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Abstract   

The research focus is on two major current challenges facing fleet operators and motor 

insurance providers globally. For fleet operators, staying profitable means reducing their 

running cost by increasing their operation efficiency and reducing their running costs by 

reducing driver fuel consumption and avoiding costly road accidents. For motor insurance 

providers, having a profitable business requires sale premiums that reflect real-world exposure 

to risks. This means moving towards metrics beyond traditional pricing parameters, such as 

age, occupation and gender. Regarding this, there is now substantial interest in understanding 

drivers driving behaviour, since knowing which ways of driving are resulting in using more 

fuel and/or being exposed to road accidents can bring huge financial benefits to both the 

aforementioned industries.  

 

To identify driving behaviours that are costly (both in terms of fuel usage and involvement in 

road crashes), a naturalistic driving behaviour field study, called Eco Safe Driving Challenge, 

was developed between 2013and 2015 at University of Bath. The project followed the same 

format of major real-world driving behaviour test such as 100-cars in the US, PROLOGUE and 

UDRIVE in the EU by following the FESTA-V approach in designing the experiment, data 

collection, data management, ethical and legal concerns, data analysis and evaluating the 

findings. In total, 250 km worth of driving data was collected from nine drivers aged between 

25 – 30 using medium size petrol cars. A special route was designed to mimic specific road 

settings, including downhill driving, uphill driving, traffic lights, a pedestrian crossing and a 

roundabout. It comprised a 4 km loop (same start and end points), starting and finishing at the 

University of Bath, with an 11% increase and decrease in road slope. The data were collected 
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using OBDII dongles fitted with GPS sensors to record location and a sim card for sending 

driving data to a dedicated server in real-time. 

 

A strategic framework has been developed to analyse the data in two domains, i.e. eco-driving 

and driving and in three phases. First, identifying specific driving behaviour, secondly 

classifying and comparing drivers differences and finally, scoring, ranking and model drivers’ 

driving behaviour performances with the aim of assessing eco-driving and safe driving 

behaviour impacts.   

 

The key contributions of the work are, firstly it has found that drivers’ with a tendency to 

misuse gears, use excessive engine power and/or frequently speed are less fuel efficient than 

their counterparts To validate this claim, a metric called Vehicle Specific Power – Fuel 

Consumption (VSP – FC) has been developed, which shows that eco-drivers, on average, have 

1.0 – 1.2 points higher than others according to this measure. When evaluating safe driving 

behaviours, it emerged that there was 75% correlation between historical crash zones (based 

on public records) and locations (400 metre long road segments) where the nine participants in 

the driving event undertook harsh breaking and acceleration. This provides evidence that 

scoring drivers based on the number of harsh braking and acceleration events should be 

included in metrics aimed at evaluating driving behaviour.  
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Preface  

Evidently, the driver of a vehicle is a major contributor to how efficiently and safely it is 

controlled. In the case of fuel-based vehicles, efficiency refers to using fuel sparingly for 

completing a journey, and this helps to reduce vehicle emissions, such as CO2, thereby 

contributing to restricting a person’s carbon footprint. In terms of safety, there are driving 

behaviours that are the result of a propensity to drive unsafely and carelessly. This research is 

aimed at identifying and classifying drivers’ behavioural differences that lead to inefficient and 

unsafe driving. 

 

Studying naturalistic driving behaviour under real-world conditions has gained much attention 

in recent years. This can provide valuable information to fleet managers and usage based 

insurance providers about individual driver’s habits, styles, and driving patterns. For this 

research, the principals of conducting naturalistic driving behaviour study were applied, 

whereby information regarding drivers’ driving behaviour in natural driving conditions 

(familiar roads and car) was gathered unobtrusively. Over the course of three driving events, 

240 km worth of driving data were collected from 15 drivers. However, for this thesis, only the 

data from the final round of the driving event with nine drivers have been analysed to deliver 

the findings. Specifically, in this final round on 9th February 2014, there were three Vauxhall 

Corsa drivers, four Nissan Note drivers, one Nissan Juke driver and one Fiat 500L driver. The 

monitoring devices used in the study were a GPS sensor wired to an OBD dongle with the 

ability to transmit driving data via a mobile network. In order to analyse the driving data, two 

categories of methods were employed. 
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First, there were those aimed at identifying driving variations and second, techniques for 

classifying (ranking) drivers’ differences. The driving data, including vehicle road speed, 

engine speed, total number of harsh accelerations/decelerations and coasting behaviour were 

used to identify and classify (rank) eco-drivers and safe drivers. 

 

Here are a number of findings of this project. Firstly, it is shown that drivers who used 

excessive engine power and frequently sped were less fuel-efficient, which was ascertained by 

examining drivers’ speeding patterns and their reported total fuel consumption amount. 

Secondly, by calculating the Vehicle Specific Power (VSP) value for all the drivers’ trips it 

was demonstrated that this value allows for meaningful comparisons across the participating 

drivers. Drivers who tended to break the speed limit frequently and had been scored poorly, 

based on the fleet management deducting points scoring method, according to the total number 

of counted alarming events (harsh acceleration and harsh deceleration), were shown to use 

excessive and unnecessary vehicle power to complete the driving task. Subsequently, the 

Vehicle Specific Power – Fuel Consumption (VSP – FC) value was introduced as a metric to 

compare and rank drivers’ fuel consumption in regard to road gradient and their vehicle 

velocity, acceleration and drag coefficient. The results show that drivers with a low VSP – FC 

value were those with a high number of harsh accelerations / decelerations and they tended to 

drive with a higher range of vehicle and engine speeds. The final major contribution is the 

method that is proposed to associate similar drivers based on driver’s vehicle speed profiles. It 

provides a statistical solution for grouping drivers with similar vehicle speed distribution based 

on the effective sample size value between every pair of drivers in the sample. This value is 

then used as an indicator of the level of association (similarity of speed distribution) between 

every pair of drivers, whereby any two  with a high sample size value between them are deemed 

to be driving in a similar manner. The method is shown to be effective, since similarly classed 
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drivers are demonstrated as sharing other similar characteristics, such as driving scores and 

driving patterns.  

 

Regarding the safety aspects of driving, it is important to highlight that by conducting 

correlation analysis between the location where drivers made sharp acceleration and 

deceleration, it has been shown that in 75% of occasion these locations match with segments 

on the route where previous accidents were recorded. This becomes numerical proof that 

scoring driving behaviour based on excessive acceleration and braking can be an effective 

indicator of drivers’ differences and it can be used to score drivers attitudes towards safety. 

Later, drivers are ranked based on the total number of times they made harsh speeding or 

braking at locations with previous accident records and those without them.  

 

As part of industry collaboration with IPG Automotive, virtual simulation software named 

Carmaker is used, firstly, to demonstrate the capability of the software package to simulate 

various driving behaviours and secondly, two simulation scenarios are designed, modelled and 

simulated with the help of the software. In the first study, drivers’ driving efficiency has been 

virtually simulated by using their actual driving speed on virtual driving simulation software. 

Under the simulation conditions, it has been shown that drivers who scored poorly by the 

method used by usage-based insurers and fleet management service providers were not 

necessarily those who drove inefficiently.  The result of a study on the impact of road gradient 

on fuel usage showed that a 16% increase on a computerised road cause on average 40% 

increase in fuel consumption (based on simulation test conditions).  
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Chapter 1 

Introduction 

 

“Human behaviour flows from three main sources: desire, emotion, and 

knowledge.” 

 – Plato 

 

 

1.1 Impact of road transport on air pollution and the level of CO2 

The decline in available resources of fossil fuels and increasing concerns about global warming 

and air pollution have prompted many states, institutions and individuals to take effective 

action. States are introducing new laws and measures to reduce carbon footprints; institutions 

are conducting research on a variety of topics to help solve current environmental, and urban 

challenges and individuals who are concerned about these issues are trying to change their way 

of life so as to reduce their negative contribution.  

 

In Europe, amongst the sectors producing greenhouse gas (GHG hereafter) emissions in 2012, 

the energy industry and transport were the highest polluters. The transportation sector alone 

generated 24.3% of all the GHG producers in Europe (Figure 1). Based on a European 

Commission Climate Action Report, while the GHG emissions for many areas have been 

falling since 1990, the amount generated by the transport sector actually increased (European 

Commission, 2014). 
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Figure 1. EU greenhouse gas emissions by sector, 2012 (European Commission, 2014) 

 

Specifically, as the historical record of producing GHG emissions from various sectors 

(agriculture, energy industries, industry, and transport, residential and commercial) has 

revealed, after 1990 the amount of harmful gases generated by all except transport has 

continued to decrease. The GHG emissions of all the sectors except transport dropped by 

around 15% between 1990 and 2007 (Figure 2). However, for the transport sector, there was a 

36% increase during the same period. After 2007, due to the wide range of actions that were 

taken by EU states including the introduction of low emission policies, low emission vehicles, 

and the promotion of green technologies, the transport sector GHG level decreased remarkably. 

However, by 2012 it was still 20.5 % higher than the 1990 record (Figure 2) (European 

Commission, 2014).  
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Figure 2. EU percentage of greenhouse gas emissions based on sector1  

 

Returning to the 2012 record, among the various forms of transport, the annual increase in 

personal, and freight transportation means that despite improvements made in vehicle 

efficiency, the transport sector contribution was the highest compared to other areas. Amongst 

the transport categories, road transport contributed the most in producing harmful gases. The 

data show that over 70% of all GHGs were generated by road transport in 2012. In sum, 

according to the 2012 findings, while other forms of transport such as railways had a very low 

impact in generating GHGs, combustion based vehicles were major producers of GHGs in EU 

states (European Commission, 2014). According to the EU 2011 Transport White Paper target, 

to reduce the level of GHGs to 60% of the 1990 figure by 2050, the transport sector needs to 

lower its emission levels 67% by 2050 (European Commission, 2014). 

                                                
1 “Energy industry sector excludes land use, land – use change and forestry emissions and international bunkers. 
Transport sector excludes international bunkers (international traffic departing from the EU). Industry sector 
includes emissions from manufacturing, and construction and industrial processes. Other includes emissions from 
fuel combustion in agriculture/ forestry/ fisheries, other (not elsewhere specified), fugitive emissions from fuels, 
solvents and other product use and waste” (European Commission, 2014).  
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Figure 3. EU greenhouse gas emissions by mode of transport, 2012 

 

The increasing number of passenger cars in the EU has had its consequences. Using a passenger 

vehicle as a primary means of road transport has exposed EU countries to environmental, and 

urban traffic management challenges. However, the economic crisis between 2007 and 2009 

had an impact on the total number of new passenger cars registered in Europe, which in 2014 

was 20% less than before the crisis (The International Council on Clean Transportation Europe, 

2015). The EU automotive industry’s resurgence during the last three years and significant 

growth has led to it representing one-third of all EU manufacturing jobs. Owing to this increase, 

recently there has been an increasing trend of vehicles being introduced to the EU road 

networks. In fact, in 2014, around 75% of the 12.5 million new passenger cars registered in the 

EU belonged to the EU’s largest markets, which are Germany, France, the United Kingdom, 

Italy, and Spain. Figure 4 presents the registration of passenger cars in the EU. Data between 

2001 and 2007 are from EU-25 only, whereas from 2007 to 2014 there were EU-28 member 

states (The International Council on Clean Transportation Europe, 2015). Hence, this means a 

continuing growth in the production of GHG emissions, specifically CO2.  
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Figure 4. Passenger car registrations by EU member states (ACEA, 2014) 

 

The fuel consumption and CO2 emissions target for new passenger cars in the EU is legislated 

by the European Environment Agency (EEA). The EU legislation on such emissions drawn up 

in 2009 has proven an effective solution, as by 2013, for new passenger cars these had already 

fallen below the target set for 2015. By meeting the 2015 target in 2013, the annual rate of 

reducing CO2 emissions for new vehicles increased to 4% per year. The European Commission 

target for average CO2 emissions of new passenger vehicles is 95 g/Km of CO2 or the 

equivalent of 3.8 litres/100 km of fuel consumption. Figure 5 presents the EU’s CO2 emission 

results and targets for new passenger cars (The International Council on Clean Transportation, 

2015).  
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Figure 5. Historical record and future targets for CO2 emissions levels of new passenger cars in 
the EU (The International Council on Clean Transportation Europe, 2015) 

 

Whilst the trend in carbon dioxide emissions has been downwards for new vehicles, countries 

like Germany and England experiencing high sales of new cars, thereby putting pressure on 

aggregate emissions, which could explain why their levels are still above the EU-28 average. 

With the set target of 2015 already having been met in 2013 (Figure 5) as mentioned above, 

EU states and subsequently car manufacturers are committed to reducing their CO2 emissions 

between 2015 and 2020 by 27% (The International Council on Clean Transportation, 2013, 

2015). 
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Figure 6. Passenger car CO2 emissions by member state  

 

The United Kingdom has taken measures over the last two decades to reduce its carbon 

footprint and its GHG contribution. In 2013, the sectors with the highest contribution of GHG 

emissions were the energy industries sector and the transport sector, with 33% and 21% 

respectively (Department for Energy and Climate Change, 2015). According to the Department 

for Energy and Climate Change report, by 2012, there had been only a 2% reduction in 

greenhouse gas emissions from the transport sector since 1990. In 2013, there was another 1% 

decrease in the level of GHG emissions (Figure 7). Road transport and particularly passenger 

cars are a significant source of these gas emissions in the United Kingdom (Department for 

Energy and Climate Change, 2015).  
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Figure 7. UK greenhouse gas emissions by sectors, 2013 

 

When the GHG emissions are broken down into individual gases, for the UK transport sector, 

it shows that almost all of the emissions come in the form of carbon dioxide. The Department 

for Energy and Climate Change confirmed that the level of CO2 emissions is closely related to 

the amount of fuel consumed rather than vehicle age or type. Other GHGs, such as nitrous 

oxide and methane emissions, are closely linked with vehicle age and type. Table 1 presents 

the GHG emissions of the transport sector by different gases. These data establish the fact that 

the amount of fuel used by passenger cars has a direct effect on the UK GHG levels since CO2 

is the primary source of GHG emissions of the transport sector. 

Table 1. UK transport sector GHG emissions breakdown by gases2 (1990 - 2013) 

 1990 1995 2000 2005 2010 2012 2013 

Carbon dioxide 119.7 119.9 124.9 129.3 119.3 116.9 115.7 

Methane 0.8 0.6 0.4 0.2 0.1 0.1 0.1 

Nitrous oxide 1.3 11.7 1.5 1.2 0.9 1.0 1.0 

F-gases 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

                                                
2 Millions of tonnes of carbon dioxide equivalent (Mt CO2e). 

Other
7% Agriculture

9%

Residential and 
Commercial

14%

Industry 
16%Transport 

21%

Energy 
Industries 

33%



Chapter 1 – Introduction 
 

 36 

The European Commission has proposed measures to be taken by 2020 regarding CO2 

emissions and a fuel consumption reduction target. The action plan includes strategies to reduce 

emissions from all forms of road transport including cars, vans, and light- and heavy-duty 

vehicles. Further plans are putting limitations on tyre rolling resistance, passing legislation to 

label tyres, enforcing mandatory tyre pressure monitors on new vehicles, providing government 

grants towards the cost of purchasing electric vehicles by EU member states and finally, 

introducing a new target for a weight-based target system in the EU so as to reduce new vehicle 

masses (The International Council on Clean Transportation, 2013). 
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1.2 Road safety facts and figures  

The issue of drivers and other road users’ safety has been a concern of every country 

worldwide. In 2010, the United Nations adopted resolution 64/2551, which initiated a global 

campaign calling for A Decade of Action for Road Safety. This will end in 2020, by which time 

it is estimated that more than five million lives will have been saved. According to a joint WHO 

and UN report (2013), in 2010 up to 1.24 million people lost their lives due to road accidents, 

and as many as 50 million suffered non-fatal injuries. This figure includes drivers, passengers, 

cyclist, and pedestrians. The WHO has estimated that without taking significant action, the 

fatality rate due to road accidents would increase by about 65% by 2024. These estimates also 

highlight the fact that among the six global regions the European region has the lowest death 

rate due to road accidents with 10.3 per 100,000 population. In contrast, the African region has 

the highest rate of fatalities, standing at 24.1 per 100,000, because of poor road infrastructure 

(Figure 8) (World Health Organisation, 2013).  

