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Abstract: The market penetration of user-centric assistive devices has rapidly increased in 

the past decades. Growth in computational power, accessibility, and "cognitive" device 

capabilities have been accompanied by significant reductions in weight, size, and price, as 

a result of which mobile and wearable equipment are becoming part of our everyday life. 

In this context, a key focus of development has been on rehabilitation engineering and on 

developing assistive technologies targeting people with various disabilities, including 

hearing loss, visual impairments and others. Applications range from simple health 

monitoring such as sport activity trackers, through medical applications including sensory 

(e.g. hearing) aids and real-time monitoring of life functions, to task-oriented tools such as 

navigational devices for the blind. This paper provides an overview of recent trends in 

software and hardware-based signal processing relevant to the development of wearable 

assistive solutions. 

Keywords: assistive technology; blind user; haptics; spatial rendering; sonification 

1 Introduction 

The first (assistive) wearable devices developed in the 1990s tried to address the 

basic needs of specific target groups. Particular devices were primarily considered 

as medical devices incorporating the basic functionalities of sensors and actuators 

(e.g. microphones, amplifiers, vibro-/electrotactile actuators) in order to 

complement human sensorimotor capabilities. 
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In the case of visually impaired users, the ability to travel in both familiar and 

unfamiliar [1, 2], as well as indoor and outdoor [3, 4] environments is crucial. 

Such a large variety of contexts creates a myriad of challenges, both in terms of 

functionality and safety. Key issues include avoidance of obstacles, accessibility 

to salient points of the environment (e.g. finding doors, obtaining key notifications 

from signs and other information displays), and even co-presence (participating to 

the fullest possible extent in social interactions that occur within the environment). 

However, given that the processing of visual information requires powerful 

sensory equipment as well as significant resources for processing incoming data, 

the earliest electronic travel aids (ETAs) were quite bulky and processed 

information at relatively low resolutions. Significant changes to this state of 

affairs only became possible in the 21
st
 Century, in parallel with exponential 

reduction in the size, weight, and processing capacity of both dedicated electronic 

aids and mobile devices such as smartphones and tablets. Even today, the 

widespread adoption of SSDs (sensory substitution devices) outside of academia 

seems to face steep challenges. As suggested by Elli et al., this may be due to the 

fact that effectively coordinating issues arising from the different perspectives of 

ergonomics, neuroscience, and social psychology is a tricky business [5]. 

Even with these challenges, taking into account that visually impaired users have 

at best very basic visual capabilities through residual vision, the role of both 

substitutive and augmentative feedback through the senses of audition and taction 

is widely seen as essential. While these senses can be used both separately and in 

parallel, the ways in which information is allocated to them, and the ways in 

which information is presented (i.e. filtered, processed, and displayed) to users 

cannot be arbitrary. While it is often said (but sometimes questioned) that healthy 

individuals process up to 90% of information of the environment through vision 

[6], even the information obtained through this single modality is heterogeneous. 

Thus, both 2D and 3D information are acquired in foveal and peripheral parts of 

the retina and at different degrees of attention; not all events and objects are 

attended to directly - even if they reach consciousness to some extent - and it is 

important that the structure of such details be reflected in the structure of 

substitutive and augmentative feedback. 

At the same time, it is important to take into consideration how the modalities of 

audition and taction are fundamentally different from vision - at least in the ways 

we use them. Users are able to focus through these modalities less acutely, and the 

spatial resolution of incoming information is also lower than vision. With 

audition, perception (or rather, estimation) of distance is based partially on sound 

pressure level, which is very inaccurate [7, 8]. Presenting multiple (concurrent) 

audio sources result in increased cognitive load, reduced localization, and reduced 

identification accuracy. As a result, mapping 3D visual information to pure 

auditory cues has had limited success. The crucial realization is that while the 

visual modality would be capable of effectively suppressing irrelevant 

information, in the case of auditory modality this kind of suppression has to be 
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carried out by design, prior to auditory mapping and rendering through 

sonification and directional stimulation. With haptics, many of the conclusions are 

similar to audition. Here, the exclusion of visual feedback also results in a relative 

strengthening of substance parameters (in this case, hardness and texture) and a 

weakening of shape salience [9]. This tendency can be countered by appropriate 

"exploratory procedures", in which subjects move their hands across the given 

surface in specific ways to obtain relevant information [10, 11]. While such 

procedures can potentially be richer in the case of haptic as opposed to auditory 

exploration, enabling users to capitalize on such procedures requires that the 

structure of the stimulus be assembled in appropriate ways, and whenever the 

stimuli are temporal, parameters such as burst frequency, number of pulses per 

burst, pulse repetition frequency, waveform shape and localization also need to be 

taken into consideration [12]. The general conclusion is that in both cases of 

audition and haptic/tactile feedback, results are optimal if a selective filtering and 

feature encoding process precedes the mapping and rendering phases. 

