995 research outputs found

    Evaluation of the Driving Performance and User Acceptance of a Predictive Eco-Driving Assistance System for Electric Vehicles

    Full text link
    In this work, a predictive eco-driving assistance system (pEDAS) with the goal to assist drivers in improving their driving style and thereby reducing the energy consumption in battery electric vehicles while enhancing the driving safety and comfort is introduced and evaluated. pEDAS in this work is equipped with two model predictive controllers (MPCs), namely reference-tracking MPC and car-following MPC, that use the information from onboard sensors, signal phase and timing (SPaT) messages from traffic light infrastructure, and geographical information of the driving route to compute an energy-optimal driving speed. An optimal speed suggestion and informative advice are indicated to the driver using a visual feedback. pEDAS provides continuous feedback and encourages the drivers to perform energy-efficient car-following while tracking a preceding vehicle, travel at safe speeds at turns and curved roads, drive at energy-optimal speed determined using dynamic programming in freeway scenarios, and travel with a green-wave optimal speed to cross the signalized intersections at a green phase whenever possible. Furthermore, to evaluate the efficacy of the proposed pEDAS, user studies were conducted with 41 participants on a dynamic driving simulator. The objective analysis revealed that the drivers achieved mean energy savings up to 10%, reduced the speed limit violations, and avoided unnecessary stops at signalized intersections by using pEDAS. Finally, the user acceptance of the proposed pEDAS was evaluated using the Technology Acceptance Model (TAM) and Theory of Planned Behavior (TPB). The results showed an overall positive attitude of users and that the perceived usefulness and perceived behavioral control were found to be the significant factors in influencing the behavioral intention to use pEDAS.Comment: Submitted to Transportation Research Part C: Emerging Technologies Journa

    Eco-Driving Strategy Implementation for Ultra-Efficient Lightweight Electric Vehicles in Realistic Driving Scenarios

    Get PDF
    This paper aims to provide a quantitative assessment of the effect of driver action and road traffic conditions in the real implementation of eco-driving strategies. The study specifically refers to an ultra-efficient battery-powered electric vehicle designed for energy-efficiency competitions. The method is based on the definition of digital twins of vehicle and driving scenario. The models are used in a driving simulator to accurately evaluate the power demand. The vehicle digital twin is built in a co-simulation environment between VI-CarRealTime and Simulink. A digital twin of the Brooklands Circuit (UK) is created leveraging the software RoadRunner. After validation with actual telemetry acquisitions, the model is employed offline to find the optimal driving strategy, namely, the optimal input throttle profile, which minimizes the energy consumption over an entire lap. The obtained reference driving strategy is used during real-time driving sessions at the dynamic driving simulator installed at Politecnico di Milano (DriSMi) to include the effects of human driver and road traffic conditions. Results assess that, in a realistic driving scenario, the energy demand could increase more than 20% with respect to the theoretical value. Such a reduction in performance can be mitigated by adopting eco-driving assistance systems

    Driver Acceptance of Advanced Driver Assistance Systems and Semi-Autonomous Driving Systems

    Get PDF
    Advanced Driver Assistance Systems (ADAS) and semi-autonomous driving systems are intended to enhance driver performance and improve transportation safety. The potential benefits of these technologies, such as reduction in number of crashes, enhancing driver comfort or convenience, decreasing environmental impact, etc., are well accepted and endorsed by transportation safety researchers and federal transportation agencies. Even though these systems afford safety advantages, they challenge the traditional role of drivers in operating vehicles. Driver acceptance, therefore, is essential for the implementation of ADAS and semi-autonomous driving systems into the transportation system. These technologies will not achieve their potential if drivers do not accept them and use them in a sustainable and appropriate manner. The potential benefits of these in-vehicle assistive systems presents a strong need for research. A comprehensive review of current literature on the definitions of acceptance, acceptance modelling approaches, and assessment techniques was carried out to explore and summarize the different approaches adopted by previous researchers. The review identified three major research needs: a comprehensive evaluation of general technology acceptance models in the context of ADAS, development of an acceptance model specifically for ADAS and similar technologies, and development of an acceptance assessment questionnaire. Two studies were conducted to address these needs. In the first study, data collection was done using two approaches: a driving simulator approach and an online survey approach. In both approaches, participants were exposed to an ADAS and, based on their experience, responded to several survey questions to indicate their attitude toward using the ADAS and their perception of its usefulness, usability, reliability, etc. The results of the first study showed the utility of the general technology acceptance theories to model driver acceptance. A Unified Model of Driver Acceptance (UMDA) and two versions (a long version with 21 items and a short version with 13 items) of an acceptance assessment questionnaire were also developed, based on the results of the first study. The second was conducted to validate the findings of first study. The results of the second study found statistical evidence validating UMDA and the two versions of the acceptance assessment questionnaire