 

Figure 8. Global road traffic deaths per 100,000 population3 

 

                                                
3 Regions are based on the WHO road safety report, 2010. 
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The total percentage of road fatalities by road users for the five EU-28 member states with the 

largest market share of new passenger cars, according to this report, shows that, except for 

Italy, the other four countries have a higher proportion of fatalities among vehicle users than 

the global average when compared to all road users. The United Kingdom, after Italy, had the 

lowest percentage vehicle user casualties. In contrast, France, and Spain had the highest 

proportion of road casualties attributed to vehicle users amongst the five countries in Figure 9 

(World Health Organisation, 2013). This figure highlights the vulnerability of drivers and 

passengers of vehicles compared to other road users’ safety.  

 

Figure 9. Distribution of road traffic deaths by type of road user as a percentage, 2010 

 

Increasing road safety requires a scientific evidence-based approach. This is usually tackled by 

studying the driving habits of travellers and identifying hazardous blackspots according to 

historical collision data. Traveller patterns, including methods of transport and distribution of 

travel on each road type, are gathered through national surveys and by using on-road traffic 

flow sensors. In order to identify collision-prone locations, it is important to have collision 

records. In the UK, these are gathered by police departments in every region. These records are 
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published by the Department for Transport under Open Government Licence (OGL) annually. 

Previous collision records are commonly investigated at the following levels: on a regional 

basis, on a number of road networks, regarding the segments of a route, based on road types or 

in the vicinity of specific points of interest (school, hospital, etc.). 

 

According to the National Travel Survey conducted in 2013, in England, the main mode of 

travel for social and commuting purposes is by car, which confirms the importance of 

increasing vehicle users’ safety (Department for Transport, 2014). According to the survey, 

over 65% of all trips in England for the purpose of shopping or commuting are by car. Figure 

10 shows the percentage of all trips made in 2013 according to the objective of the journey and 

method of transport. From the same survey, it has been concluded that up to 70% of all trips to 

and from work are made by car. The increasing volume of traffic on Britain’s roads, as most 

people prefer to use the vehicle and the fact that the population is rising, is threatening to cause 

the number of injuries and deaths to start growing again. 

 

Figure 10. Percentage of trips in England by method of transport, 2013 
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According to EuroRAP report, the average risk of death or serious injury is 26.7 per billion 

vehicle km in the UK’s ten regions (EuroRAP, 2015). As Figure 11 shows, the risk of death or 

serious injury on the Wales road networks is the highest (30 per billion vehicle km) and in the 

West Midlands road networks the lowest (17 per billion vehicle km), while the risk of death or 

serious injury in the South West is around the average (27 per billion vehicle km).  

 

Figure 11. Average risk of death or serious injury for all road networks in the UK by region4  

 

Since this study is carried out in Bath, UK, this subsection provides facts and figure about this 

region. The unitary authority of Bath and North-East Somerset (BANES) is located in the South 

West of the United Kingdom, the population of which in 2014 was estimated at around 182,000 

people. The collision records for this district are provided in Figure 12 for the period of 2005 

to 2013.The numbers within the coloured marks show the total number of collisions recorded 

over the period in question. As can be seen, Bath had by far the highest number of collisions 

when compared to surrounding towns and villages.  

                                                
4 Between 2011 – 2013 based on (EuroRAP, 2015) 
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Figure 12. The unitary authority Bath and North East Somerset historical road collisions (2005 
– 2013) 

 

The historical collision records published by the Department for Transport show that from 2005 

to 2013 the total number of collisions, based on the severity of the crash, decreased steadily 

nationally. After 2005, the total number collisions with both fatal and slight severity decreased 

dramatically. That is while total number of collisions with a serious level of damage remained 

at roughly constant level nationally. The following Table 2 from the aforementioned report 

compares the trend of three classes of collisions: fatal, serious, and slight between Bath and 

North East Somerset (BANES) and nationally. Trends are also shown in a plot format for the 

same periods. 
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Table 2. The historical collision data for Bath and North-East Somerset (BANES) and the UK 

 

 

 

 

 

 

Figure 13. Trends of collision severity (2005 – 2013): BANES (bottom left); nationally (bottom right)
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1.3 Motivation  

The underlying motivation for this research is that by collecting real-world driving data the 

following gaps, as found in the relevant studies, will be addressed: 

1. Understanding and characterising the impact of real world driving on fuel economy;  

2. Identifying the contributing factors of drivers’ driving behaviour to road safety;  

3. Developing potential analytics approaches for ranking drivers and the impact of drivers’ 

driving behaviour differences;  

4. Designing a low-cost project of short duration to investigate drivers’ behaviour 

according to naturalistic driving behaviour studies methodology.  

 

Despite an extensive body of scientific research already having been published in this domain, 

there are still research gaps that remain to be fulfilled. Whilst some improvements have been 

made in some respects, such as improving cars’ aerodynamics features, less attention has been 

paid to the impact of external factors, such as road geometry or drivers’ driving characteristics 

(Redsell, Lucas and Ashford, 1993; Saffarzadeh and Arjroody, 2003; van Basshuysen and 

Schäfer, 2008; Schipper, 2011). There are four areas that have received attention in respect of 

reducing fuel consumption, which are: 

• Modification of the physical properties of the vehicle, such as reducing air resistance, 

optimising vehicle weight, and minimising wheel resistance; 

• Engine modification methods, such as engine downsizing, variable valve timing, 

ignition improvements, and cylinder shutoff modification; 

• Modification of the vehicle powertrain, including selecting and arranging transmission 

ratios that deliver desirable speeds and vehicle power; 
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• Reducing the impact of external factors, such as road geometry, traffic flow, 

environmental parameters, and drivers’ driving behaviour, which will all help to reduce 

fuel consumption;  

 

In relation to the above, improvements have been made regarding many factors related to 

vehicle body design as well as engines and powertrain characteristics. However, the major 

factors affecting fuel consumption of current vehicles on roads are beyond the control of car 

manufacturers (Casadei, Broda and Ricardo Inc., 2008; van Basshuysen and Schäfer, 2008; 

The International Council on Clean Transportation, 2013). Factors such as driving style, 

vehicle load, weather, driving terrain, and maintenance are those that are not fully understood 

and they not been characterised accurately in detail.  

 

In order to put the effect of the factors relating to fuel consumption into perspective, the 

proportional effect of a range of factors has been collated from the following studies: (Redsell, 

Lucas and Ashford, 1993; McTavish and BP Castrol Technology Centre, 2008; The Goodyear 

Tire & Rubber Company, 2012; Detroit Diesel Corporation - Demand Detroit, 2015). After 

investigating these factors, it is concluded that nine factors, including driving style, weather, 

road terrain, gearing, aerodynamics of the body, vehicle maintenance, vehicle load, tyres and 

lubrication are the most influential external factors impacting on vehicle fuel consumption. 

Individual estimations from the aforementioned studies, as appropriate, have been combined 

and averaged to generate the following pie chart (Figure 14).  
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Figure 14. Factors affecting fuel consumption efficiency excluding vehicle load 

 

The driver, as the operator of a vehicle, has a major influence on the amount of fuel consumed 

while driving. Journal papers and technical reports from academia and industry claim that 

different driving styles can cause anything from a 3% and 18% increase in fuel consumption 

(Mierlo et al., 2004; Felstead, McDonald and Fowkes, 2009; Berry, 2010; Mujanovic, 2011; 

Malek, Brace and Liu, 2012; The Goodyear Tire & Rubber Company, 2012). Hence, it is 

important to identify which driving behaviours can negatively affect fuel economy. A driver 

can negatively influence the level of fuel consumption in two ways: firstly, by having 

inefficient control of a vehicle, exhibiting such as speeding, excessive usage of vehicle power, 

sudden acceleration/deceleration (braking), and using the wrong gears. Secondly, failing to 

comply with appropriate vehicle maintenance and vehicle usage, such as not having regular 

servicing and overloading, can also impact detrimentally on fuel consumption (Fontaras, 

Zacharof and Ciuffo, 2017). According to Fontaras, Zacharof and Ciuffo (2017), neglecting 

regular maintenance, a wheel misalignment of 2 mm can potentially increase energy losses by 

3%.  
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The road safety report by the WHO (2013) concluded that four major factors influence the 

safety of road users: excessive speed (speeding), driving under the influence of alcohol and/or 

drugs, not wearing seat belts or child restraints, and failing to wear a motorcycle helmet. Since 

law enforcement was put in place regarding these factors, there has been a reduction in the 

number of road collisions and fatalities (Wang, Quddus and Ison, 2013; World Health 

Organisation, 2013). An extensive body of research has been conducted by road safety and 

transport institutions, highway safety foundations and investigation teams about the effect of 

these factors as well as other contributors to driver safety, such as age and fatigue (Horberry et 

al., 2006; Wang, Quddus and Ison, 2013; Zhang et al., 2016).  

 

By reviewing the UK’s driving offence codes and list of endorsements (penalty points), it has 

been concluded that out of the 15 categories, three of them are related to drivers’ driving 

performance and their speeding. These classes are careless driving, reckless/dangerous driving, 

and exceeding the speed limit. The law states that careless driving offences shown by codes 

CD10, 20, and 30 are “driving without due care and attention or without reasonable 

consideration for other road users”. Regarding reckless and dangerous driving, under the codes 

DD10, 40, 80 and 90, this refers to “furious driving, causing serious injury, and causing death 

by dangerous driving or committing manslaughter or culpable homicide while driving a 

vehicle” 5 (Driver and Vehicle Standards Agency, 2015). The careless driving endorsement 

category is aimed at targeting drivers with poor driving behaviour and discipline, for which on-

the-spot penalty points and a fine came into effect on 16 August 2013. Since these data are 

published based on postcode groups, the following table is aggregated based on the postcodes 

started with BA. Out of 36 areas with their postcodes started with BA, only BA1 and BA2 

                                                
5 Law Road Traffic Act (RTA) 1988 sects 2 & 3 as amended by RTA 1991. (Driver and Vehicle Standards Agency, 
2015). 
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cover Bath city. Consequently, the following table has been constructed by extracting 

endorsements awarded only in these two postcode areas. As it can be observed, exceeding the 

statutory speed limit on a public road for the BA1 and BA2 postcodes were 521 and 1053, 

respectively. This is concrete information as exceeding the speed limit is a measurable offence, 

whereas careless driving is a subjective concept. 

Table 3. Total number of convicted non-heavy-duty vehicle drivers with driving endorsements 
20136 

Bath postcodes endorsements codes Endorsement awarded 

BA1 Driving without due care and attention 3 

BA1 Exceeding statutory speed limit on a 
public road 521 

BA1 Exceeding speed limit on a motorway 106 

BA2 Driving without due care and attention 10 

BA2 Exceeding statutory speed limit on a 
public road 1053 

BA2 Exceeding speed limit on a motorway 107 

 

The importance of reducing CO2 emissions of passenger cars in the EU and the necessity of 

reducing road casualties due to car accidents in the same region initiated a body of scientific 

research on the effective parameters for reduce both ameliorating both of these matters. 

Drivers’ driving behaviour is one of the primary causes of increasing fuel usage beyond the 

parameters under the control of the car manufacturers. Apart from dangerous driving habits, 

such as careless driving (failing to look properly), failing to judge other the person’s trajectory 

or speed and reckless or hurried driving, there are specific driving behaviours that increase a 

driver’s chances of involvement in a road accident, such as harsh acceleration, harsh braking 

and speeding for a high proportion of a trip. In fact, identifying drivers’ patterns of driving 

                                                
6 Endorsement related to careless driving and exceeding speed limit, in Bath area (BA1, BA2), 2014. 
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habits that contribute to excessive usage of fuel and attitudes that are unsafe are increasingly 

becoming the focus of the automotive industry and research institutions.  
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1.4 Research aims and objectives  

Understanding drivers’ driving behaviour without an intrusive monitoring device in their 

natural driving setting (their own car, on a route that they are familiar with) in a real-world 

traffic situation, has led to a field of research with the primary goal being to identify driving 

behaviours that correlate highly with the risk of collision. Furthermore, the naturalistic driving 

studies are aimed at determining the effect of human factors on vehicle performance (LeBlanc, 

Sivak and Bogard, 2010), road topography along with road safety (Al-shihabi and Mourant, 

2001) and traffic management (Rakha et al., 2011). The EU PROLOGUE project (Promoting 

real Life Observations for Gaining Understanding of road user behaviour in Europe) and the 

100-Car Naturalistic Driving Study in the US are two successful examples of such studies 

(Klauer et al., 2006; Van Schangen et al., 2011).  

 

The inapplicability of this prior research to the UK setting is because drivers’ driving behaviour 

is influenced markedly by countries’ driving culture and attitude towards the road. Despite the 

extant research the impact of driver behaviour on vehicle fuel economy and road safety still 

remains under researched, according to engineers and road safety experts. Finally, investigating 

scoring and ranking methods to rank drivers’ differences is gaining huge interest due to its 

relevance to usage-based insurance and the fleet monitoring industry.  

  

Building on naturalistic driving behaviour studies, this research is aimed at gaining an 

understanding of the effect of driving performance differences in terms of fuel usage and road 

safety. Specifically, the goals are to identify driving habits that affect fuel usage, eliciting 

drivers’ attitudes towards driving safely, classifying and ranking drivers with similar driving 

behaviours and finally, using this information to model and simulate driver variations and their 
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effects on driving performance. To accomplish these aims, the guide to conducting naturalistic 

driving behaviour study was followed, i.e. the framework from the handbook7 on the 

methodology of implementing and operating field operational tests was used throughout this 

research. The project was divided into three stages: study preparation, data acquisition / data 

management and finally, post-processing. The general format and method of the ISO standards 

for testing passenger cars on open loops was employed to develop a research strategy and to 

conduct a comprehensive study.   

                                                
7 Field operational test support action (FESTA) handbook.  
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1.5 Research topics and questions  

In the discussion above, two areas of research on drivers and driving behaviours have been 

identified for investigation. These are the effects of drivers on using fuel and driver attitudes 

to driving safely. In naturalistic driving behaviour studies, driving behaviours are identified 

with the purpose of grouping drivers together or modelling their behaviours. The core research 

topics are in relation to identifying and classifying driving behaviour differences by using 

collected driving data from vehicle engines and driver locations using GPS sensors. For each 

research topic (eco-driving and safe driving), two stages of research interests were defined 

(identifying and classifying) (see Figure 15). Finally, the recorded data were used to simulate 

drivers’ driving differences.  

 

Figure 15. Research topics 
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The list of research questions is as follows.  
 

1. What driving parameters (e.g. vehicle speed, acceleration, and engine speed, road 

geometry) can identify drivers’ driving differences?  

2. What is an effective way to classify, rank, and group drivers based on driver differences 

and similarities?  

3. Is it feasible to model variations of driving behaviour based on collected real driving 

data? 

4. What driving parameters (e.g. vehicle speed, acceleration, and engine speed, road 

geometry) can identify drivers’ attitudes to driving safely?  