The following sections of this paper focus on representations and signal 

processing techniques associated with the auditory and haptic / tactile modalities, 

respectively. Finally, an application-oriented section concludes the paper. 

2 Audio 

Sound is the most important feedback channel for the visually impaired. Aspects 

of sound such as reverberation (echolocation), pressure, and timbre convey useful 

information about the environment for localization, navigation, and general 

expectations about the surrounding space. In fact, in the case of healthy 

individuals, localization of sound sources is the most important part in identifying 

hazardous objects, obstacles, or even the “free path” to navigate through [13]. 

Both ecologically motivated and abstract (artificial) sounds can deliver crucial 

supplementary information on real life, and increasingly virtual reality situations. 

Auditory Localization 

For localizing sound sources, the auditory system uses both monaural (using one 

ear) and interaural (using two ears) cues [14]. Monaural cues are essentially 

responsible for distance perception and localization in the median plane (elevation 

perception). For example, distant sounds are usually softer and sounds that 

gradually grow louder are perceived as approaching. Interaural cues are based on 

the time, intensity, and phase differences between the two ears in the case of 

sound sources outside the median plane. Interaural Time Differences (ITD) mean 

that the arrival times of the sounds to the two ears differ with respect to each 

other. Interaural Level Differences (ILD) mean that the sound intensities 

perceived by the two ears differ due to the “head shadow”, i.e., due to the shape of 
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the listener's head blocking certain high-frequency sound components. Interaural 

Phase Differences (IPD) are also due to the shape of the head, which alters the 

phases of the sounds reaching the two ears. These mechanisms are better suited 

towards the identification of horizontal directions. For all of these phenomena, the 

hearing system uses the filtering effects of the outer ears, head, and torso. These 

response characteristics are called Head-Related Transfer Functions (HRTFs) and 

they can be measured, stored, and used for reverse engineering usually in the form 

of digital IIR and/or FIR filters [15-18]. 

Actual localization performance of human subjects depends on various other 

factors as well, such as: 

- real-life environment vs. virtual simulation, 

- training and familiarity with the sounds, 

- type (bandwidth, length) and number of sound sources, 

- spatial resolution and overall accuracy of the applied HRTFs (if any), 

- head-tracking, 

- other spatial cues (reverberation, early reverb ratio, etc.). 

General findings show (1) decreased localization performance in the vertical 

directions in contrast to horizontal plane sources, (2) preference for individually 

measured HRTFs during binaural playback, and (3) increased error rates when 

using headphones [19-24]. 

Methods for Directional Simulation 

Several methods exist for the spatialization of sound sources. As distances are 

generally mapped to sound level only, the localization task using directional 

information is usually associated with sources that are at a constant distance. 

Hence, localization has to be tested both in the horizontal and vertical planes. 

Sounds can be played back over loudspeakers or headphones. Loudspeaker 

systems incorporate at least two channels (stereo panning, panorama stereo), but 

otherwise can range from traditional 5.1 multi-channel systems to ones with up to 

hundreds of speakers. Headphones are generally two-channel playback systems 

using electrodynamic transducers for airborne conduction. Traditional open or 

closed type headphones (especially, if they are individually free-field equalized 

[25-28]) are the best solutions. However, if they cover the entire ears and block 

the outside world, blind users will refrain from using them. Therefore, 

loudspeaker solutions are not applicable for mobile and wearable applications. 

Other types of headphones exist such as multi-speakers, multi-channel (5.1) 

solutions, partly covering the ears, or bone conduction phones. People are likely to 

think that the latter technology may provide lossy information compared to 

everyday air conduction phones; however, research has shown that virtual three-
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dimensional auditory displays can also be delivered through bone-conduction 

transducers using digital signal processing, without increased percept variability 

or decreased lateralization [29, 30]. 

Signal processing solutions for spatial simulation include the following methods: 

- Amplitude panning (panorama). Simple panning between the channels 

will result in virtual sources at a given direction. Mono is not suitable for 

delivering directional information. Stereo panning is limited for correct sound 

source positioning between the two speakers. The classical setup is a 60-degree 

triangle of listener and loudspeakers. Amplitude panning can be used for two-

channel headphone playback, not necessarily limited to ±30 degrees, but it can be 

up to ±90 degrees. 

