If the camera does not see these objects, it is very unlikely that

their affordances are predicted correctly or predicted at all. This can be observed from the results

on scenes from the ScanNet dataset, where none of the scenes had taps or sinks in them and the

method was not able to predict realistic Filling affordances. This issue, however, can be overcome

with approaches that do not rely on structured light to produce pointcloud representations of the

scene such as [245–247], which estimate depth maps directly from RGB images.
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In chapter 5 a deep neural network was employed to extract salient locations in the input

that lead to the correct classification of multiple affordances happening in a single pointcloud.

Although this proved to work by helping to devise a compact and optimal descriptor, it was

assumed that the probabilities of the affordances in a given pointcloud were independent of

each other (e.g. binary cross entropy loss). A more interesting approach would be to learn co-

occurrences or interdependencies that exist among affordances, perhaps through a probabilistic

graphical model such as those used in developmental robotics approaches or with a loss function

that accounts for those dependencies [248]. For instance, computing a high probability for one

affordance (or a set of them) taking place in a scene location could prevent spending computations

on testing other less likely affordances. As an example, detecting a high probability of Filling a

mug would probably discard testing for Placing, Sitting or Riding affordances.

Finally, the proposed representation has shown to be able to characterise generic interactions

between two entities in the environment robustly. In this sense, it has been assumed that the

query-object is already in the agent’s hand; thus, the goal was to detect where the agent could

Place, Hang or Fill this object. An interesting avenue for future work is the investigation of

grasping affordances, i.e. the interaction between a hand and other objects. For instance, the

model of the robot’s hand would serve as a query-object that interacts with a scene-object in the

environment.

In summary, this thesis has shown that top-quality affordance detections can be achieved by

exploiting the geometric information involved in the interaction between two entities. Among the

main benefits of the approach is its generic properties, allowing the description of interactions

between everyday objects and the environment as well as the interactions between a human and

the environment (e.g. Sitting). We have shown that geometric information suffices to predict valid

affordance locations in unknown environments; however, this does not mean that other sources

of information should be discarded. For instance, it would be very interesting to explore the

incorporation of material or physics information, which are also tightly related to the interactions

that the environment affords.
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A.1 AffordanceSim

Figure A.1: GUI main window

A.1.1 Computing an interaction example

In order to compute an Interaction Tensor for training, three things are needed:

1. Load an object model or dense pointcloud as scene-object

2. Load an object model or dense pointcloud as query-object

3. Place the objects simulating the intended interaction
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Execute the binary to bring up the GUI. The first step is to load the scene-object (e.g. table for

Placing, sink for Filling, etc.). The five scene-objects used for the interactions presented in the

ICRA’18 paper; the objects are a table, a sink, a hanging-rack, a motorcycle and a sitting stool.

The GUI allows to quickly load these by selecting the associated interaction from the dropdown

menu on the upper left area.

Figure A.2: Affordance selection on GUI

The scene-object will be displayed in red (pointcloud), and a test-point will be selected (hard-

coded but editable).

Figure A.3: GUI reference point selection

This test-point is only a guide to align or place the objects simulating the interactions. For

instance, in the case of a table the test-point is set to the centre on top of the table, or in case of a

motorbike, it would be the centre on top of the saddle. Different points can be chosen by selecting

a point directly from the pointcloud (left click on the mouse while holding shift). A second way of

selecting a test-point is by using the bottom-mid and top-mid buttons; these will select the centre

(top or bottom) point of the bounding box of the current object/pointcloud. As an example, when
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the table has been loaded clicking bottom-mid will select a point "on the floor" in middle of the

table legs.

If test-points are manually selected confirmation will be needed by clicking the OK button on

the upper left. Other object CAD models (PLY/OBJ files) or pointclouds (PCD file) can be loaded

using the File menu: File -> Load. Make sure the model/pointcloud meets the following criteria:

• Model/pointcloud is oriented correctly, the system assumes the gravity vector along the

negative part of the Z axis.