5. What is an effective way to classify, rank, and group drivers’ safe driving based on 

dangerous driving habits? 
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1.6 Project overview and structure  

To gather real-world naturalistic driving data, a series of driving events was designed and 

hosted. Specifically, in order to engage with potential drivers, the Eco Safe Driving Challenge 

(ESDC) was designed and introduced as a driving campaign. The ESDC had two main aims: 

firstly, it provided a real-world platform for gathering reliable driving data and secondly, the 

events provided an opportunity to exchange and educate the public about the effect of their 

driving behaviour on their daily driving and fuel usage. The campaign was very successful8. In 

total, three driving events were hosted by the author and a team of volunteers; 250 miles were 

safely driven and around 500 minutes’ worth of driving data were collected. In this thesis only 

the data gathered during the final driving event on 9th February 2014 have been used in the 

analysis. The public engagement and knowledge exchange approach that was adopted in the 

early stage of this project created an opportunity for the author to work with various 

departments at the University of Bath and it provided an opening to collaborate with industry 

leaders. Appendix A is the final report about the driving campaign milestone and the project’s 

public engagement and knowledge exchange outcomes. 

 

1.6.1 Funding approach and ESDC project scope  

The Eco Safe Driving Challenge was funded9 by the Research Development Unit at the 

University of Bath. The fund covered the cost of running the three driving events and the 

required expenses related to the project. The project scope included an information session, the 

driving events, an academic seminar, and an awards ceremony. For collecting the real driving 

data, unobtrusive-monitoring devices, namely OBD dongles and GPS sensors, were chosen, as 

                                                
8 ESDC dedicated website: www.esdc2013.com  
9 The total funding was £2500; this covered the cost of the monitoring devices, SIM cards and hosting the driving 
events. 
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they were inexpensive and would not distract those driving in any way. The cost per driver 

including monitoring device, sim card top up, the amount of fuel used at the event and extras 

to do with hosting the (refreshments, prints, etc.) was around £165.  

 

1.6.2 Collaboration with industrial partners 

This project involved collaboration with several transport research institutions and companies. 

For instance, the Transport Research Laboratory (TRL) was invited to make a presentation at 

the ESDC seminar. The EE mobile network operator and internet service provider supported 

the project by providing SIM cards for the monitoring devices. There have been two industrial 

partners that the researcher had been able to secure and collaborate with; firstly, there was the 

CASTEL Wireless Telecommunications Co. Ltd (Castel Company), who sourced the 

monitoring and data acquisition devices. They also provided consultation about their approach 

to monitoring and scoring driving behaviour; their wireless fleet monitoring technologies have 

been used in 27 countries and regions globally. The Castel Company has been backed by the 

China Aerospace Industry, and it receives technical support from the Hong Kong and Shenzhen 

R&D centres. They collaborated in the project because of a mutual interest in developing 

methods to identify and classify drivers’ driving performance for monitoring and insuring 

purposes.  

 

The second partner of the project was the IPG Automotive Company10, a leading virtual driving 

simulator software provider, with a high level of homologation approvals by car manufacturers 

as well as a history of extensive collaborative practices. It sponsored the project by supplying 

their passenger car simulation software package called ‘Carmaker’, which was because of their 

                                                
10 For more information, visit: www.ipg.de   
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interest in increasing the level of realism of the driver models in their software. That is, as will 

apparent, this collaboration involved using their the IPG Carmaker software to model drivers 

based on their actual driving behaviour. Two scenario-based studies were developed, and the 

software was used to establish the effectiveness of modelling driving behaviour using their 

software package.  
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1.7 Thesis outline 

This thesis is organised as follows: Chapter 2 is the Literature Review; Chapter 3 presents the 

Methodology; Chapter 4 gives results and discussion, and Chapter 5 contains the conclusion. 

Each chapter contains the context of two subjects; firstly, topics related to fuel consumption 

and the eco-driving performance of drivers and secondly, a section covering road safety and 

the attitudes to safety by drivers while driving. This structure is kept throughout the thesis and 

thus, each chapter begins with topics and parts related to eco-driving followed by those 

pertaining to safe driving. 

 

In Chapter 2, the relevant literature, including previous empirical works by scholars who have 

studied the impact of drivers’ driving behaviour on fuel consumption and road safety is 

investigated. In this chapter, advancements made in relation to these topics are discussed, in 

terms of a chronological timeline of the technological advancements in the past 80 years 

Specifically, the most salient works for purpose of this thesis, dating back to 1938, are reviewed 

so as to guide the research process. The chronological part focuses on studies between 1938 

and 2010, whilst the technological part covers highly cited relevant journals and academic 

papers published between 2010 and 2015. Subsequently, a second round of literature searching 

was conducted, which unearthed a number of key studies published between 2016 and 2017 

for review.  

 

In Chapter 3, the methodology, the methods employed are divided into three sections: field 

study preparation, data acquisition, and post-processing analysis of these data. The lattermost 

consists of two parts, one pertaining to the eco-driving analysis and the other contains studies 

exploring safety in driving.  
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In Chapter 4, the results from identifying driving behaviours that affect driving efficiency are 

presented in the first section, whilst in the second, drivers’ classification outcomes are covered. 

The findings from the Carmaker software virtual modelling of real world driving are presented 

and discussed in subsection three. The final two subsections cover the outcomes of 

identification (subsection four) and classification (subsection five) of driving behaviours 

regarding the road safety aspects of the driving task.  

 

In Chapter 5, there is discussion of the key findings for all the studies, reflection on the 

methodology deployed and consideration of the relevance of the work. Regarding the 

lattermost, the significance of findings is examined and the impact of the key contributions are 

re-examined in the context of previous studies. Finally, the researcher’s contributions are 

provided and this study limitations are discussed. 

 

In Chapter 6, the project outcomes are summarised, and directions for future research in the 

field of naturalistic driving behaviour studies are proposed.  
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1.8 Research contributions  

The project’s initiative and approach, including the results of the pilot study “Effects of driving 

behaviour on fuel consumption” were published in the fifth volume of the Driver behaviour 

and training in 2012. The paper “Identifying Collision-Prone Locations on Commuting Routes 

Toward the Workplace and Forecasting their Future Trend” was presented in November 2015 

at the 4th International Traffic Accident Conference, Tehran, Iran. Following are a list of papers 

that will be published this year: 

1.  “Establishing the association between collision-prone locations and places where drivers 

often made harsh accelerations and decelerations” will be submitted to the Accident 

Analysis & Prevention 

2. The study that classified drivers by their vehicle speed will be submitted to the SAE 

International Journal of Transportation Safety. 

3. Two studies conducted by modelling driver performance with Carmaker software will be 

jointly published at the Proceedings of the Institution of Mechanical Engineers, Part D: 

Journal of Automobile Engineering.  

 

The researcher continues to maintain the Eco Safe Driving Challenge website as a platform for 

publishing results to non-academic readers. Since completion of the project; the web page has 

been transformed into an educational hub providing news regarding issues relating to the 

subject matter of thesis. 



 

Chapter 2 

Literature Review 

 

“Measure what is measurable, and make measurable what is not so.”  

– Galileo Galilei 

 

 

2.1 Introduction to the importance of reducing transport emissions  

As has been discussed in the previous chapter, the inefficient usage of fuel by UK car drivers 

has become one of the most influential factors affecting the level of cars’ CO2 emissions 

contributed by the transport sector in the country. In recent years, cars have had a remarkable 

reduction in fuel usage and GHG emissions due to efficient engine designs, well-designed 

aerodynamics body shapes, and improvements in catalyst technology (De Vlieger, De 

Keukeleere and Kretzschmar, 2000). Whilst in modern vehicles with Internal-Combustion 

engines (IC) the three-way catalytic converter (TWC)11 is designed to operate within a 

tolerance of temperature and air/fuel ratio. However, under certain conditions, such as cold 

start and high engine load, the catalytic converter can underperform and as a result, vehicles’ 

level of GHG emissions can increase (Yamada, Kayano and Funabiki, 1993; De Vlieger, 1997; 

De Vlieger, De Keukeleere and Kretzschmar, 2000). Operating a vehicle under these conditions 

depends on factors, such as initial idle time when starting the vehicle, ambient air temperature, 

                                                
11 A common device used by car manufactures to convert carbon monoxide (CO), oxides of nitrogen (NOx), and 
hydrocarbons (HC) into carbon dioxide (CO2), water (H2O) and nitrogen (N2). 
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and time between trips, which can increase the cold start effect (May, Bosteels and Favre, 2014; 

Wyatt, Li and Tate, 2014). 

 

 A high engine load effect occurs owing to a combination of high speeds, high acceleration 

rates and a positive road gradient along with secondary ones, such as operating the air 

conditioning, e.g. driving uphill with the air conditioning on. Drivers’ driving habits have a 

direct effect on operating a vehicle under these conditions and as a result, they increase vehicle 

exhaust contributions to GHG emissions (Wyatt, Li and Tate, 2014; Fontaras, Zacharof and 

Ciuffo, 2017) .  

 

One of the ways to increase drivers’ awareness of their level of CO2 contribution is by including 

vehicle tailpipe CO2 emission levels on the vehicle excise duty, commonly known in the UK 

as road tax. From March 2001 onwards, every car producing carbon dioxide emissions and 

registered was obliged to pay road tax based on the level of g/km of carbon dioxide emissions 

it produced. Table 4 presents part of the list of the UK Vehicle Excise Duty rates for cars 

registered after 1st March 2001. The price for newly registered cars is aligned with current EU 

CO2 emissions targets.  

Table 4. Current rates of road tax in the UK for cars registered after 1st March 200112 

Band Vehicle 
CO2 emissions 

Standard rate 
2016-2017 

First-year rate 
2016-2017 

A Up to 100 g/km £0 £0 

B 101-110 g/km £20 £0 

C 111-120 g/km £30 £0 

D 121-130 g/km £110 £0 

                                                
12 For full list and data source visit: https://www.gov.uk/vehicle-tax-rate-tables/rates-for-cars-registered-on-or-
after-1-march-2001 
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Band Vehicle 
CO2 emissions 

Standard rate 
2016-2017 

First-year rate 
2016-2017 

E 131-140 g/km £130 £130 

F 141-150 g/km £145 £145 

G 151-165 g/km £185 £185 

H  166-175 g/km £210 £300 

I  176-185 g/km £230 £355 
 

The allowed level of tailpipe CO2 emissions and vehicle fuel economy is regulated and 

measured by environmental agencies globally. By testing vehicles under regulatory driving 

cycles, the standards determine the accepted level of fuel consumption and carbon dioxide 

emissions of new cars sold in the EU and the European Economic Area (EEA). These 

laboratory-based vehicle emission tests are conducted under standardised conditions to provide 

a common basis so as to be able to compare the CO2 emissions and vehicle fuel economy of 

vehicles (International Energy Agency, 2012; Olivier, Muntean and Peters, 2015). 

 

Driving cycles are standardised driving patterns, which are defined by velocity against time 

tables. There are three globally well-known driving cycles: the European driving cycles, the 

US driving cycles, and the Japanese driving cycles. The EU and Japanese driving cycles are 

modal ones, which means that for some parts of the driving cycle the speed is constant, while 

the US driving cycles are transient ones, which involve a continuous change of driving speed 

(Joumard et al., 2000; Li et al., 2007; Barlow et al., 2009; Fontaras et al., 2014). The vehicle 

acceleration is assumed to be constant during these driving cycles. Over time, new additions 

have been introduced to include suburban13 driving into test cycles. In the EU, these regulatory 

tests are called Euro cycles. Each successive Euro standard has been aimed at tightening the 

                                                
13 Suburban or Extra-Urban Driving Cycle (EUDC). 
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allowed level of accepted CO2 emissions and fuel consumption when the vehicle is tested under 

a standard driving cycle. Table 5 shows the milestones of Euro emission standards and driving 

cycles (International Energy Agency, 2012; Delphi, 2013). 

Table 5. The EU passenger car vehicle emission standards and driving test cycles 

Euro 1 Euro 2 Euro 3 Euro 4 Euro 5a Euro 5b Euro 6b Euro 6c 

Urban + Extra-Urban Revised urban + Extra-Urban WLTC14 
+ RDE 

 

Source: (International Energy Agency, 2012; Delphi, 2013) 

The New European Driving Cycle (NEDC) is the current one used as part of the Euro 6b 

standard. The NEDC pertains to a combination of urban and extra-urban driving conditions. 

The following references provide details about the US, Japanese and European driving cycles 

(Barlow et al., 2009; International Energy Agency, 2012; Delphi, 2013; Fontaras et al., 2014). 

 

  

                                                
14 Worldwide Light Duty Test Cycle (WLTC). 



Chapter 2 – Literature Review 

 63 

2.2 Shortfalls in the fuel consumption and CO2 measurements of 

driving cycles  

The main deficit of all driving cycles and laboratory-based fuel consumption and emission 

measurements is that they are not representative of real-world driving. The issue of lack of 

representation of real-world emissions has been a point of criticism of the modal driving cycles. 

The first modal urban driving cycle, UDC, was introduced in 1970 as part of international 

efforts to reduce CO2 emissions globally. In 1973, Kruse and Huls pointed out the fact that if 

the aim of using driving cycles is to measure emissions of real-world traffic conditions, then 

cycles failed to represent the dynamic conditions of real-world driving (Kruse and Huls, 1973). 

A random roadside survey conducted in 1985, 1987, and 1989 in California, US, was a 

confirmation that driving cycles were not representative of present real-world driving 

conditions (Ashbaugh and Lawson, 1991). The shortfall inaccurate representation of real-world 

driving by driving cycles led to studies on measuring real-world emissions by using on-board 

emission instrumentation (Kelly and Groblicki, 1993). Specifically, the necessity to measure 

vehicle emissions while driving resulted in the development of portable on-road emission and 

energy measurement devices, which today are called the Portable Emissions Measurement 

Systems (PEMS). The Flemish Institute for Technological Research (VITO) on-board system15 

was an early attempt to capture the effect of real-world traffic conditions of fuel usage and CO2 

emissions levels by taking tailpipe samples of real-world driving (De Vlieger, 1997).  

 

  

                                                
15 VOEM: VITO on-the-road emission and energy measurement system. 
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2.3 Representation of real-world driving conditions in vehicle testing  

As explained at the beginning of this chapter, modern cars fitted with three-way catalyst (TWC) 

devices give less GHG emissions. However, their efficient performance can only be achieved 

under an ideal minimum theoretical air/fuel ratio. This also known as stoichiometric 

combustion16 is achievable under laboratory conditions for which all regulatory driving cycles 

are designed to perform. New cars performed increasingly well under regulatory driving cycles 

since they were designed to operate under stoichiometric conditions during tests in labs. Under 

real-world driving conditions, TWC did not always perform well, e.g. the vehicle operated 

under a cold start situation or had a high engine load. Consequently, initial attempts to mimic 

real-world driving conditions in laboratory tests had to take the poor performance of TWCs 

into account. Over time, other parameters such as road gradient, drivers’ driving behaviours 

and traffic condition, which could not be accurately simulated, gained more attention, and 

hence are included in the test procedure.  

 

The importance of identifying influential factors that affect fuel consumption in real-world 

conditions, and measuring their impact, led to their being investigated according to two test 

scenarios, real road driving and on a laboratory test bed, i.e. chassis dynamometer. Road based 

studies were focused on external factors affecting vehicle emissions, whilst also investigating 

topics such as traffic management and road safety. Whilst laboratory tests were aimed at 

identifying factors affecting inaccuracy in chassis dynamometers and developing methods to 

closing the gap between laboratory fuel consumption test results and real-world fuel usage 

(Kelly and Groblicki, 1993; Burke, Brace and Moffa, 2009; Berry, 2010).  

