5,329 research outputs found

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197

    FingerReader: A Wearable Device to Explore Printed Text on the Go

    Get PDF
    Accessing printed text in a mobile context is a major challenge for the blind. A preliminary study with blind people reveals numerous difficulties with existing state-of-the-art technologies including problems with alignment, focus, accuracy, mobility and efficiency. In this paper, we present a finger-worn device, FingerReader, that assists blind users with reading printed text on the go. We introduce a novel computer vision algorithm for local-sequential text scanning that enables reading single lines, blocks of text or skimming the text with complementary, multimodal feedback. This system is implemented in a small finger-worn form factor, that enables a more manageable eyes-free operation with trivial setup. We offer findings from three studies performed to determine the usability of the FingerReader.SUTD-MIT International Design Centr

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    A survey on hardware and software solutions for multimodal wearable assistive devices targeting the visually impaired

    Get PDF
    The market penetration of user-centric assistive devices has rapidly increased in the past decades. Growth in computational power, accessibility, and cognitive device capabilities have been accompanied by significant reductions in weight, size, and price, as a result of which mobile and wearable equipment are becoming part of our everyday life. In this context, a key focus of development has been on rehabilitation engineering and on developing assistive technologies targeting people with various disabilities, including hearing loss, visual impairments and others. Applications range from simple health monitoring such as sport activity trackers, through medical applications including sensory (e.g. hearing) aids and real-time monitoring of life functions, to task-oriented tools such as navigational devices for the blind. This paper provides an overview of recent trends in software and hardware-based signal processing relevant to the development of wearable assistive solutions

    Furthering Service 4.0: Harnessing Intelligent Immersive Environments and Systems

    Get PDF
    With the increasing complexity of service operations in different industries and more advanced uses of specialized equipment and procedures, the great current challenge for companies is to increase employees' expertise and their ability to maintain and improve service quality. In this regard, Service 4.0 aims to support and promote innovation in service operations using emergent technology. Current technological innovations present a significant opportunity to provide on-site, real-time support for field service professionals in many areas

    Kinesthetic Cues that Lead the Way

    Get PDF

    Sensory Augmentation for Balance Rehabilitation Using Skin Stretch Feedback

    Get PDF
    This dissertation focuses on the development and evaluation of portable sensory augmentation systems that render skin-stretch feedback of posture for standing balance training and for postural control improvement. Falling is one of the main causes of fatal injuries among all members of the population. The high incidence of fall-related injuries also leads to high medical expenses, which cost approximately $34 billion annually in the United States. People with neurological diseases, e.g., stroke, multiple sclerosis, spinal cord injuries, and the elderly are more prone to falling when compared to healthy individuals. Falls among these populations can also lead to hip fracture, or even death. Thus, several balance and gait rehabilitation approaches have been developed to reduce the risk of falling. Traditionally, a balance-retraining program includes a series of exercises for trainees to strengthen their sensorimotor and musculoskeletal systems. Recent advances in technology have incorporated biofeedback such as visual, auditory, or haptic feedback to provide the users with extra cues about their postural sway. Studies have also demonstrated the positive effects of biofeedback on balance control. However, current applications of biofeedback for interventions in people with impaired balance are still lacking some important characteristics such as portability (in-home care), small-size, and long-term viability. Inspired by the concept of light touch, a light, small, and wearable sensory augmentation system that detects body sway and supplements skin stretch on one’s fingertip pad was first developed. The addition of a shear tactile display could significantly enhance the sensation to body movement. Preliminary results have shown that the application of passive skin stretch feedback at the fingertip enhanced standing balance of healthy young adults. Based on these findings, two research directions were initiated to investigate i) which dynamical information of postural sway could be more effectively conveyed by skin stretch feedback, and ii) how can such feedback device be easily used in the clinical setting or on a daily basis. The major sections of this research are focused on understanding how the skin stretch feedback affects the standing balance and on quantifying the ability of humans to interpret the cutaneous feedback as the cues of their physiological states. Experimental results from both static and dynamic balancing tasks revealed that healthy subjects were able to respond to the cues and subsequently correct their posture. However, it was observed that the postural sway did not generally improve in healthy subjects due to skin stretch feedback. A possible reason was that healthy subjects already had good enough quality sensory information such that the additional artificial biofeedback may have interfered with other sensory cues. Experiments incorporating simulated sensory deficits were further conducted and it was found that subjects with perturbed sensory systems (e.g., unstable surface) showed improved balance due to skin stretch feedback when compared to the neutral standing conditions. Positive impacts on balance performance have also been demonstrated among multiple sclerosis patients when they receive skin stretch feedback from a sensory augmentation walker. The findings in this research indicated that the skin stretch feedback rendered by the developed devices affected the human balance and can potentially compensate underlying neurological or musculoskeletal disorders, therefore enhancing quiet standing postural control
    • …
    corecore