- HRTF filtering is for binaural playback over headphones. HRTFs are 

stored in a form of digital filters in a given number of length (taps, filter 

coefficients) and spatial resolution (number of filters in the horizontal and vertical 

plane). Real-time filtering or pre-filtered pre-recorded samples are needed, 

together with some kind of interpolation for missing filters (directions). Although 

this is a commonly applied method, localization performance is sometimes low 

and errors, such as front-back-confusions in-the-head localization and others 

influence the performance [31-33]. 

- Wave-Field Synthesis (WFS) incorporates a large number of individually 

driven speakers and it is not designed for wearable applications [34]. The 

computational load is very high, but the localization does not depend on or change 

with the listener's position. 

- Ambisonics uses a full sphere of loudspeakers, not just in the horizontal 

plane but also in the vertical plane (above and below the listener). It is not the 

traditional multi-channel system and the signals are not dedicated speaker signals. 

They contain speaker-independent representation of a sound field that has to be 

decoded to the actual speaker setup. Its advantage is that the focus is on source 

direction instead of loudspeaker positions and it can be applied to various setups. 

However, using multiple speakers and high signal processing makes it unavailable 

in wearable devices [35]. 

Further Aspects of Auditory Representation 

Besides directional information, a number of mapping strategies have been 

applied to wearable assistive devices making it possible to communicate bits of 

information with semantics that lie outside of the scope of auditory perception. 

Traditional auditory cues 

Auditory icons were defined by Gaver in the context of 'everyday listening' - 

meaning that one listens to the information behind the sound as a “caricature" of 

physical-digital phenomena [36-38]. This was the first generalization of David 



Á. Csapó et al. A Survey on Hardware and Software Solutions for Multimodal Wearable Assistive Devices 

 – 44 – 

Canfield-Smith’s original visual icon concept [39] in modalities other than vision. 

Around the same time, earcons were defined by Blattner, Sumikawa, and 

Greenberg as "non-verbal audio messages used in the user interfaces to provide 

users with information about computer objects, operation, or interaction". Today, 

the term is used exclusively in the context of 'abstract' (rather than 

'representational', see [40]) messages, i.e., as a concept that is complementary to 

the iconic nature of auditory icons. 

Sonification 

Whenever a data-oriented perspective is preferred, as in transferring data to audio, 

the term ‘sonification’ is used, which refers to the “use of non-speech audio to 

convey information or perceptualize data” [41] (for a more recent definition, the 

reader is referred to [42]). 

Sonification is a widely used term to cover applications of sound as information. 

However, spatial simulation and directional information is not generally part of 

sonification: such techniques are generally applied separately. From a visual 

perspective, sonification focuses on finding an appropriate mapping between 

visual events and auditory counterparts, that is, how certain visual objects or 

events should sound like. Several methods have been proposed for finding such 

mappings based on the conceptual structure of the problem domain (e.g. [43]). For 

example, Walker used magnitude estimation to identify optimal sonification for 

diverse tasks with sighted and visually impaired users [44]. Following the 

specification of an appropriate mapping, the parameters of the individual sound 

events may also be modified through time, based on real-time changes in the 

physical attributes of the visual objects or environment that is represented. 

Whenever the semantic content to be mapped (e.g., an image in the case of 

auditory substitution of vision) has more parameters than can easily be associated 

with sound attributes, the following direct kinds of parameter mappings are used 

most frequently: 

- frequency of sound (increasing frequency usually means that an event 

parameter is increasing, or moving to the right / upward) 

- amplitude of sound is often mapped to distance information (increasing 

loudness means that a parameter is increasing or approaching) 

- timing in case of short sound events (decreasing the time interval 

between sound samples conveys an impression of increasing urgency, or a 

shortening of a distance) 

- timbre, i.e. the "characteristic quality of sound, independent of pitch and 

loudness, from which its source or manner of production can be inferred" [45] can 

represent iconic features, such as color or texture of the visual counterpart 

Besides such "direct" mapping techniques, various analogy-based solutions are 

also possible. For example, sonification can reflect the spatio-temporal context of 
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events, sometimes in a simplified form as in 'cartoonification' [46-49]. In Model-

Based Sonification [50], the data are generally used to configure a sound-capable 

virtual object that in turn reacts on excitatory interactions with acoustic responses 

whereby the user can explore the data interactively. This can be extended to 

interactive sonification where a higher degree of active involvement occurs when 

the user actively changes and adjusts parameters of the sonification module, or 

interacts otherwise with the sonification system [51]. 