                                                
16 The stoichiometric combustion is the ideal combustion process where all oxygen is used and all fuel burned.  
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Since the objective was comparing the road results with chassis dynamometer ones and 

adjusting the lab fuel consumption outcomes to reflect the conditions on the road (usually in 

the form of correction factors), the effect of driving behaviour and road gradient became an 

important part of these improvements. These studies led to an accurate measurement of fuel 

consumption by adjusting the test results to match real-world driving (see section 2.5). The 

aforementioned studies  on the previous page provided the basis for the development of driving 

models as well as the introduction of driving cycles with a better representation of such driving 

(Tutuianu et al., 2013; Fontaras et al., 2014). Influential advances go back to early 1970s with 

pioneers such as Kruse and Huls (Kruse and Huls, 1973), were brought about through 

technological evolution, such as fuel efficient vehicles, accurate measuring and testing devices 

all driven by revolutionary progress in computing and post-processing software packages. In 

the following subsections, the milestones of these studies and developments are discussed with 

a primary focus on road vehicle studies.  
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2.4 Chronological and technological review of studies investigating 

the role of drivers  

The significant result of an experimental study on the effect of drivers’ differences in fuel 

consumption by Evans (1979), led to research being conducted to investigate the role of drivers 

on fuel consumption. The study concluded that experienced drivers can save more fuel without 

increasing their trip time by anticipating the road ahead and by adjusting their speed in 

accordance with any approaching road setting, such as a set of traffic lights (Evans, 1979). 

Waters and Laker’s (1980) report from the Transport and Road Research Laboratory (TRRL), 

currently known as the Transport Research Laboratory (TRL) , emphasised that conservation 

of fuel usage can be done by addressing the following major factors (Waters and Laker, 1980): 

• Driver driving performance; 

• Vehicle design; 

• Road gradient; 

• Traffic flow. 

They conducted a road study involving nine drivers with each completing 10 traffic driving 

laps. The report suggested that the least and most fuel efficient drivers had up to 50 percent 

difference in fuel usage. As part of their study, Waters and Laker (1980) investigated the effect 

of acceleration rate and poor speed control on fuel consumption and found that by educating 

the driver about his /her role on fuel usage, it is possible to save of up to 15 percent fuel usage. 

The study also addressed the effect of changing the aerodynamic drag coefficient and final 

drive ratio of a vehicle on fuel consumption (ibid). Since instantaneous fuel consumption 

measurements were not accessible at the time, an indirect measurement would be used, such as 

the Clarkson estimation model for fuel usage (Clarkson and Hicks, 1982), called the average 

speed fuel consumption model, shown as Equation 1 below. Despite Clarkson and Hicks’ 
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(1982) model being developed under the specific condition of the average fuel consumption of 

a passenger car at 30 km/h, in having formulated a fuel consumption model linked to vehicle 

speed, this meant that a distinction could be made between two drivers and as a result, the more 

efficient driver could be identified (ibid). This concept was deployed in a study by the Swedish 

Road and Traffic Research Institute (VTI) on the impact of various driving styles on fuel 

consumption and established the concept of economical driving (eco driving) to save fuel and 

fuel cost (Laurell, 1985). To this day, the concept of eco-driving is still relevant and 

consequently, is widely discussed (Mensing et al., 2014; Ayyildiz et al., 2017).  

Equation 1. The average fuel consumption model (Clarkson and Hicks, 1982) 

!" = 16.57×*"×+,-×exp	(0.0195. +)  

Where, 

 !"= The average fuel consumption rate for a passenger car (litres/100km) 

*"= The average fuel consumption of passenger car at 30 km/h 

+ = Average speed (Km/h) 

 

The aim of using the above equation was to compare the influences of drivers’ driving speed 

on fuel consumption. At the time, comparisons were mostly focused on understanding the 

impact of the driver on fuel consumption. Notably, a study by Redsell et al. (1988) achieved 

this by conducting a field study using different vehicles and fuel types. The outcomes of the 

study of three Vauxhall Cavalier cars with different engine sizes and fuel types suggested that 

depending on traffic conditions, a 1600 cc diesel car could save between 4% to 20% of fuel 

when compared to a petrol car with a 1300 cc engine capacity (Redsell, Lucas and Ashford, 

1988). The authors concluded that out of seven different drivers the best performance was 
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achieved by the professionally trained driver in urban conditions with the diesel version of the 

car model. It was reported that when compared to regular drivers, the professional drivers, on 

average, has 6% less speed, 9% less vehicle acceleration and 14% less vehicle deceleration. 

According to Redsell et al. (1988), these differences meant that adopting this style of driving 

and operating a car in a moderate manner could significantly reduce running costs for motorists 

as well as potentially lead to a saving of up to 9% in fuel consumption.   

 

By 1989, a large number of petrol-driven vehicles were equipped with an electrical fuel 

injection system, and therefore, it became possible for researchers to investigate instantaneous 

fuel consumption accurately. From the 1990s onwards the positive effect of the aforementioned 

three-way catalyst could be measured with increasing accuracy, as well as the actual effect of 

factors that increased the amount of fuel consumption and vehicle emissions. This was due to 

the advancements made in the portable emissions measurement system (PEMS) by the Warren 

Spring Laboratory in the UK (Potter and Savage, 1982), the VOEM by the Flemish Institute 

for Technological Research (Van Mierlo et al., 2004), the Portable Real-Time Emissions 

Vehicle Integrated Engineering Workstation (PREVIEW) developed by Ford and the US 

Environmental Protection Agency on-board and on-road High Precision Remote Sensing 

devices (Jiménez-Palacios, 1999)17. Because real-world driving conditions are not repeatable 

and well-defined, studies with portable emission data acquisitions systems have tended to focus 

on the design of the study, the demography of the drivers, vehicle types and the topography of 

the road (Wyatt, Li and Tate, 2013).  

 

                                                
17 Exhaust emissions scanning device that is placed near the road to collect exhaust gas levels.  
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A comprehensive study by the US Environmental Protection Agency in 1993, compared the 

effect of drivers’ operating a vehicle under a high engine load and concluded that the primary 

indicators for identifying and measuring the effect of real-world driving is by comparing 

drivers’ vehicle speed and acceleration (US Environmental Protection Agency, 1993). The 

secondary factors that were identified by the report were vehicle type and age, travel duration, 

time of day as well day of the week, and trip patterns (trip lengths) (US Environmental 

Protection Agency, 1993). The EPA’s introduced the concept of “specific power” to compare 

drivers’ excessive usage of available vehicle power above that required. The EPA’s specific 

power value is developed based on the Watson Positive kinetic energy model (Alimoradian, 

1983), defined as the square change of speed during positive acceleration. The value later 

became an indicator of a driver’s aggressiveness. According to the EPA, the following equation 

can be used to calculate specific power:  

Equation 2. The specific power according to the EPA (US Environmental Protection Agency, 
1993) 

678	9:;<=>=<	:?@;A = B>C − B=C ≈ C×B×F	 

Where,  

G = Vehicle speed and GH > GJ 

K = Vehicle acceleration  

 

A study in 1993 by Kelly and Groblicki, compared real-world driving data with chassis 

dynamometer driving data. They concluded that calibrating a portable device in certain ways 

(based on different calibration gases) led to very different emissions levels for the same car. 

The researchers found that events, such as hard acceleration while entering freeways or 

ascending hills, can result in ineffective catalyst performances and therefore, higher CO2 

emission levels when compared to laboratory results (Kelly and Groblicki, 1993). Research 
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into determining the factors affecting fuel consumption in 1993 was a critical study since by 

on-road measurement of driving parameters; the authors were able to quantify the factors 

influencing fuel economy under different road types, driving conditions and fuel types (Kelly 

and Groblicki, 1993).  

 

De Vlieger’s (1997) study for the Flemish Institute for Technological Research focused on the 

advantages of cars with three-way catalysts installed. The findings of a study elicited that cars 

with a three-way catalyst had 70% lower generation of GHG emissions when compared to non-

catalyst ones (De Vlieger, 1997). The researcher made a comparison between normal driving 

and aggressive driving and concluded that the former produced four times more emission gases 

(De Vlieger, 1997). While An and his team’s (An et al., 1997), study involved comparing the 

emissions of 300 vehicles in a laboratory, where they developed a predictive tailpipe emissions 

model for a variety of driving conditions. Other researchers focused on defining aggressive 

driving and its effect on fuel consumption and emissions (Martens et al., 1998; Johansson, 

Färnlund and Engström, 1999). The highly cited work of (Jiménez-Palacios, 1999), who 

introduced the Vehicle Specific Power (VSP) concept and were able to quantify vehicle 

emission under different conditions, provided the basis for a broad range of new research and 

emissions software development18 (software such as US EPA Motor Emission Simulator 

software). The emissions model concept was simplified by (Hual et al., 2005; Zhai, 2007) into 

its current format (see Figure 16 and Equation 3).  

                                                
18 Motor Vehicle and Equipment Emission System software (MOVES). 
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Figure 16. Demonstration of forces applied to a moving car (Jiménez et al., 1999) 

 

Jiménez-Palacios (1999) formulated the impact of road gradient, aerodynamic drag, rolling 

resistance and other forces (see Equation 3) in order to calculate the true required power by a 

vehicle based on its mass. The advantage of VSP over the other aforementioned methods is 

that it provides a one-dimensional value, which depends on the level of emissions. Using VSP 

makes comaprison of different driving tests easier as it is already includess the imapct of 

parameters such as each cars aerodynamic drag coefficient and road gradient (Jiménez-

Palacios, 1999).  

Equation 3. The Vehicle Specific Power by (Jiménez-Palacios, 1999; Hual et al., 2005; Zhai, 
2007) 

+LℎNOPL	QRLONSNO	*TULV	 +Q* =
*TULV	
WKXX =

Y
YZ [\ + *\ + _̂`aaJbc. G + d̂e_`fgbh"Ji. G

j,

= 	
Y
YZ

1
2jG

m + jnℎ + opjn. G +
1
2qhors G + Gt m. G
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= G. K. 1 + uJ + n. nVKYL + n. op +
1
2qh

ors
j G + Gt m. G

≅ 	G	×	(K	 + 	n	×	XNw(x) 	+ y	) 	+ 	z	×	G{ 

Where,  

VSP = Vehicle Specific Power (| [n = jm X{) 

 G = Vehicle speed (j X) 
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K = Vehicle acceleration (j Xm) 

x = Road gradient  

y = Rolling resistance coefficient  

z = Drag coefficient (j,-) 

j= Vehicle mass 

}VKYL= Length of road vertical rise  

op= Coefficient of rolling resistance 

or= Drag coefficient 

s= Fontal area of the vehicle 

qh= Ambient air density 

Gt= Headwind into the vehicle 

uJ= Gear dependent “translational mass of the rotating components”, mass factor  

 

While in the US, eco-driving training had been introduced by 1970, the concept of eco-driving 

only emerged in 1998 in the EU as part of driving training courses (Bandivadekar, 2008). The 

term eco-driving refers to fuel-efficient driving that has environmental and financial benefits 

in the long-term by saving fuel and having less maintenance costs. The study of the effect of 

eco-driving on fuel consumption in comparison with normal driving, as conducted by 

Johansson, has been influential as it shows that drivers who receive eco-driving training are 

able to achieve a 10% reduction in fuel consumption (Johansson, Färnlund and Engström, 

1999). Through conducting a road test with real-world traffic congestion, several research 
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groups investigated the effect of traffic flow on fuel consumption (De Vlieger, De Keukeleere 

and Kretzschmar, 2000; Rapone et al., 2000). Regarding which, De Vlieger’s (De Vlieger, De 

Keukeleere and Kretzschmar, 2000) medium-size study of five diesel cars and four petrol cars 

on city, rural and ring roads was not able to establish a significant correlation between traffic 

jams and fuel consumption. However, it did confirm that aggressive driving increases fuel 

consumption by 40% (De Vlieger, De Keukeleere and Kretzschmar, 2000).  

 

The concept of On-board diagnostics (OBD), and giving the owner access to the vehicle ECU 

and subsystem was introduced by Volkswagen first in the form of its scannable on-board 

computer system in 1968, and since then advancements have been made by car manufacturers 

in their own in-house versions of such a system. By 1988, the Society of Automotive Engineers 

(SAE) recommended car makers standardise their connector (connection port) and diagnostic 

test signals. The OBD-I standard in 1991 was the basis of a mandatory OBDII standard 

specification in 1996 for every passenger car manufactured in the US (Greening, 1992). The 

EOBD,19 the European version of the OBDII standard, became mandatory for every new petrol 

car with less than 8 passenger seats in 2000. Apart from the primary function and application 

of accessing the ECU via OBD ports and OBDII protocol, which involves scanning engine 

faults and logging driving data while driving, accessing engine information in this way gained 

more attention. The OBD dongles became affordable tools to collect large scale driving data, 

and to conduct emission tests20. Moreover, data collected in this way could be used to monitor 

fleet drivers’ fuel consumption and driving behaviour. 

 

                                                
19 European On Board Diagnostics (EOBD). 
20 For instance, currently it is mandatory in the Netherlands to have an EOBD test annually. In some states of the 
US it is permitted to do an emissions test with an OBD dongle instead of the tailpipe emissions test.  
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Coincidentally, with a very similar timeline, the U.S. global positioning system policy in 1996, 

opened public access. The policy then later expanded in 1998 to provide enhanced GPS data 

to civilian users worldwide. By 2000, the U.S. had lifted all degrading21 on GPS signals, which 

meant an increase in accuracy 10 times more than what was available before the 1st May 2000. 

The importance of this development was that it led to new era of advancement in mobility and 

transportation, in general, examples of which can be found in McNally et al.’s comprehensive 

study on using in-vehicle and GPS technology for transport and traffic management studies 

(McNally et al., 2003). More importantly, having access to position data and driving data 

simultaneously, led to a paradigm shift in how driving behaviour is studied. Given the change 

in relation to how experiments conducted (using new devices), there was great level of concern 

about driver’s privacy and monitoring individual driving behaviour. As early as 2002, 

telematics technology was adopted to monitor and track drivers, thus raising the issue of 

privacy and personal data needing to be addressed by industry. The highly cited work of Duri 

et al. (2002) introduced a detailed framework to address security and privacy concerns related 

to automotive telematics data  (Duri et al., 2002). 

 

Having access to instantaneous fuel consumption through the ECU with OBD loggers, and 

vehicle location by GPS sensor, provided the opportunity for on-road vehicle real fuel 

consumption testing and the development of an eco-driving advisory tool for drivers while 

driving (Frey et al., 2001; Van der Voort, Dougherty and van Maarseveen, 2001; Unal, 2002). 

The fuel-efficiency advisory tool by Van der Voort helped drivers to achieve a 16% reduction 

in fuel consumption compared to their normal driving style (Van der Voort, Dougherty and van 

Maarseveen, 2001). As has been mentioned before, De Vlieger et al. (De Vlieger, De 

                                                
21 Selective Availability (SA). 
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Keukeleere and Kretzschmar, 2000) were not able to find a significant correlation between 

traffic conditions and fuel consumption. However, the study by Frey et al. (Frey et al., 2001) 

and later by Frey et al. (2001) showed a reduction in vehicle emissions through better traffic 

management (Frey et al., 2001; Unal, 2002).  

  

Between 2002 and 2003, an experimental study conducted in South Korea was very influential 

in relation to using in-vehicle monitoring technologies to identify driving patterns affecting 

fuel consumption. The team managed to collect 1,300 kilometres of driving data and as a result, 

they were able to measure, firstly, the percentage of time drivers spent in each driving mode22 

and secondly, they quantified the effect of average speed on fuel consumption (Sa, Chung and 

Sunwoo, 2003). Estimating the amount of time drivers drive in each driving mode provided the 

basis for a predictive fuel consumption model based on the modes. The driving mode 

consumption model helps to estimate the amount of fuel consumed per vehicle in different 

traffic conditions, but it ignores how a driver’s behaviour impacts on fuel consumption in each 

driving mode (Equation 4). In addition, the model provided the basis for more complex 

predictive fuel consumption models (Ardekani, Hauer and Jamei, 2001; Montazeri-Gh and 

Naghizadeh, 2003; Saffarzadeh and Arjroody, 2003; Akçelk, Smit and Besley, 2012; Mathew, 

2014).  