    Impacts of Connected and Automated Vehicles on Energy and Traffic Flow: Optimal Control Design and Verification Through Field Testing

    Get PDF
    This dissertation assesses eco-driving effectiveness in several key traffic scenarios that include passenger vehicle transportation in highway driving and urban driving that also includes interactions with traffic signals, as well as heavy-duty line-haul truck transportation in highway driving with significant road grade. These studies are accomplished through both traffic microsimulation that propagates individual vehicle interactions to synthesize large-scale traffic patterns that emerge from the eco-driving strategies, and through experimentation in which real prototyped connected and automated vehicles (CAVs) are utilized to directly measure energy benefits from the designed eco-driving control strategies. In particular, vehicle-in-the-loop is leveraged for the CAVs driven on a physical test track to interact with surrounding traffic that is virtually realized through said microsimulation software in real time. In doing so, model predictive control is designed and implemented to create performative eco-driving policies and to select vehicle lane, as well as enforce safety constraints while autonomously driving a real vehicle. Ultimately, eco-driving policies are both simulated and experimentally vetted in a variety of typical driving scenarios to show up to a 50% boost in fuel economy when switching to CAV drivers without compromising traffic flow. The first part of this dissertation specifically assesses energy efficiency of connected and automated passenger vehicles that exploit intention-sharing sourced from both neighboring vehicles in a highway scene and from traffic lights in an urban scene. Linear model predictive control is implemented for CAV motion planning, whereby chance constraints are introduced to balance between traffic compactness and safety, and integer decision variables are introduced for lane selection and collision avoidance in multi-lane environments. Validation results are shown from both large-scale microsimulation and through experimentation of real prototyped CAVs. The second part of this dissertation then assesses energy efficiency of automated line-haul trucks when tasked to aerodynamically platoon. Nonlinear model predictive control is implemented for motion planning, and simulation and experimentation are conducted for platooning verification under highway conditions with traffic. Then, interaction-aware and intention-sharing cooperative control is further introduced to eliminate experimentally measured platoon disengagements that occur on real highways when using only status-sharing control. Finally, the performance of automated drivers versus human drivers are compared in a point-to-point scenario to verify fundamental eco-driving impacts -- experimentally showing eco-driving to boost energy economy by 11% on average even in simple driving scenarios

    Optimal Predictive Eco-Driving Cycles for Conventional, Electric, and Hybrid Electric Cars

    Get PDF
    International audienceIn this paper, the computation of eco-driving cycles for electric, conventional and hybrid vehicles using receding horizon and optimal control is studied. The problem is formulated as consecutive-optimization problems aiming at minimizing the vehicle energy consumption under traffic and speed constraints. The impact of the look-ahead distance and the optimization frequency on the optimal speed computation is studied to find a trade-off between the optimality and the computation time of the algorithm. For the three architectures considered, simulation results show that in urban driving conditions, a look-ahead distance of 300m to 500m leads to a sub-optimality less than 1% in the energy consumption compared to the global solution. For highway driving conditions, a look-ahead distance of 1km to 1.5km leads to a sub-optimality less than 2% compared to the global solution

    Human Factors:Sustainable life and mobility

    Get PDF
    • …
    corecore