Whenever such mappings are selected intuitively, empirical evaluations should be 

carried out with the target user group (i.e., whatever the designer considers to be 

an intuitive sonification does not necessarily correspond to the target group’s 

expectations [52]). In such cases, cognitive load due to a potentially large number 

of features is just as important as is the aspect of semantic recognizability. 

Speech and music 

Using speech and music has always been a viable option in electronic aids, and 

has always been treated somewhat orthogonally to the aspects of sonification 

described above. Speech is convenient because many steps of sonification can be 

skipped and all the information can be directly "mapped" to spoken words. This, 

however, also makes speech-based communication relatively slow, and language-

dependent text-to-speech applications have to be implemented. Previously, 

concatenative synthesis (the recording of human voice) tended to be used for 

applications requiring small vocabularies of fewer than 200 words, whereas Text-

to-Speech (TTS) was used for producing a much larger range of responses [53]. 

There were two types of TTS synthesis techniques depending on signal processing 

methods. The technique of diphone synthesis uses diphones (i.e., a pair of phones) 

extracted from the digitized recordings of a large set of standard utterances. The 

formant synthesis uses a mathematical model of formant frequencies to produce 

intelligible speech sounds. Nowadays, these techniques are integrated and used in 

parallel in electronic products [54]. 

Recently, several novel solutions have emerged, which try to make use of the 

advantageous properties of speech (symbolic), and iconic and indexical 

representations [55]. These speech-like sounds, including spearcons, spemoticons, 

spindexes, lyricons, etc. are a type of tweaked speech sound, which uses part of 

the speech or the combinations of speech and other sounds [56-61]. Spindexes are 

a predesigned prefix set and can be automatically added to speech items. Lyricons 

are a combination of melodic speech and earcons and thus, require some manual 

sound design. However, spearcons and spemoticons can be algorithmically made 

on the fly. Spearcons’ time compression is accomplished by running text-to-

speech files through a SOLA (Synchronized Overlap Add Method) algorithm [62, 

63], which produces the best-quality speech for a computationally efficient time 

domain technique. Spemoticons can be made in the interactive development 

environment by manipulating the intensity, duration and pitch structure of the 

generated speech [64]. 
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Some of these auditory cues can represent a specific meaning of the item, but 

others can represent an overall structure of the system. For example, each 

spearcon can depict a specific item like auditory icons with a focus on “what” an 

item is and provide a one-on-one mapping between sound and meaning. In 

contrast, spindex cues can provide contextual information, such as the structure 

and size of the auditory menus, and the user’s location or status like earcons with 

a focus on “where” the user is in the system structure. Interestingly, lyricons or the 

combinations of melodic speech and earcons can represent both the semantics of 

the item (speech) and the contextual information of the system (earcons). 

Music or musical concept can also be used for electronic devices. Music is 

pleasant for long term, can be learned relatively fast, and can be both suitable for 

iconic and continuous representation. Chords or chord progression can deliver 

different events or emotions. Different instruments or timbre can represent unique 

characteristics of objects or events. By mapping a musical scale to menu items, 

auditory scrollbars enhanced users’ estimation of menu size and their relative 

location in a one-dimensional menu [65]. Using a short portion of existing music, 

musicons have been shown successful application as a reminder for home tasks 

(e.g., reminder for taking pills) [66]. On the other hand, intuitive mappings 

between music and meaning are inherently difficult given the subjective 

characteristics of music. First, individual musical capabilities differ from person to 

person. Second, the context of the application has to be considered to alleviate the 

possibility of both misinterpretations (e.g., when other sound sources are present 

in the environment at the same time) and of "phantom" perceptions, in which the 

user thinks that she has perceived a signal despite the fact that there is no signal 

(understanding such effects is as important as guaranteeing that signals that are 

perceived are understood correctly). 

Hybrid solutions As a synthesis of all of the above techniques, increasingly 

ingenious approaches have appeared which combine high-level (both iconic and 

abstract, using both music and speech) sounds with sonification-based techniques. 