Equation 4. The drive mode fuel consumption model 

}	 = 	S-~	 +	Sm�	 +	S{Q 

Where,  

 }= Amount of fuel consumed per vehicle (Litres/vehicle-km) 

                                                
22 Driving modes are: idle, accelerating, decelerating, and cruising. 
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 ~= Total measured travel distance  

 �= Total idle time (stopped delayed) 

Q= Total number of stops  

S-= Fuel consumed while cruising 

Sm= Fuel consumed while idling  

S{= Excess fuel consumption while accelerating and decelerating  

 

2003 was also a significant year, as Progressive Insurance in the US launched its first Pay-As-

You-Drive insurance. Even though the trial was not a very successful, it did provide the basis 

for the more successful telematics based motor insurance policies currently on offer by 

Progressive. 

 

Owing to the gap between cars’ fuel consumption on roads and in laboratories,  as part of a 

project, the World Business Council for Sustainable Development (WBCSD), the Sustainable 

Mobility Project (SMP) and the International Energy Agency (IEA) worked together to address 

the shortfall between vehicles’ fuel economy labels and on-road fuel consumption, known as 

the “on-road gap”, by developing reference cases and an adjustment model23 for driving cycle 

results (Fulton and Eads, 2004). Moreover, the correction factors method was proposed by 

standard agencies (SAE J1349, DIN 70020 and ISO 1585) to adjust engine power output in 

relation to atmospheric conditions. Consequently, the engine power and fuel consumption 

amount was obtained in laboratory test cycle conditions (standard ambient conditions) matched 

                                                
23The global transport spreadsheet model (Fulton and Eads, 2004). 
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the road tests (Sodré and Soares, 2003). The Ford Scientific Research Laboratory attempted to 

improve emission inventory estimates by comparing on-board real-world driving emissions 

with laboratory test results and the outcomes of a virtual model simulation24 of traffic emissions 

(Nam et al., 2003). The study involved developing the EPA specific power (see Equation 2) 

into a complex metric for measuring drivers’ driving aggression. Nam argued that the 

aggressivity value can be used as an explanatory variable for emissions studies (Nam et al., 

2003). The work of (Jiménez-Palacios, 1999), (Nam et al., 2003; Nam, 2004) led to the 

development of the Physical Emission Rate Estimator by the EPA and the introduction of a 

comprehensive version of the Motor Vehicle Emissions Simulator (MOVES) (Nam, 2004). 

Equation 5. The metric introduced by the Ford Scientific Research Laboratory in 2003 to 
present drivers’ aggressive driving 

^TVY	snnVLXXNGNZÄ	GKPÅL = ÇWQ *	 =
1
É *Jm

Ñ

J

 

Where,  

*= \*s	XRLONSNO	RTULV ≈ 2×G×K 

É= Total number of positive vehicle acceleration profiles  

N= Individual vehicle acceleration profile  

 

While the MOVES simulator package provided the basis to estimate the effect of various real-

world driving conditions on vehicle emissions and fuel consumption in the US (Hual et al., 

2005), in the EU the development of vehicle simulation programme software25 led to in-depth 

                                                
24 The integrated model by combining the microscopic traffic model (VISSIM) and Comprehensive Modal 
Emissions Model (CMEM). 
25 Van Mierlo J.: Simulation software for comparison and design of electric, hybrid and internal combustion 
vehicles with respect to energy, emissions and performances", PhD dissertation, Vrije Universiteit Brussel, 2000.  
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analysis of the effect of vehicle weight, gear shift manner, tyre pressure and different driving 

styles conducted to establish the effect of driving behaviour and styles (eco-driving and 

sportive styles26) on fuel consumption (Van Mierlo et al., 2004). The Van Mierlo approach to 

simulating differences in driving behaviour took the speed profile of each driving style 

corresponding to every traffic setting from the field study and used them on a chassis 

dynamometer to measure the actual fuel consumption and emissions of corresponding driving 

behaviours (Van Mierlo et al., 2004).  

 

By 2005, advancements made in wireless and the cellular network combined with real-time 

spatial information provided by Global Positioning Systems (GPS) signified an opportunity to 

collect real-time information about drivers, vehicles and traffic conditions (Li et al., 2005; 

Tong, Merry and Coifman, 2005; Byon, Shalaby and Abdulhai, 2006; Hong et al., 2007; Zhai, 

2007). The in-vehicle tracking systems integrated with on-board engine monitoring (OBD 

dongles) changed scholars’ approach to studying the real-world driving factors affecting fuel 

consumption and vehicle emissions. Work conducted by Alessandrini in 2006, is an example 

of using OBD dongles and a GPS sensor to capture the effect of everyday driving behaviour 

on the environment. The study concluded that drivers who accelerate calmly kept the air /fuel 

ratio around a stoichiometric value, while aggressive usage of the acceleration pedal resulted 

in higher fuel consumption (Alessandrini et al., 2006) .  

 

The most significant milestone in the field of driving behaviour studies and using in-vehicle 

monitoring devices on a large scale27 was the 100-Car Naturalistic Driving Study. The project 

                                                
26 Classified according to (Van Mierlo et al., 2004) study.  
27 The project scope in terms of numbers: 100 cars, 241 primary and secondary drivers, 43,000 hours of worth of 
driving data, 12 to 13 months data collection period for each vehicle (Dingus et al., 2006). 
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was conducted by the Virginia Tech Transportation Institute and sponsored by the US National 

Highway Traffic Safety Administration (NHTSA) in 2006. Whilst the aim was to learn about 

drivers’ behaviour and events before the occurrence of collisions, the usage of in-vehicle 

monitoring devices (OBD dongle, GPS sensors, facing in and out camera recorders) on a large 

scale initiated the basis to observe drivers in their daily driving settings unobtrusively, and as 

such, initiated the field of the naturalistic driving behaviour study (Dingus et al., 2006). The 

100-Car study was important for guiding the current research in terms of the methods used, 

regarding both the eco-driving and safe driving investigations (see 2.10). 

 

While collecting real-world driving data became accessible and useful for understanding 

drivers’ driving behaviour, measuring the effect of driver driving differences required 

laboratory-based tests, i.e. a chassis dynamometer. As part of the Competitive and Sustainable 

Growth Programme of the fifth framework programme of the European Commission, efforts 

were made by members of the DECADE project and a team from the former French National 

Institute for Transport and Safety Research (INRETS28) to reduce the gap between test bench 

and actual fuel consumption on the road (Joumard et al., 2006; Pelkmans and Debal, 2006), 

i.e. the “on-road gap”. Joumard and his team addressed the key issues of the Artemis project 

"Assessment and Reliability of Transport Emission Models and Inventory Systems", which 

were to reduce the systematic errors between laboratories’ emission results and the necessity 

of quantifying the impacts of factors affecting fuel consumption (Joumard et al., 2006). The 

Artemis Driving Cycles (ADC) were developed from the European driving database obtained 

from private cars in France, the UK, Germany and Greece. The vehicle speed, acceleration, 

                                                
28 Institut national de recherche sur les transports et leur sécurité (INRETS). 
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engine speed and trip information of 77 cars were recorded by in-vehicle monitoring devices29 

(Joumard et al., 2006). The Artemis Driving Cycles aimed to represent European driving 

behaviour patterns on urban, rural and motorway roads by including various increases and 

decreases in vehicle speed and gear shifting strategy (Joumard et al., 2000, 2006; Barlow et 

al., 2009).  

 

Parallel to those aforementioned studies that focused on impact of driving and engine 

components on fuel consumption; a study conducted by the International Energy Agency to 

recommend policies on potential savings to be made on fuel consumption from non-engine 

components, emphasised the impact of elements, such as tyres (20% fuel energy to overcome 

rolling resistance of tyres), cooling technology (between 15% and 30% of fuel usage) and 

lighting (consumes up to 32% of vehicle energy), on fuel consumption. The researchers also 

raised the matters of drivers operating the car in a responsible manner as well as the impact of 

educating drivers about eco-driving skills (Onoda and Gueret, 2007). 

 

As part of efforts to quantify the impact of eco-driving training on reducing fuel usage, Af 

Wåhlberg investigated both the short-term and long-term effects of economical (efficient) 

driving on fuel consumption, accident involvement and changes in driver accelerating habits 

(Wåhlberg, 2006, 2007). The author discovered that whilst the effect of training about fuel 

consumption had always been reported as significant immediately after training, over a period 

of 12 months, only 2% reduction in fuel usage was recorded by drivers (Wåhlberg, 2007). Reed 

also came to similar conclusions when assessing the impact of fuel efficiency training on the 

                                                
29 The project scope in terms of numbers: 77 cars, 2200 hours of worth of driving data and a 2 years data collection 
period. 
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total fuel consumption of fleet drivers (Reed, 2007). The comprehensive project on “assessing 

fuel-efficient driver behaviour through tachograph information” conducted by the TRL 

explored the impact of driving styles on fuel consumption by using a vehicle driving simulator 

under five sets of experiments (Reed, 2007), the key results of which were as follows. Firstly, 

99% of the variation in fuel consumption can be explained by a change in accelerating 

behaviour. Secondly, despite the fact that the participants drove on different routes (on the 

simulator), the correlation between acceleration and fuel usage remained a significant indicator 

as to who was the most fuel efficient. Finally, Reed ascertained that the standard deviation 

value of the vehicle acceleration can be used to identify fuel efficient drivers, regardless of 

their vehicle type and load (Reed, 2007). 

 

Probing drivers’ influences on fuel usage, a PEMS based study by Frey et al. (Frey, Zhang and 

Rouphail, 2008) investigated the impact of driver, road gradient and time of day on fuel 

consumption. The authors elicited that different drivers had different driving speed profiles for 

the same route and as a result, their average emissions differed by 4 to 5% for CO2, 9 to 11% 

for HC, 16 to 18% for NOx, and 102 to 114% for CO, when the result was stratified by vehicle 

type, route and travel direction, and time of day (Frey, Zhang and Rouphail, 2008). Felstead et 

al. (Felstead, McDonald and Fowkes, 2009) conducted a similar study with the aim of 

classifying drivers’ driving profiles by comparing driving data collected in a field study and 

from a chassis dynamometer. They identified two driving profiles: aggressive driving and 

passive driving. During data collection, the following instructions were given to drivers for 

each driving profile: for aggressive driving, they were told to undertake harsh acceleration and 

deceleration, keeping pace with the car in front at a safe distance; and for passive driving, they 

were asked to accelerate and decelerate with moderation, following the speed limit at all times. 

The results showed that aggressive driving was identifiable when comparing drivers’ 
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instantaneous acceleration. Moreover, aggressive drivers spent more time operating their 

vehicle in an inefficient part of the engine consumption map30 (Felstead, McDonald and 

Fowkes, 2009).  

Table 6. A summary of Felstead et al.’s (2009) study on the effect of driving style on emissions  

Parameters Passive Aggressive NEDC WSL31 

Duration (s) 2110 1799 1185 3977 

Average speed (km/h) 32.97 38.81 33.2 38.28 

Maximum speed (km/h) 79/69 116.81 120 118.59 

Idle period (s), % 372, 17.6% 316, 17.6% 298, 25.1% 654, 16.4% 

Acceleration standard deviation (m/s) 0.4463 1.007 0.4243 0.5252 

Average acceleration (m/s2) 0.2751 0.8052 0.5412 0.4277 

Average deceleration (m/s2) -0.3251 -0.6685 -0.7885 -0.4141 

Source: (Felstead, McDonald and Fowkes, 2009) 

 

The concept of the “Pedal Busyness” was introduced by Burke (Burke, Brace and Moffa, 2009) 

as one of the test factors32 in chassis dynamometer testing that can affect the accuracy and 

repeatability of fuel consumption measurement. The pedal busyness or oscillatory behaviour 

of the acceleration pedal exhibited by drivers in laboratory testing led to studies, such as those 

by (Bonnington, 2009; Daniel, Brooks and Pates, 2009), which investigated the pedal busyness 

value of data collected from real-world driving. The MAHLE Powertrain Ltd research 

outcomes, using the OBD monitoring device to monitor the driving styles of fleet drivers in the 

                                                
30 The brake specific fuel consumption (BSFC) map is the contour plot to show where engine operates efficiently 
(Goering and Cho, 1988).  
31 UK Department for Transport (DfT), Warren Spring Laboratory driving cycle representing real-world driving.  
32 Other factors investigated by Burke were: Battery discharge (V), Engine start temperature, Engine oil level, 
Pedal busyness, Speed error, Road speed fan, Vehicle alignment, Tie-down straps, Tyre type, Tyre pressure, 
Vehicle mass, and PAS pump (Burke, Brace and Moffa, 2009).  
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US and the UK, led to the terming of a new metric called “Total Aggressivity”33 (Daniel, 

Brooks and Pates, 2009). The proposed metric (Equation 6) combined the concept of pedal 

busyness, i.e. pedal aggressivity (Daniel, Brooks and Pates, 2009), with the Ford aggressivity 

value (See Equation 5).  

Equation 6. The MAHLE Powertrain Total Aggressivity value (Daniel, Brooks and Pates, 2009) 

WsÖ~\	*TULVZVKNw	ÜTZKP	snnVLXXNGNZÄ

= ^TVY	snnVLXXNGNZÄ	GKPÅL× *LYKP	snnVLXXNGNZÄá  

Where, 

^TVY	snnVLXXNGNZÄ	GKPÅL = ÇWQ *	 =
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!= 2×RLYKP×RLYKP/X 

É= Total number of positive pedal acceleration profiles 

N= Individual pedal acceleration profile 

RLYKP= Average pedal position for the current profile 

RLYKP/X= Individual profile pedal acceleration 

 

The study not only established the proposed metric as a significant identifier of drivers’ driving 

behaviour, but also compared the total aggressivity value of real-world driving data from the 

                                                
33 The unit for this metric is km/h.%/s1/4. 
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UK and the US against a number of driving cycles34. The results confirmed the lack of 

representation of real driving behaviours in the selected driving cycles.  

Table 7. A comparison between real-world driving and driving cycles maximum and mean 
values of total aggressivity metric  

 Total aggressivity maximum 
value  

Total aggressivity mean 
value 

UK real-world driving data 343.2 55.5 

US real-world driving data 332.4 47.1 

FTP-72 driving cycle 59.7 30 

LA9235 driving cycle 71.9 39.5 

NEDC driving cycle 41.8 19.9 

US06 driving cycle 153.5 52.5 

 Source: (Daniel, Brooks and Pates, 2009) 

 

Collecting real-world driving data led to studies with the aim of classifying and predicting 

drivers’ driving patterns. Dealing with a broad range of real-world driving data, chassis 

dynamometers test results and data generated by driving simulators required careful attention 

to the data management process of these studies. Research by Inata (2008) is an example of 

using a driving database to develop a driver model (Inata, Raksincharoensak and Nagai, 2008). 

Whilst the model concerned also involved adopting the approach of using of large-scale real-

world driving data to classify drivers, the primary aim was to provide personal assistance to 

drivers. A study by Amata and his team the following year was influential, as when classifying 

real-world driving, they concluded that there were significant differences between experienced 

and novice drivers in terms of pedal operation and fewer differences in relation steering wheel 

operation (Amata et al., 2009). Moreover, after using real-world driving data, they proposed 

                                                
34 For details of driving cycles see (Barlow et al., 2009). 
35 The California Unified Cycle. 



Chapter 2 – Literature Review 

 85 

two predictive models: firstly, a multiple linear regression analysis to predict driver 

manoeuvres, acceleration and deceleration behaviours and secondly, a Bayesian Network 

model, which predicts driver decelerating intentions. By using the driving simulator, the team 

validated their finding, with a 70% and 50% success rate for each model, respectively (Amata 

et al., 2009).  