• Scene-object needs ’scene-’ as base name. Examples of the naming convention can be seen

in the files of the data directory.

The GUI can create dense pointclouds by clicking on the Make dense button (300000 points

uniformly sampled). This number can be changed; have a look at the denseButtonPressed()

function in src/mainwindow.cpp

A similar process is followed to load a query-object and get a dense pointcloud. As an example

try loading the bowl model located under data/ directory (bowl.ply) and click on Make dense

button to get a dense pointcloud.

Figure A.4: CAD model to dense pointcloud

To place an object on top of the table (for Placing affordance) two points need to be selected:

a test-point on the query-object and a test-point on the scene-object. For a Placing a bowl try

clicking bottom-mid for the bowl and top-mid for the table. Once both test-points have been

selected click on "Translate" button to apply the transformation.
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Figure A.5: Interaction example ready to compute tensor

Notice that the text-box with the label "Affordance" was automatically filled with Place. This

text can be changed manually according to the affordance or interaction being simulated.

The final step at this point is to click on the Compute iT button which will compute the

interaction tensor, sample affordance keypoints and produced a lot of auxiliary files. Some these

auxiliary files are needed in order to make predictions.
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A.2 Scene Database

K
itc

h
e
n
s

L
iv
in
g
-ro

o
m
s

O
c
e
s

M
o
to
rc
y
c
le
s

F
igu

re
A

.6:S
yn

th
etic

scen
es

from
p

u
blicly

available
rep

ositories

144



A.2. SCENE DATABASE

F
ig

u
re

A
.7

:R
G

B
-D

sc
an

s
of

re
al

en
vi

ro
n

m
en

ts
.I

n
bl

u
e

at
th

e
to

p
sc

en
es

fr
om

[2
12

].
H

ig
h

li
gh

te
d

in
or

an
ge

ar
e

in
d

oo
r

sc
an

s
fr

om
[2

11
].

In
gr

ee
n

ar
e

sh
ow

n
ou

r
sc

an
s

ca
p

tu
re

d
w

it
h

[2
10

]

145



APPENDIX A. APPENDIX A

A.3 Interaction Tensors

Filling saucepan

Filling mug

Filling cup

Filling bowlFilling bin

Filling bucket

Filling glass

Filling pitcher

Figure A.8: Interactions tensors for Filling
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Hanging cap Hanging coat-hanger

Hanging handbag Hanging hat

Hanging headphones Hanging mug

Hanging pitcher Hanging saucepan

Hanging umbrella

Figure A.9: Interactions tensors for Hanging
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Placing appe Placing banana Placing big-box Placing-bin

Placing bleach Placing bucket Placing cap Placing book

Placing casserole Placing bowl Placing brick Placing chair

Placing clamps Placing coat-hanger Placing co ee-can Placing cell-phone

Placing co ee-maker Placing crackers-box Placing credit-card Placing cup

Figure A.10: Interactions tensors for Placing(1)

Placing detergent
Placing drill Placing ower Placing football

Placing fork Placing frying-pan Placing glass Placing hammer

Placing handbag Placing hat Placing headphones Placing headphone-stand

Placing keyboard Placing knife Placing lamp Placing laptop

Placing lemon Placing magazine Placing marker Placing mug

Figure A.11: Interactions tensors for Placing(2)
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Placing mustard-bottle Placing nail Placing notebook Placing orange

Placing padlock Placing pc-case Placing pc-monitor Placing pc-mouse

Placing pear Placing pencil Placing pitcher Placing plant

Placing plate Placing pot Placing printer Placing pudding-box

Placing saucepan Placing scissors Placing screwdriver Placing spam-can

Figure A.12: Interactions tensors for Placing(3)

Placing spatula Placing sponge Placing stool Placing tablet

Placing spoon Placing tape Placing umbrella Placing toaster

Placing tool-box Placing tv-remote Placing teapot Placing wrench

Placing wine-bottle

Figure A.13: Interactions tensors for Placing(4)
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Sitting human

Riding biker

Figure A.14: Interactions tensors for Sitting and Riding
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