Walker and his colleagues tried to come up with hybrids integrating auditory icons 

and earcons [67]. Speech, spearcons, and spindex cues have also been used 

together in a serial manner [68]. Jeon and Lee compared subsequent vs. parallel 

combinations of different auditory cues on smartphones to represent a couple of 

submenu components (e.g., combining camera shutter and game sound to 

represent a multimedia menu) [69]. In the same research, they also tried to 

integrate background music (representing menu depths) and different auditory 

cues (representing elements in each depth) in a single user interface. Recently 

Csapo, Baranyi, and their colleagues developed hybrid solutions based on earcons, 

auditory icons and sonification to convey tactile information as well as feedback 

on virtual sketching operations using sound [70, 71]. Such combinations make 

possible the inclusion of temporal patterns into audio feedback as well, e.g. in 

terms of the ordering and timing between component sounds. 
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3 Haptics 

Haptic perception occurs when objects are explored and recognized through 

touching, grasping, or pushing / pulling movements. “Haptic” comes from the 

Greek, “haptikos”, which means “to be able to touch or grasp” [72]. Depending on 

the mechanoreceptor, haptic perception includes pressure, flutter, stretching, and 

vibration and involves the sensory and motor systems as well as high-level 

cognitive capabilities. The terms "haptic perception" and "tactile perception" are 

often used interchangeably, with the exception that tactile often refers to 

sensations obtained through the skin, while haptic often refers to sensations 

obtained through the muscles, tendons, and joints. We will use this same 

convention in this section. 

Haptic/tactile resolution and accuracy 

In a way similar to vision and hearing, haptic / tactile perception can also be 

characterized by measures of accuracy and spatial resolution. However, the values 

of such measures are different depending on various body parts and depending on 

the way in which stimuli are generated. From a technological standpoint, 

sensitivity to vibration and various grating patterns on different areas of the body 

influences (though it does not entirely determine) how feedback devices can be 

applied. Relevant studies have been carried out in a variety of contexts (see e.g., 

[73]). The use of vibration is often restricted to on/off and simple patterns using 

frequency and amplitude changes. As a result, it is generally seen as a way to add 

additional information along auditory feedback about e.g. warnings, importance, 

or displacement. 

With respect to the resolution of haptic perception, just-noticeable-differences 

(JNDs) ranging from 5 to 10% have been reported [74]. The exact value depends 

on similar factors as in the case of tactile discrimination, but added factors such as 

the involvement of the kinesthetic sense in perception, and even the temperature 

of the contact object have been shown to play a significant role [75]. 

The overall conclusion that can be drawn from these results is that the amount of 

information that can be provided using tactile and haptic feedback is less than it is 

through the visual and auditory senses. As we will see later, information obtained 

through taction and force is also less conceptual in the sense that it seems to be 

less suitable for creating analogy-based information mapping. 

Haptic/tactile representations 

As in the case of audio, several basic and more complex types of tactile (and more 

generally, haptic) representations have been proposed as detailed in this section. 

One general tendency in these representations that can be contrasted with audio 

representation types is that the distinction between iconic and abstract 

representations is less clear-cut (this may be evidence for the fact that people are 
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generally less aware of the conceptual interpretations of haptic/tactile feedback 

than in the case of auditory feedback). 

Hapticons (haptic icons) Haptic icons were defined by MacLean and Enriquez as 

"brief computer-generated signals, displayed to a user through force or tactile 

feedback to convey information such as event notification, identity, content, or 

state" [76]. In a different paper, the same authors write that "Haptic icons, or 

hapticons, [are] brief programmed forces applied to a user through a haptic 

interface, with the role of communicating a simple idea in a manner similar to 

visual or auditory icons" [77]. 

These two definitions imply that the term haptic icon and hapticon can be used 

interchangeably. Further, the discussions of MacLean and Enriquez refer both to 

'representational' and 'abstract' phenomena (while the definitions themselves 

reflect a representational point of view, the authors also state that “our approach 

shares more philosophically with [earcons], but we also have a long-term aim of 

adding the intuitive benefits of Gaver’s approach…”[76]). All of this suggests 

that the dimensions of representation and meaning are seen as less independent in 

the case of the haptic modality than in vision or audio. Stated differently, 

whenever an interface designer decides to employ hapticons/haptic icons, it 

becomes clear that the feedback signals will provide information primarily 'about' 

either haptic perception itself, or indirectly about the occurrence of an event that 

has been linked - through training - to the 'iconic' occurrence of those signals. 

However, the lack of distinction between haptic icons and hapticons also entails 

that designers of haptic interfaces have not discussed the need (or do not see a 

possibility, due perhaps to the limitations of the haptic modality) to create higher-

level analogies between the form of a haptic signal and a concept from a different 

domain. 