 

The first telematics standard36 was released by the Association of Equipment Management 

Professionals (AEMP) in 2010. As a result of the AEMP efforts, end-users were able to interact 

with and integrate key telematics data into their existing fleet management systems. Moreover, 

as has been explained above, the on-board diagnostic protocol and OBD II standard has become 

mandatory for every passenger car globally since the early 2000s. As a result of advancements 

made in mobile and GPS technology, the application of using OBD dongles and GPS sensors 

received huge attention from fleet operators by 2006 and widely by motor insurers by 2010. 

Hence, various studies using these technologies emerged (Bandivadekar, 2008; Berry, 2010; 

LeBlanc, Sivak and Bogard, 2010; Van Schangen et al., 2011; Gonder, Earleywine and Sparks, 

2012; Duarte et al., 2015; Sentoff, Aultman-Hall and Holmén, 2015).  

 

LeBlanc et al.’s (LeBlanc, Sivak and Bogard, 2010) use of large-scale real-world data logged 

via an in-vehicle monitoring system and OBD dongles and the highly cited work of Berry 

(Berry, 2010) on the effect of drivers’ behaviour on the fuel consumption and performance of 

the US light-duty vehicles, established the effectiveness of this method in assessing the impact 

of drivers on fuel consumption. The study conducted by LeBlanc et al. investigated the assessed 

drivers’ variation in fuel usage as a function of speed and acceleration by using a vast amount 

                                                
36 The standard is currently called the AEM/AEMP Draft Telematics API Standard. 
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of naturalistic driving data37. The study outcomes are presented in the table below (LeBlanc, 

Sivak and Bogard, 2010).  

Table 8. The impact of speed and acceleration on fuel consumption  

Mode Acceleration 
(m/s2) 

Speed bins (km/h) All 
Speed <2.5 2.5 to 

3.0 
31 to 

60 
61 to 

90 
90 to 
120 

Over 
120 

Significant 
acceleration More than 1.05 0.1% 4.6% 5.2% 1.0% 0.2% 0.1% 11% 

Notable 
acceleration 0.55 to 1.05 0.1% 1.6% 4.0% 2.3% 0.8% 0.2% 9% 

Speed almost 
constant -0.55 to 0.55 5.7% 3.3% 10.1% 20.0% 27.9% 10.7% 78% 

Notable 
deceleration 

Less than  
-0.55 0.2% 1.3% 0.5% 0.1% 0.0% 0.0% 2% 

All modes 6% 11% 20% 23% 29% 11% 100% 

Source: (LeBlanc, Sivak and Bogard, 2010) 

 

The aim of the study conducted by Berry was to calculate and characterise driver 

aggressiveness using real-world driving parameters38. The authors proposed that the 

aggressiveness factor reflects driving behaviour, being positively correlated with fuel 

consumption and vehicle mass (Berry, 2010). 

 

Equation 7. Driver aggressiveness factor value based on wheel work and vehicle mass, (Berry, 
2010) 

äLVVÄ	KnnVLXXNGLwLXX	SKOZTV

=
|ℎLLP	|TVã − QZLKYÄ	XRLLY	UℎLLP	UTVã	KZ	KGLVKnL	XRLLY

+LℎNOPL	jKXX  

 

                                                
37 The project scope in terms of numbers: 117 cars, 342,941 kilometres (km) worth of driving data and there was 
a 36 to 42 days data collection period for 103 of these vehicles (LeBlanc, Sivak and Bogard, 2010). 
38 The project scope in terms of numbers: 15 cars and 12,620 kilometres (km) worth of driving data (Berry, 2010). 



Chapter 2 – Literature Review 

 87 

Where,  

|tåeea =
\
ç =

sG{ + äGm + oG +WKG YZ
GYZ

	 

ÇTKY	PTKY	RTULV = sG{ + äGm + oG 

 

In above equation, wheel work is the energy required at the vehicle wheels; the measure is 

always positive.  Moreover, to calculate the road load power of a vehicle, the A, B, and C 

coefficient values can be measured based on the “SAE J 1263: Road Load Measurement and 

Dynamometer Simulation Using Coast down Techniques” procedure. 

 

Another excellent example of using logged real-world driving data is work done by McGordon 

et al. (McGordon et al., 2011) to develop a driver model. The study involved using dongles to 

collect real-world data to draw up a controller model, which was subsequently employed to 

investigate the effect of driver behaviour on fuel usage. The authors argued that existing driver 

models, such as the decision-making process template (Kawashima, Kobayashi and Watanabe, 

2001) and manoeuvre-based driver models (Kiencke, Majjad and Kramer, 1999), are not 

designed to study the effect of individual driving behaviour on vehicle fuel consumption and 

emissions. They concluded that the proposed driver model combined with the vehicle emission 

model was able to produce a similar speed profile to real-world driving data (McGordon et al., 

2011). 

 

While affordable monitoring devices, i.e. the OBD dongle and the GPS sensor, became widely 

accessible and have been used to collect real-world driving data in the last five years (Berry, 
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2010; LeBlanc, Sivak and Bogard, 2010; McGordon et al., 2011; Van Schangen et al., 2011; 

Malek, Brace and Liu, 2012), studies that use PEMS devices have remained an important part 

of quantifying the impact of factors affecting fuel consumption (Bokare and Maurya, 2013; 

Wyatt, Li and Tate, 2013; Ma et al., 2014; Duarte et al., 2015). A study on the effect of drivers’ 

speeding and acceleration on vehicle emissions confirmed that whilst decelerating has such a 

subtle effect on tailpipe emission that it was hardly observed by the research team, speeding 

and acceleration have a high impact on emissions (Bokare and Maurya, 2013). These findings 

agreed with previous studies (De Vlieger, 1997; Frey et al., 2001; Unal, 2002; Joumard et al., 

2006).  

Table 9 The average tailpipe emission rate for different speed and acceleration ranges 

Tailpipe emissions  CO (%) HC (ppm) NOx (%) 

Acceleration a=1.0 
(m/s2) 

a=1.6 
(m/s2) 

a=.1.0 
(m/s2) 

a=1.6 
(m/s2) 

a=1.0 
(m/s2) 

a=1.6 
(m/s2) 

Sp
ee

d 
ra

ng
e 

(m
/s

) 

0-3 0.043 0.4 2.4 3.92 15.66 27.53 

3-8 0.006 0.008 1 1.06 2.00 2.46 

Above 8 0.29 0.865 5.29 10.49 31.08 44.77 

Source: (Bokare and Maurya, 2013) 

 

Since excessive speeding and acceleration increases fuel usage and driving emissions, 

classifying and modelling a driver’s behaviour by using real driving data or through a driving 

simulator has become of particular interest (Han, Yao and Liu, 2014; Jaramillo and Narvaez, 

2014; Ma et al., 2014). Research conducted by Ma et al. logged the driving data of city buses 

in China39 (Ma et al., 2014). The authors argued that since the accelerating process follows a 

logical operation (shifting to higher gear by order), it is possible to develop a driving 

                                                
39 The project scope in terms of numbers: 3 cars (city buses), 6 drivers, and 100,000 kilometres (km) worth of 
driving data.  
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classification model based on driver gear shifting and acceleration habits (pedal position). The 

pattern classification method chosen by them is the C4.5 decision tree, which works based on 

input parameters, such as duration of the accelerating process (s), final vehicle speed after 

accelerating (km/h), average depth of acceleration pedal during the gear shifting process from 

first to fourth gear (%), and vehicle velocity during each shifting of gear. The model has 85% 

accuracy in classifying drivers based on their accelerating habits, and it can be used to train 

drivers to become fuel efficient (Ma et al., 2014). Classifying real-world driving data by using 

pattern classification methods is not only used to detect abnormal driving behaviour, for it can 

also be utilised to detect engine faults and diagnose faults (Hasan et al., 2011) in vehicle 

electronic parts, such as those in the fuel injection system(Yong He and Lei Feng, no date), or 

an uncalibrated oxygen sensor (Jaramillo and Narvaez, 2014). Jaramillo and Narvaez used a 

fuzzy classifier called the Learning Algorithm for Multivariate Data Analysis (LAMDA), to 

develop a diagnosis system that is able to detect driving behaviour (by how a car is operated) 

and to identify faults in the vehicle (Jaramillo and Narvaez, 2014).  

 

The most recent approach to quantifying the effect of real-world driving on fuel consumption 

and vehicle emission is by integrating the effect of the road gradient and driving style. To 

accomplish this aim, the most relevant metric introduced in this subsection has been the Vehicle 

Specific Power (VSP), which presents a driver’s vehicle speed and acceleration as well as road 

gradient and vehicle aerodynamics properties (Jiménez-Palacios, 1999). Since the adverse 

effect of speeding and excessive accelerating on fuel usage was established, the effect of 

driving style and road topography has been investigated (Wyatt, Li and Tate, 2013; Sentoff, 

Aultman-Hall and Holmén, 2015) in order to make a better estimation of vehicle emissions. 

Moreover, the VSP has proven to be useful, as demonstrated in a study conducted by Duarte 

in 2015, for establishing the association between vehicle certification data and real-world 
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vehicle fuel consumption (Duarte et al., 2015). The following table lists a number of methods 

that are highly relevant to this study. 
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Table 10. A brief list of the driving models aimed at assessing drivers eco driving performance and aggressive driving 40 

Study Approach Author(s) Commentary 

The Vehicle Specific Power 
(VSP) (Jiménez-Palacios, 1999) 

The highly cited work by Jiménez-Palacios formalised the 
instantaneous power demand of the car related to its mass (as a 
kilowatts per tonne) 

The drive mode fuel consumption 
model 

Highlighted by (Saffarzadeh and 
Arjroody, 2003) and others 

An early attempt to link driving behaviour and mode of driving 
including: idle, accelerating, decelerating, and cruising to fuel 
consumption  

Ford Aggressivity value (Nam et al., 2003) 

As part of the development of the Motor Vehicle Emissions 
Simulator (MOVES) software, the Ford team introduced an 
aggressive value based on EPA specific power (US Environmental 
Protection Agency, 1993), total number of acceleration events 

MAHLE Powertrain Total 
Aggressivity 

 
(Daniel, Brooks and Pates, 2009) 

 
The work was aimed at developing a quantifiable model to measure 
drivers aggressivity. The model’s primary goal was to link driver 
aggressivity to intensity of pedal usage. However, it would appear 
that they over simplified the formula they applied  
 

Berry’s aggressiveness factor (Berry, 2010) 

This comprehensive study by Berry reviewed all recent 
developments in the effects of driving style and vehicle 
performance on the real-world fuel consumption. Berry linked 
driver aggressiveness to the concept called wheel work and vehicle 
mass  

                                                
40 The following is not exhaustive and does not cover all methods, it is only based on the relevancy of the work to this project’s aims and objectives. 



 

 92 

2.5 The future of vehicle emissions testing under real-world 

conditions 

The current EU plan to improve the NEDC driving cycle is by modifying the driving cycle as 

well as adding new test conditions to reflect the impact of real-world driving conditions, such 

as testing a vehicle under the following conditions: AC on/off; daylights on/off and audio 

system on/off. These form part of a comprehensive proposal that is scheduled to be introduced 

with the Euro 6c regulation in September 2017 (Delphi, 2013). To provide a basis for the future 

modification, the Worldwide Harmonised Light Vehicles Test Procedures (WLTP) has been 

introduced by the EU. The WLTP is the global project that aims to standardise vehicle 

emissions test procedures in the Europe, India, Japan, Korea and the US. As part of this project, 

the Worldwide Harmonised Light Duty Driving Test Cycle (WLTC) was developed by 

collecting real-world driving data in all the aforementioned regions41. This is one of the largest 

global naturalistic driving study (NDS) with the purpose of capturing real-world driving 

conditions, to this day. A significant amount of information, such as vehicle types, road types, 

and driving conditions (rush hours, off-peak, weekend), were gathered globally (Tutuianu et 

al., 2013). The project led to the development of the harmonised global test cycle. As part of 

the process of developing the aforementioned driving cycle, Tutuianu et al. (2013) gathered 

driving data from the EU, India, Japan, Korea and the USA.  From the UK, 48,934 km worth 

of driving data were collected by 10 passenger cars and 12 Light Duty Commercial Vehicles 

(LDCV) (Tutuianu et al., 2013). 

 

According to the technical report by Tutuianu et al., one of the most distinguishable driving 

differences observed from the collected driving data was drivers’ gear shifting strategy and 

                                                
41 The project scope in terms of numbers: 394 cars and 765,000 km worth of driving data. 
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behaviour. The report suggested that gear shifting behaviour is more influenced by individual 

driving habits rather than vehicle transmission design (Tutuianu et al., 2013). Another 

important conclusion from the report is that it establishes the fact that driver behaviour is 

widely diverse among drivers globally (see Figure 17), which is important for global fleet or 

insurance companies when they want to compare drivers. It highlights the fact that driving 

models and methods to score driers have to be adjusted to local settings and conditions. Figure 

17 below illustrates the analysis conducted by Tutuianu et al. (2013) to present the significance 

of driving pattern differnces in the following regions: the EU, India, Japan, Korea and the USA. 

 

Figure 17. Distribution Speed (km/h) and acceleration (km/h/s) (Tutuianu et al., 2013) 
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As shown in charts above, driving characteristics are highly influenced by the region, highway 

regulations and infrastructure differences. Moreover, driving behaviour varies between three 

road types urban, rural and motorway even within one region or a country. Despite the speed 

limit on urban roads being universally below 100 km/h, there are notable cross-regional 

differences. For example, whilst US drivers’ acceleration range is between ±12 km/h/s, this is 

not the case in the EU or Japan (±8 km/h/s) and it is even narrower in India (±4 km/h/s) due to 

high traffic density. 

 

The NEDC is being superseded by the WLTC driving cycle in that the latter has longer duration 

(total distance of driving on a chassis dynamometer) (Table 11). In addition, it is a better 

representation of real-world driving as there is a continuous change in driving speed. Moreover, 

the maximum acceleration and speed has been modified from 1 m/s2 and 120 km/h to 1.6 m/s2 

and 131.6 km/h in order reflect observed behaviour (Tutuianu et al., 2013). However, the 

credibility of WLTC has been questioned since it was first introduced. There are a number of 

valid concerns about the cycle, such as the slow rate of increase in vehicle speed, no 

representation of hill driving and according to the Association for Emissions Control by 

Catalyst (AECC) study, there are substantial differences between emissions recorded from the 
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WLTC test and those measured by the PEMS device on the road (May, Bosteels and Favre, 

2014). Currently, the Euro 6c test standard and the WLTC driving cycle are planned to come 

into effect in 2017.  

Table 11. A comparison between the NEDC and WLTC driving cycles 

 NEDC WLTC 

Duration (s) 1,220 1,800 

Length (km) 1,106 2,326 

Idle time (%) 33 13.4 

!"#$ (km/h) 120 131.6 

!#%&'#(& (km/h) 31.6 46.3 
Max acceleration 

(m/s2) 1 1.6 

 

  

Figure 18. Development of the worldwide harmonised test cycle42 

 

                                                
42 The WLTC in red is the final speed – time driving test cycle (directly from the source (Tutuianu et al., 2013)]). 
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Figure below is an example of the Worldwide Harmonised Light Vehicles Test Procedure cycle 

for class 3 vehicles, which are vehicles driven in the EU and Japan. 