Tactons (tactile icons) Brewster and Brown define tactons and tactile icons as 

interchangeable terms, stating that both are “structured, abstract messages that can 

be used to communicate messages non-visually” [78]. This definition, together 

with the conceptual link between the 'representational' and 'abstract' creates a 

strong analogy between tactons and hapticons. In fact, tactons may be seen as 

special kinds of hapticons which make use of Blattner, Sumikawa and Greenberg's 

original distinction between signals that carry a certain meaning within their 

representation, and those which do not (which can be generalized to other 

modalities) is nowhere visible in these definitions. Once again, this may be due to 

limitations in the 'conceptual expressiveness' of the haptic/tactile modality. 

Subsequent work by Brewster, Brown and others has suggested that such 

limitations may be overcome. For example, it was suggested that by designing 

patterns of abstract vibrations, personalized cellphone vibrations can be used to 

provide information on the identity of a caller [79]. If this is the case, one might 

wonder whether a separation of the terms haptic icon and hapticon, as well as 

those of tactile icon and tacton would be useful. 
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4 Applications 

When it comes to developing portable and wearable assistive solutions for the 

visually impaired, power consumption is generally a crucial issue. If several 

computationally demanding applications are required to run at the same time, the 

battery life of even the highest quality mobile devices can be reduced to a few 

hours. Possible solutions include reducing the workload of the application (in 

terms of amount of information processed, or precision of processing); or using 

dedicated hardware alongside multi-purpose mobile devices, such as smartphones 

or tablets. In this section, we provide a broad overview of the past, present, and 

(potential) future of devices, technologies, and algorithmic solutions used to tackle 

such challenges. 

Devices 

State-of-the-art mobile devices offer built-in sensors and enormous computational 

capacity for application development on the Android and iOS platform [80, 81]. 

Without dedicated hardware, software-only applications provide information 

during navigation using the GPS, compass, on-line services and others [82-84]. 

However, microcontrollers and system-on-a-chip (SoC) solutions – e.g. Arduino 

or Raspberry Pi - are also gaining popularity, as the costs associated with such 

systems decrease and as users are able to access increasingly sophisticated 

services through them (e.g., in terms of accessing both versatile computing 

platforms, such as Wolfram Mathematica, and dedicated platforms for multimodal 

solutions, such as the Supercollider, Max/MSP [85] and PureData [86]). 

Most of the above devices afford generic methods for the use of complementary 

peripheral devices for more direct contact with end users. In the blind community, 

both audio and haptic/tactile peripherals can be useful. In the auditory domain, 

devices such as microphones, filters / amplifiers and headphones with active noise 

cancelling (ANC) for the combination and enhancement of sound are of particular 

interest. In the haptic and tactile domains, devices such as white canes, "haptic" 

bracelets and other wearables with built-in vibrotactile or eletrotactile displays are 

often considered. While the inclusion of such peripherals in solutions increases 

associated costs (in terms of both development time and sales price), it also 

enables the implementation of improved functionality in terms of number of 

channels, "stronger" transducers, and the ability to combine sensory channels both 

from the real world and virtual environments into a single embedded reality. 

Assistive Technologies for the Blind 

In this section, we provide a brief summary of systems which have been and are 

still often used for assistive feedback through the auditory and haptic senses. 
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Assistive technologies using audio 

Auditory feedback has increasingly been used in assistive technologies oriented 

towards the visually impaired. It has been remarked that both the temporal and 

frequency-based resolution of the auditory sensory system is higher than the 

resolution of somatosensory receptors along the skin. For several decades, 

however, this potential advantage of audition over touch was difficult to be taken 

due to the limitations in processing power [80]. 

Systems that have been particularly successful include: 

• SonicGuide, which uses a wearable ultrasonic echolocation system to 

provide users with cues on the azimuth and distance of obstacles [87, 88]. 

• LaserCane, which involves the use of a walking cane and infrared instead 

of ultrasound signals [87, 89]. 

• The Nottingham Obstacle Detector, which is a handheld device that 

provides 8 gradations of distance through a musical scale based on ultrasonic 

echolocation [90]. 

• The Real-Time Assistance Prototype (RTAP), which is a camera-based 

system, equipped with headphones and a portable computer for improved 

processing power that even performs object categorization and importance-based 

filtering [91]. 

• The vOICe [92] and PSVA [87] systems, which provide direct, 

retinotopic temporal-spectral mappings between reduced-resolution camera-based 

images and audio signals. 

• System for Wearable Audio Navigation (SWAN), which is developed for 

safe pedestrian navigation, and uses a combination of continuous (abstract) and 

event-based (conceptual) sounds to provide feedback on geometric features of the 

street, obstacles, and landmarks [93, 94]. 

Text-to-speech applications, speech-based command interfaces, and navigational 

helps are the most popular applications on mobile platforms. Talking Location, 

Guard my Angel, Intersection Explorer, Straight-line Walking apps, The vOICe, 

Ariadne GPS, GPS Lookaround, BlindSquare etc. offer several solutions with or 

without GPS for save guidance. See [80] for a detailed comparison and evaluation 

of such applications. 

Assistive technologies using haptics 

Historically speaking, solutions supporting vision using the tactile modality 

appeared earlier than audio-based solutions. These solutions generally translate 

camera images into electrical and/or vibrotactile stimuli. 

Systems that have been particularly successful include: 
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• The Optacon device, which transcodes printed letters onto an array of 

vibrotactile actuators in a 24x6 arrangement [95-97]. While the Optacon was 

relatively expensive at a price of about 1500 GBP in the 1970s, it allowed for 

reading speeds of 15-40 words per minute [98] (others have reported an average of 

about 28 wpm [99], whereas the variability of user success is illustrated by the fact 

that two users were observed with Optacon reading speeds of over 80 wpm [80]). 

• The Mowat sensor (from Wormald International Sensory Aids), which is 

a hand-held device that uses ultra-sonic detection of obstacles and provides 

feedback in the form of tactile vibrations inversely proportional to distance. 

• Videotact, created by ForeThought Development LLC, which provides 

navigation cues through 768 titanium electrodes placed on the abdomen [100]. 

• A recent example of a solution which aims to make use of developments 

in mobile processing power is a product of a company, “Artificial Vision For the 

Blind”, which incorporates a pair of glasses from which haptic feedback is 

transmitted to the palm [101, 102]. 

Today, assistive solutions making use of generic mobile technologies are 

increasingly prevalent. Further details on this subject can be found in [80]. 

Hybrid solutions 

Solutions combining the auditory and haptic/tactile modalities are still relatively 

rare. However, several recent developments are summarized in [80]. Examples 

include the HiFiVE [103, 104] and SeeColOR [104] systems, which represent a 

wide range of low to high-level visual features through both audio and tactile 

representations. With respect to these examples, two observations are made: first, 

audio and taction are generally treated as a separate primary (i.e., more prominent 

with a holistic spatio-temporal scope) and secondary (i.e., less prominent in its 

spatio-temporal scope) modality, respectively; and second, various conceptual 

levels of are reflected in signals presented to these modalities at the same time. 

Algorithmic challenges and solutions 

In general, designing multimodal applications shows tradeoffs between storing 

stimuli beforehand and generating them on the fly. While the latter solution is 

more flexible in terms of real-time parametrization, it requires more processing. 

Signal generation 

An important question on any platform is how to generate the desired stimuli. In 

this section, we summarize key approaches in auditory and haptic/tactile domains. 

Auditory signals With the advance of technology, multiple levels of auditory 

signals can be generated from electronic devices, including assistive technologies. 

However, auditory signals can be largely classified into two types. First, we can 

generate auditory signals using a buzzer. The buzzer is a self-sufficient sound-
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generation device. It is cheap and small. It does not require any additional sound 

equipment or hardware. The different patterns of auditory signals can be 

programmed using even lower level programming languages (e.g., C or 

Assembly), varying the basic low-level signal processing parameters of attack, 

decay, sustain and release. With these, the parameters of sound frequency, 

melodic pattern (including polarity), number of sounds, total sound length, tempo 

of the sound, and repetitions within patterns can be adjusted [105, 106]: 

Nowadays, high quality auditory signals can also be generated using most mobile 

and wearable devices, including compressed formats like MP3 or MPEG-4 AAC. 

In this case, additional hardware is required, including an amplifier and a speaker 

system. Of course, the above variables can be manipulated. Moreover, timbre, 

which is a critical factor in mapping data to sounds [107] or musical instruments 

can represent particular functions or events on the device. More musical variables 

can also be controlled, such as chord, chord progression, key change, etc. in this 

high level configuration. Auditory signals can be generated as a pre-recorded 

sound file or in real-time through the software oscillator or MIDI (musical 

instrument digital interface). Currently, all these sound formats are supported by 

graphic programming environments (e.g., Max/MSP or PureData) or traditional 

programming languages via a sound specific library (e.g. JFugue [108] in Java). 

Tactile signals Mobile phones and tablets have integrated vibrotactile motors for 

haptic feedback. Usually, there is only one small vibrator installed in the device 

that can be accessed by the applications. The parameters of vibration length, 

durations of patterns and repetitions within patterns can be set through high-level 

object-oriented abstractions. Many vibration motor configurations are by design 

not suited to the real-time modification of vibration amplitude or frequency. 