 

Figure 19. WLTP Cycle for cars in the EU and Japan (May, Bosteels and Favre, 2014) 

 

In addition to the WLTP project, the EcoDriver project43 was an EU-based one that was 

initiated with the purpose of reducing CO2 in the transport sector by providing drivers with 

their driving performance information. The four-year long project was aimed at promoting eco-

driving behaviour among drivers by providing them with real-time eco-driving 

recommendations based on their driving behaviour (relaxed or aggressive) and their vehicle 

characteristics (vehicle types and powertrains). In this project, a range of vehicle types, 

powertrains and driving profiles were tested to finalise the most customised and appropriate 

feedback for any given conditions. Through various analyses conducted by multiple teams on 

the impact of providing feedback to drivers the following conclusions stand out: these systems 

reduce cruising behaviour on highways by 4% and up to 15% on other roads.  Moreover, they 

                                                
43 The project held its last event in March 2016. Details can be found at: http://www.ecodriver-project.eu/ [last 
accessed March 2016]. 
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helped to reduce number of harsh accelerations and decelerations by 5% to 10%, respectively 

(Mejuto, 2016).  

Table 12. Summary of all the partners participating in the EcoDriver project 

Test sites Partner Route type Car types Mileage 
covered 

Sweden VTI Urban, rural, motorway - 90 km 

England University of 
Leeds Urban environment 10 hybrid buses 11 km 

Germany BMW Urban, rural, motorway BMW passenger car - 

Germany TomTom Free route Light Commercial 
Vehicle (LCV) - 

Germany ika Urban, rural, motorway  - 

Germany Daimler Urban, rural, motorway, 
hilly routes - - 

Netherlands TomTom Free route LCV’s: Fiat, MB, 
VW Truck: MB - 

France IFSTTAR Urban, rural, motorway - 25 km 

Italy CRF Urban, rural, motorway - 52 km 

Spain CTAG Urban, rural, motorway, 
hilly routes - - 
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2.6 The impact of the human factor on the causation of road collisions  

In the field of road safety, the priority has always been to identify risk factors through 

investigating the causation of road collisions. Collision-prone locations were the basis of 

conducting these studies and finding stable parameters to address the accident causation were 

usually the conclusions of this approach. Influential factors can be classified into two groups: 

human factors (i.e. impaired driver, driving under the influence of alcohol and/or drugs) and 

non-human factors (external reasons: poor road lighting, inclement weather, etc.). 

 

The early interpretation of the role of driver in travelling safely was based on his/her 

skillfulness in the act of controlling a vehicle under dangerous circumstances. That is, by 

steering effectively (steering away to avoid collisions) , accelerating and decelerating (speeding 

to drive away from a hazardous situation or making an emergency stop brake) (Gibson and 

Crooks, 1938). By 1949, the influential work of Tillmann and Hobbs had led to the concept of 

accident-prone individuals and the influences of psychiatric and social background in 

determining individual involvement in accidents (Tillmann and Hobbs, 1949). By considering 

driver background and demographic, the authors concluded that drivers who are often involved 

in car crashes have a higher degree of aggression and sociopathic behavioural traits (Tillmann 

and Hobbs, 1949; Shinar, 1998). 

 

The concept of exhibiting aggression towards other road users while driving was discussed as 

early as 1968 in a book called “Aggression on the road” by Parry (Parry, 1968). Whitlock 

(Whitlock, 1971), drawing on Parry’s (1968) approach, investigated the relationship between 

social violence with road accidents in Great Britain. He concluded that 85% of all crashes in 

Great Britain were due to driver aggression while driving. A reviewed study conducted by 
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McKenna in 1982 on the methods used to quantify the impact of human factors on road 

accidents concluded that including psychological tests as part of statistical analysis to identify 

collision-prone drivers is useful because it helps to characterise traits of behaviours that lead 

to car crashes.  

 

The domination of behavioural psychology studies in the latter half twentieth century as part 

of a systematic approach to understanding human behaviour in relation to its environment, 

provided a basis for investigating the cognitive stance of drivers (Altman, Wohlwill and 

Everett, 1981). This also led to the development of driving behaviour models with an emphasis 

on the cognitive status of driving tasks. By the end of the twentieth century, a substantial 

number of driver and driving behaviour models, frameworks and theories had been proposed 

by scholars with different academic backgrounds and research interests. These models were 

developed largely in an attempt to explain the mechanism of how a driver’s behaviour (driving 

performance) can be a reason for car crash involvement. Model here refers to the mechanism 

or flow chart developed to explain driver driving behaviour rather than computer models.  

 

To signify the work of early researchers in this field (1959 – 2000), the most relevant and 

highly cited studies are investigated and tabulated to be part of a background study about the 

importance of studying driving behaviour. For the period 2000 to 2009, the significant studies 

are discussed in detail.  Table 13 contains a summary of the relevant driving behaviour models 

and theories from 1959 to 1999. These studies reveal the evolution of the research community’s 

perspective towards understanding the role of drivers’ driving behaviour (Michon, 1985; 

Ranney, 1994; Shinar, 1998; Carsten, 2007). 
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Table 13. A summary of the important driving models introduced from 1959 to 199944 

Study Approach Author(s) Commentary 

Test-based model (Conger et al., 1959)  

 
The study compared two groups of drivers with (group 1) and 
without (group 2) road collision history, with no intelligence or 
psychophysiological differences between the two groups. It 
emerged that drivers who had been involved in car accidents had 
problems in terms of lack of control in hostile situations and lower 
tension-tolerance. 
 

Risk-speed compensation model (Taylor, 1964) 

 
The study investigated drivers’ level of anxiety while driving by 
using Galvanic skin responses of 20 drivers while driving. It 
suggested that emotional tension or anxiety can affect driving task 
performance.  
 

Information flow model (Kidd and Laughery, 1964) 

One of the early computer-based driving models developed was 
based on information available to drivers for different driving 
scenarios, such as at junctions.  
 

Skill-based model of driving (Näätänen and Summala, 1976) 

 
Defining a driver based on his / her personality, motivation, 
perception, caution, skilfulness and travel reasoning.  
 

The utility maximisation model 
(A decision theory model of 

danger compensation) 
(O’Neill, 1977) 

The model was built based on the assumption that a driver always 
has a goal while driving, such as time taken to reach the speed limit, 
showing off, etc., which governs his / her risk-taking behaviour.  

                                                
44 The classification is inspired by the work of (Michon, 1985; Ranney, 1994; Shinar, 1998; Carsten, 2007). 
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Study Approach Author(s) Commentary 

Driver steering control models (McRuer et al., 1977) Feedback control model based on a driver’s steering operation.  

DRIVEM event detection control 
model (Wolf and Barrett, 1978) 

 
Driver-Vehicle Effectiveness Model designed to control vehicle. 
The flowchart-based model shows drivers’ driving tasks. 
 

Motivational model of driving (Johnston and Perry, 1980) The model aimed to relate accident causation to a driver’s 
personality traits. 

Risk compensation model or the 
Risk Homoeostasis model. (Wilde, 1982) 

 
The servo-control model based on the idea that a driver’s risk taking 
behaviour is only controllable by his / her perception of acceptable 
risk (risk target level).  
 

Risk- avoidance model (Fuller, 1984) 

 
The model provided a framework where a driver has to deal with a 
hazardous situation based on his / her capability and awareness. 
 

The hierarchical control structure 
model (Michon, 1985) 

 
The model encapsulates three levels of road users’ tasks (in a 
hierarchy format): strategic level, manoeuvring level and 
controlling level. 
 

Theory of planned behaviour (Ajzen, 1985) 

 
Planned behaviour questionnaires have been constructed based on 
this theory. The work is highly cited and followed due to clarity of 
the model. The theory suggests that a driver’s intention is a 
predictor of his / her behaviour.  
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Study Approach Author(s) Commentary 

Zero-risk model based on visual 
attributes and reaction times (Summala, 1985, 1988) 

 
The model suggests that for most situations drivers learn how to 
react to avoid collisions and therefore, driving risk behaviour needs 
to be considered in terms of what the driver perceives as being 
within the margins of safety. 
  

Developed hierarchical risk 
model (Molen and Botticher, 1988) 

 
The hierarchical risk model constructed based on different levels of 
controlling the vehicle.  
 

Theory of driver error in road 
safety (Brown and Groeger, 1990) 

 
The article suggested that driver errors are related to the level of 
expertise of the driver. 
 

Generic error-modelling system 
(GEMS)  (Reason et al., 1990) 

 
The study showed that inattention (distraction) and over attention 
(preoccupation) are part of driver errors.  
 

Visual attention research based 
on driver useful field of view (Owsley et al., 1991) 

 
The study established a strong association between a driver’s useful 
field of view (UFV) and culpability for accidents occurring at 
junctions. 
 

Generalisability of four classes of 
predictors of accident 

involvement (a meta-analysis) 

(Arthur, Barrett and Alexander, 
1992) 

 
Results of a meta-analysis concluded that the following classes of 
variables were the causation of accident involvement: information 
processing, cognitive ability, personality and demographic factors. 
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Study Approach Author(s) Commentary 

The frustration-aggression model  (Shinar, 1998) 

 
The study focused on the characteristics of aggressive drivers and 
examined responses of aggressive drivers in five scenarios, such as 
honking, passing through red lights, and delays in travel time. 
 

Modelling and predicting driver 
behaviour  (Pentland and Liu, 1999) 

 
The study used a dynamic controller and driving simulator to model 
and predict drivers’ behaviour through the Markov chain model. 
 

Evaluate the impact of behaviour 
change techniques   

(Goldenbeld, Levelt and Heidstra, 
2000) 

The study investigated the impact of psychological incentives in 
positively changing drivers’ behaviour  
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In a critical review paper by Michon (Michon, 1985), the author argued that many driving 

behaviour models and accident involvement models up to then had failed to incorporate new 

ideas. He suggested that there was a need for driving models that present a driver’s cognitive 

status in an efficient manner (Michon, 1985). In another influential work, Ranney (Ranney, 

1994) reviewed all accident involvement driving behaviour models from the 1930s to 1994 and 

examined them in terms of their credibility, coming to the conclusion that none of the driving 

behaviour models were comprehensive or accurate. He argued that the low correlation between 

model and real-world results, low sample sizes and lack of identifying predictors of safe driving 

led to models that relied on post hoc explanations. The author concluded that an integrated 

driving behaviour model containing a task-based model, as well as motivational and cognitive 

driving behaviour, is an effective way for modelling driving behaviour (Ranney, 1994). 

 

Towards the end of the twentieth century, research conducted by Shinar (1998) had a 

significant impact, since the study investigated the concept of aggressive driving and the 

characteristics of an aggressive driver. The researcher made a distinction between aggressive 

driving and the aggressive driver, arguing that while the latter can be identifiable by 

personality, and his/her behaviour, the former pertains to road rage while driving and hence, 

has traffic offences associated with it in many countries. The resultant model proposed by 

Shinar (1998), namely, the “frustration-aggression model”, provides useful predictive 

knowledge about a driver’s aggression on the road (Shinar, 1998).  

 

In his influential work on methodological problems in (psychological) research about traffic 

accidents, Wåhlberg (2003) argued that most studies have been subject to methodological 

deficiencies, in relation to three fundamental aspects: the reliability of accident predictor 
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models, the sample time period, and whether driver behaviour is the primary cause of crashes 

(Wåhlberg, 2003). By 2005, the final version of the Fuller driving model called the “task–

capability interface model”, had been developed based on driving task demand and difficulties. 

Under this model, it was contended that there is a correlation between the difficulty of a driving 

task and the capacity of the driver to accomplish the task safely (Fuller, 2005). In order to 

address the need for an integrative model, many researchers have suggested a conceptual 

framework in relation to safe driving behaviour (Toledo, 2003; Strecher et al., 2006; Toledo, 

Shiftan and Hakkert, 2007). 

 

The advancements made in the field of transport, i.e. Intelligent Transport Systems (ITS) and 

driving safety technologies, such as the Advanced Driver Assistance System (ADAS), pose 

new challenges regarding driver behaviour and human-machine interaction in relation to safety. 

While the aim of these systems is to help the driver with the driving task, they are yet to be 

installed in every car class coming onto the market. Moreover, using new technologies, such 

as car stereos and mobile phones by drivers has led to the initiation of new studies on the impact 

of driver distraction and awareness of road safety (Klauer, 2005; McEvoy, Stevenson and 

Woodward, 2006; Amditis et al., 2007; Cacciabue, Re and Macchi, 2007; Chen, 2007). 

 

Despite decades of progress in the field of studying driver/driving behaviour and accident 

research, unresolved problems remain in this area. Wåhlberg (2009) reviewed every critical 

study that was published prior to 2009 and highlighted a number of issues that were repeated 

in a significant number of studies conducted in the field of driving behaviour and road safety. 

According to the author, the poor outcomes of the proposed driving models in predicting and 

quantifying the role of the driver in accident involvement, are mainly due to the unfounded 
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speculative assumptions about driver behaviour and the cause of accidents. He added that the 

lack of consistency with studies is because of researchers’ blind faith in certain methods and 

incorrect perceptions about the meaning of road safety facts and figures (Wåhlberg, 2009). 

Understanding the impact of the human being on road safety is evolving with technology. 

Evidence of this new breadth of research regarding the studying of driving behaviour is the 

mimicking of human habits in new autonomous vehicles, work that has been develped by 

Naranjo et al. (2008). Such research can lead to the identification of good and bad human 

behaviours, with the former being introduced to these autonomous vehicles. For instance, prior 

to changing lane, a good driver with safe driving habits positions his or her car close to the side 

of the current lane and when the situation is safe he or she moves tino the next lane (Naranjo 

et al., 2008). Another example is how cautious safe drivers are when driving on narrow roads 

in relation to oncoming traffic (Amata et al., 2009). In sum, adding these details to autonmous 

vehicle driving models will help make passengers feel safe when using this new technology. 

 

Between 2006 to 2010 computer processing power expanded massively, for instance, intel 

releeased its first 6 core processor for desktops and i3 in 2010. These advancements made it 

easier for resaerchers to analyse, model and compute bigger data and hence, be able to process 

large amounts of real-world  driving data for various purposes. This also meant that the field 

of investigating driving and driver behaviour expanded dramatically, in particular, the last 

seven years. The most recent published works is this period have been highly speicalised and 

focused on specific parts of this topic and despite the vast number of publications, only a few 

tens of them are directly relevant to this work. This is the reason why in following section the 

focus is on the relevant literature for the current research.   
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2.7 Driving behaviour and road safety  

The loose definitions of aggressive driver and/or driving behaviour has led to a tremendous 

amount of miscommunication among the research community. This issue was raised by Shinar 

(1998), whereas aforementioned he distinguished aggressive drivers from aggressive driving. 

According to his definition, the aggressive driver is someone who exhibits sequences of 

aggressive behaviours towards others as a result of frustration, whereas aggressive driving is 

defined as the manner in which the vehicle is operated endangers people and properties (Shinar, 

1998). On a similar basis, based on a comprehensive review of the literature addressing 

aggressive driving, Tasca (2000) proposed the following description of aggressive driving: “A 

driving behaviour is aggressive if it is deliberate, likely to increase the risk of collision and is 

motivated by impatience, annoyance, hostility and/or an attempt to save time” (p.9) (Tasca, 

2000). 

 

The importance of consistent and unambiguous usage of a single definition was highlighted by 

Dula and Geller (Dula and Geller, 2003). Their study covered other misused terminologies, 

such as risk, emotions, and behaviour. As a result, the authors suggested dangerous driving 

should be defined as pertaining to the following traits: “intentional acts of aggression toward 

others, negative emotions experienced while driving, and risk-taking” (Dula and Geller, 2003). 