Therefore, while such solutions offer easy accessibility and programmability, they 

do so with important restrictions and only for a limited number of channels 

(usually one channel). As a result, very few assistive applications for blind users 

make use of vibration for purposes other than explorative functions (such as 

'zooming in' or 'panning') or alerting users, and even less use it to convey 

augmentative information feedback. 

From the signal processing point of view, smartphones and tablets run pre-

emptive operating systems, meaning that more than a single application can run 

"simultaneously", and even processes that would be critical for the assistive 

application can be interrupted. Although accessing a built-in vibration motor is not 

a critical application in and of itself, a comprehensive application incorporating 

other features (such as audio and/or visual rendering) together with haptics can be 

problematic. For example, spatial signals can be easily designed in a congruent 

way between audio and haptic (e.g., left auditory/haptic feedback vs. right 

auditory/haptic feedback). When it comes to frequency, the frequency range does 

not match with each other in one-on-one mapping. This is why we need to 

empirically assess the combination of multimodal feedback in a single device. 
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Latency and memory usage 

Latency is a relatively short delay, usually measured in milliseconds, between the 

time when an audio signal enters and when it outputs from a system. This includes 

hardware processing times and any additional signal processing tasks (filtering, 

calculations etc.). The most important contributors to latency are DSP, 

ADC/DAC, buffering, and in some cases, travelling time of sound in the air. For 

audio circuits and processing pipelines, a latency of 10 milliseconds or less is 

sufficient for real-time experience [109], based on the following guidelines [110]: 

Less than 10 ms - allows real-time monitoring of incoming tracks including 

effects.  

At 10 ms - latency can be detected but can still sound natural and is usable for 

monitoring.  

11-20 ms - monitoring starts to become unusable, smearing of the actual sound 

source, and the monitored output is apparent.  

20-30 ms - delayed sound starts to sound like an actual delay rather than a 

component of the original signal.  

In a virtual acoustic environment, the total system latency (TSL) refers to the time 

elapsed from the transduction of an event or action, such as movement of the 

head, until the consequences of that action cause the equivalent change in the 

virtual sound source location [111]. Problems become more significant if signal 

processing includes directional sound encoding and rendering, synthesizing and 

dynamic controlling of reverberation, room and distance effects. Several software 

applications have been recently developed to address this problem for various 

platforms such as Spat [112], Sound Lab (SLAB) [113], DirAC [114], etc. 

It has been noted that real-time audio is a challenging task in VM-based garbage 

collected programming languages such as Java [115]. It was demonstrated that a 

low latency of a few milliseconds can nevertheless be obtained, even if such 

performance is highly dependent on the hardware-software context (i.e., drivers 

and OS) and cannot always be guaranteed [115]. Since version 4.1 ("Jelly Bean"), 

Android has included support for audio devices with low-latency playback 

through a new software mixer and other API improvements. Thus, improved 

functionality in terms of latency targets below 10 ms, as well as others such as 

multichannel audio via HDMI is gaining prevalence. The use of specialized audio 

synthesis software such as Csound [116], Supercollider, Max/MSP, and PureData 

can also help achieve low latency. 

Training challenges 

An important challenge when deploying assistive applications lies in how to train 

prospective users in applying them to their own real-life settings. In such cases, 

serious gaming is one of the options used for training and maintaining the interest 

of users. The term refers to a challenging and motivating environment for training 
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in which users adapt to the system in an entertaining, and as a result, almost 

effortless way. Examples might include giving users the task of finding 

collectibles, earning rankings, or challenging other competitors by improving in 

the task. Especially blind users welcome audio-only games as a source of 

entertainment [117, 118]. As far as mobile applications are concerned, it can be 

stated as a general rule that regardless of subject matter, serious games usually do 

not challenge memory and processing units further, as they use limited visual 

information (if at all), and also often rely on reduced resolution in audio rendering. 

5 Summary 

This paper provided an overview of the state-of-the-art that is relevant to the key 

design phases behind portable and wearable assistive technologies for the visually 

impaired. Specifically, we focused on aspects of stimulus synthesis, semantically 

informed mapping between data / information and auditory / tactile feedback, as 

well as signal processing techniques that are useful either for curbing 

computational demands, or for manipulating the information properties of the 

feedback signals. Through a broad survey of existing applications, the paper 

demonstrated that audio-tactile feedback is increasingly relevant to transforming 

the daily lives of users with visual impairments. 
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