One of the most recent interpretations of the term ‘aggressive driving’ is that of the National 

Highway Traffic Safety Administration (NHTSA, 2011), which states that aggressive driving 

“is generally understood to mean driving actions that markedly exceed the norms of safe 

driving behaviour and that directly affect other road users by placing them in unnecessary 

danger” (American Automobile Association (AAA), 2009). 
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Concerns about the rising number of aggressive driving incidents in the EU led to a global 

survey study45 conducted by the EOS Gallup Europe to investigate the viewpoints of 13,673 

drivers from 23 countries46 in relation to aggressive driving behaviours (EOS Gallup Europe, 

2003). It was reported that many drivers had been victims of other drivers’ aggression. 

Moreover, the study suggested that cultural differences between countries have a strong impact 

on what is acceptable as aggressive driving or normal driving behaviour. That is, the perception 

of people who were interviewed about what they perceived as aggressive driving behaviour in 

their countries varied substantially (EOS Gallup Europe, 2003). The study involved using 

tolerance (yes or no) and irritation (on a scale of 1 to 5) in order to establish what behaviours, 

constitute aggressive driving. Based on the survey results, the following graphs (Figure 20 and 

Figure 21) were plotted for the EU-15, the USA and Australia. The data was collected between 

2002 and 2003 (EOS Gallup Europe, 2003).  

 

Figure 20. Responses to ten driving behaviour questions associated with aggressive driving47 

 

                                                
45 Telephone polling and face to face interviews. 
46 The EU-15 member states plus the Czech Republic, Cyprus, Slovenia, Argentina, Russia, Japan, Australia and 
the United States (EOS Gallup Europe, 2003).  
47 Data collected from the EU-15, Australia and the US drivers (data source: (EOS Gallup Europe, 2003). 
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The authors of the work concluded that whilst the results of the aforementioned survey 

exhibited a high correlation (56%) between drivers who had had at least one accident in the 

past three years (prior to the date of the study) and perceived aggressive behaviour from other 

road users (EOS Gallup Europe, 2003). Arguably, the conclusion that others’ aggressive 

driving behaviour and accident involvement are directly linked is rather tenuous. The results 

of the UK drivers in the above survey show that they had a higher tendency to exhibit 

aggressive gestures, such as being aggressively pursued or verbally attacked (77%) and became 

more aggressive while driving (80%) over the year prior to when the survey was carried out in 

November 2002  (EOS Gallup Europe, 2003). 

 

Figure 21. Responses to ten driving behaviours questions associated with aggressive driving48  

                                                
48 Data collected from the EU-15, Australia and the US drivers (data source: (EOS Gallup Europe, 2003). 
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As Wåhlberg (2009) concluded, it is not always the case that drivers’ driving behaviour 

(aggressive driving, driver impairment,error, etc.) has been the only reason that the accident 

occurred (Wåhlberg, 2009). In fact, according to Reason (Reason et al., 1990) and Aarts et al. 

(Aarts, Wegman and SWOV Institute for Road Safety Research, 2008), crashes occur based on 

a dangerous action and driver errors over a number of stages. In Figure 22, the thick red arrow 

represents the occurrence of a road collision. In order for a crash to happen, driver errors have 

to continue at every level of the driving task, Hence, at every stage, there is a possibility to stop 

the crash from occurring. In sum, the occurrence of an accident is often related to the 

continuation of latent errors by drivers (Reason et al., 1990).  

  

Figure 22. The schematic demonstration of the development of a crash, based on Reason’s 
model49 

 

According to the Department of Transport in the UK, the most common reason in the top ten 

leading causes of a road collision is the inattentiveness of the driver. The driver’s inattention 

in the field of traffic safety and accident prevention has an extensive range of meanings, such 

as restricted and prioritised attention as well as driver distraction or diverted attention (Regan, 

                                                
49 By (Reason et al., 1990; Aarts, Wegman and SWOV Institute for Road Safety Research, 2008). 
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Hallett and Gordon, 2011). Consequently, driver inattentiveness has been interpreted variously 

in terms of driver actions / reactions while driving (Klauer, 2005; Regan, Hallett and Gordon, 

2011). The following graph (Figure 23) is plotted based on the published records of collision 

history in the UK between 2013 and 2015 (Department for Transport, 2015). Factors, such as 

failing to look properly (32%), failing to judge other drivers’ driving path and vehicle speed 

(27%), and losing control over a car (22%), have the highest percentage for causing collisions 

on UK motorways. The causations of collisions for other road types50 in the UK are failing to 

look properly (42%), failing to judge other drivers’ driving path and vehicle speed (21%), and 

losing control over a car (14%). Additionally, careless and reckless driving has a higher 

percentage for other road categories (16.5%) than highways (10%) (Department for Transport, 

2015). The following are not mutually exclusive since more than one factor might contribute 

to an accident and therefore, the percentages do not add up to 100% (Graves et al., 2014; 

Department for Transport, 2015). 

                                                
50 In the UK, roads are categorised into four groups other than motorways: A roads (large scales of road connecting 
two areas), B roads (roads that feed other roads to the A roads), classified unnumbered (short roads connecting 
A/B roads to unclassified roads) and unclassified (city or local roads) (Department for Transport, 2012).  
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Figure 23. Major factors causing road accidents in the UK (2013 – 2015) 

 

To conclude, factors such as aggressive driving, a driver’s psychological status, the 

inattentiveness of a driver and latent errors of a driver are partially able to explain the reasons 

why some drivers might be involved more often in car crashes than others. However, 

quantifying drivers’ driving performance in relation to these parameters requires a better 

understanding regarding driving conditions (whether a driver is distracted, tired or shows a lack 

of attention regarding the road ahead) and how the vehicle is physically controlled, i.e. in terms 

of speeding, harsh acceleration and deceleration events, cornering, gear shifting, manner of 

steering and pedal usage. In the next subsection, studies that associate road collisions with 

vehicle speed and acceleration are reviewed.  
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2.8 Vehicle speed and acceleration in conjunction with road safety 

The main focus of this section to review studies that have investigated the impact of a driver’s 

vehicle speed, change of speed (acceleration) and/or breaking the speed limit as part of his or 

her accident involvement. The Department for Transport states that for an aware and fit driver 

the reaction time is approximately 0.67 seconds and depending on the speed a driver is 

travelling at, the stopping distance is calculated according to this reaction time (Driver and 

Vehicle Standards Agency, 2015).   

 

Figure 24. Typical stopping distances based on 6 initial driving speeds (Driver and Vehicle 
Standards Agency, 2015)51  

 

The relationship between driving speed and the severity of injury has been established by many 

studies. For instance, Fildes, Rumbold and Leening (1991) conducted a multivariate analysis 

to determine the significate of parameters such as driver age, gender, purpose of the journey, 

number of occupants, weather, accident involvement, etc. The team established that gender 

difference does not have a sigfificant impact in relation to speeding attutide (Fildes, Rumbold 

and Leening, 1991). The highly cited work of Kloeden et al. from the University of Adelaide 

used a case control study to establish the relationship between being involved in a road collision 

and driving in a 60 km/h speed limit zone (Kloeden et al., 1997). They conducted 604 cases 

                                                
51 From Brake the road safety charity, details at: www.brake.org  
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where drivers and cars were matched according to “location, direction of travel, time of day, 

and day of week”, after measuring their speed by speed guns they matched cases with historical 

records, which led to their seminal conclusion as follows:  

 

“In a 60 km/h speed limit area, the risk of involvement in a casualty crash doubles with each 

5 km/h increase in travelling speed above 60 km/h” (Kloeden et al., 1997) 

 

A questionnaire study by TRL led by Quimby et al. involved a thorough analysis of the factors 

that influence a driver's decision in choosing his or her driving speeds (Quimby et al., 1999). 

In this work, instead of the case matching approach taken by Kloeden et al. (1997), they 

develped a questionnaire to measure the relationship between factors influencing driving 

behaviour and choice of speed, subsequently identifying relationship between speed and 

accidents (Quimby et al., 1999). In their work, the speed of just cars was recorded at 24 sites 

exluding motorways. To those who passed the obsevered sites were asked 31driving behaviour 

related questions. This approach was adopted by the Highways Agency in the same year,  where 

Maycock, Brocklebank and Hall (1999) investigated the impact of choice of speed, overtaking 

and emergency braking, by measuring these values on the road through postal questionaires. 

While Maycock et al. (1999) used the data to design better roads, Quimby’s team’s objective 

was to investigate the association of driving behaviour with crashes. By developing linear 

regression models, his concluded that younger derivrs, high yearly mileage drivers in large 

cars, commuters and single occupied cars tend to driver faster than others. Furthermore, based 

on their comprehensive list of factors that impact on driving behaviour (Table 14), the team 

examined and ranked the most influential factors regarding choice of speed. Quimby concluded 

that site effect (road characteristics), driver age, exposure and psychological parameters were 
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all highly influential on driving behaviour (see table 14) (Quimby et al., 1999). This study has 

been used as a reference work in this project for two reasons, first, it was conducted in the UK, 

which makes the work relevant to this project setting and secondly, the work methodology and 

findings had been agreed with by other researchers since then (Elliott, Armitage and Baughan, 

2003, 2007; Aarts and van Schagen, 2006; Elliott and Thomson, 2010; Wåhlberg and de 

Winter, 2012; Zhao et al., 2012).  

 

Table 14. influential factors on driving behaviour  

Factors  Class  Sub-group 

Driver factors  

Demographics  

Age/driving experience 
Sex 
Exposure (annual mileage, type 
of road, light/dark etc.) 
Occupational group 

Visual ability  
Static and dynamic acuity 
Visual field 
Field dependence 

Driving skill 
Car handling ability 
Hazard perception 
Judgemental skills 

Psychological factors 
Risk tolerance 
Social/driving deviance 
Thrill/sensation seeking 

Temporary states 
Mood Fatigue 
Impairment due to drink or drugs Illness 
Speed adaptation 

Other factors  

Trip characteristics Length, purpose and urgency 

Car characteristics Performance and comfort 

Road environment 

Road type 
Design speed 
Speed limit 
Enforcement levels 
Maintenance 
Presence 
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Environmental factors 

Presence of passengers 
Presence of pedestrians 
Time of day 
Signs/warnings 
Local knowledge (familiarity)  
Weather 

Source: (Quimby et al., 1999) 

 

The work of Taylor, Lynam and Baruya has become an industry reference despite in being 

published in 2000. In this work, Taylor’s team focused two methods, namely, road-based 

studies and driver-based studies, to assess the effect of drivers’ speed choice on the frequency 

of road accidents (Taylor, Lynam and Baruya, 2000). In their road-side based studies, the 

research team investigated the speed of all drivers, traffic and pedestrian flows as well as road 

layouts. Their objective was to predict the number of injury accidents on both urban and rural 

segments. Regarding the driver-based side, their responses to questionnaires were matched 

with their accident history and their actual recorded speed on observed road, The authors 

managed to quantify the association between choice of speed and drivers’ personality (Taylor, 

Lynam and Baruya, 2000). According them, the results of their extensive studies were in line 

with the following two important statements:  

1. Reduction of speed by drivers travelling faster than the traffic average speed leads to 

potential reduction of deaths and injuries;   

2. Road characteristics is a determining factor in reducing accidents  

This confirmed that speed limit reduction policies would provide higher safety for road users 

(Taylor, Lynam and Baruya, 2000).  
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Figure 25. Established and forecasted relationship between average traffic speed and relative 
crash frequency (Taylor, Lynam and Baruya, 2000) 

 

Following Taylor’s team findings many institutions and road safety operators began to build 

upon  and validate these findings. For example The Institute of Transport Economics (TOI) 

developed a model containing six equations that relates the change of average speed of traffic 

to the number of road accidents (Elvik et al., 2004). They concluded that the severity of the 

accident exponentially increases with vehicle speed, based on collision data. This led to them 

calling for speed limit reductions, particularly in urban areas, so as to reduce accident levels. 

 

The third Social Attitudes to Road Traffic Risk in Europe (SARTRE) survey reported the views 

of 1,000 drivers in 23 EU states about speed and speeding. Quimby (2005) summarised the 

questionnaire results with the remarks that, firstly, UK drivers had a negative attitude towards 

speeding as, 87% of the respondents associated it with accident involvement. Secondly, only 

5% of UK drivers enjoyed driving fast compared to their counterparts in France, 8%, Germany, 

11%, and Denmark, 15% (Quimby and Department for Transport, 2005). 
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A study by Aarts and van Schagen (2006) reviewed all the existing studies that had investigated 

the relationships between driving speed and the risk of getting involved in road crashes. The 

authors concluded that, without exception, the higher the vehicle speed, the higher the chance 

of getting involve in a road collision. However, they reported an inconsistency in the results of 

studies investigating the rate of accident reduction due to a decrease in vehicle speed (Aarts 

and van Schagen, 2006).  

 

As aforementioned, in Fuller’s (2005) driving model (see section 2.6), it is assumed that drivers 

will take risks to the extent that they believe that they can maintain control whilst driving 

(controlling the vehicle) (Fuller, 2005). In 2006, Fuller et al. combined the Musselwhite 

(2006)52 drivers’ risk-taking classification, which involved introducing four types of driving 

according to speed and risk-taking behaviour. Driver groups were developed based on these 

two models as follows: 1) the high-risk threshold drivers, 2) the low-risk threshold drivers 3) 

opportunistic drivers, and 4) reactive drivers (Fuller et al., 2006). The following table was 

developed by Fuller and colleagues based on the two studies’ conclusions. 

Table 15. Four classes of drivers based on risk taking and speeding behaviour,  

Drivers groups Demographic Characteristics 

The high-risk 
threshold drivers 

14.4% of the total 
drivers, 90% young male 

drivers (average age 
26.4) 

§ Don’t reduce their speed if they realise 
they are travelling faster than the speed 
limit 

§ Driving faster when in a hurry 
§ Lots of sharp accelerations and 

decelerations 
§ Exceed the 30 mph speed limit even when 

it feels unsafe 

                                                
52 Musselwhite, C. (2006) Attitudes towards vehicle driving behaviour: categorising and contextualising risk. 
Accident Analysis and Prevention, 38, 324–334. 



Chapter 2 – Literature Review 

 

 119 

The low-risk 
threshold drivers 

38.7% of the total 
drivers, 53% female 

drivers 

§ Would reduce their speed if they realised 
they are travelling faster than speed limit 

§ They don’t drive faster when in a hurry 

Opportunistic 
drivers 

23% of the total drivers, 
69% male drivers 

§ Exceeding the 30 mph speed limit when 
feeling safe 

§ They don’t drive faster when in a hurry 
§ They mostly like to use a faster lane to 

avoid queuing 

Reactive drivers 23% of the total drivers, 
73% female drivers 

§ Driving faster when in a hurry 
§ Exceeding the 30 mph speed limit when 

feeling angry, annoyed or irritated 
§ Don’t make dangerous overtaking 
§ Don’t exceed the 30 mph speed limit when 

it feels unsafe 

Source: (Fuller et al., 2006)  

Following the classification made by Fuller et al. (2006), as part of the UK-based project the 

High UnSafe Speed Accident Reduction HUSSAR, Fuller et al. (Fuller et al., 2007) conducted 

a qualitative study on 36 drivers’ responses to evaluating the Fuller driving task difficulty 

model. Additionally, for the same project (HUSSAR) Stradling et al. (Stradling et al., 2007) 

interviewed 1,005 drivers in the UK to gain a better understanding of the four typologies of 

drivers described in Table 15. All the findings were consistent with those from previous studies. 

However, Stradling et al. (2007) found that for the high-risk threshold drivers the speed / 

acceleration relationship was not as strong as the earlier studies had suggested. 

 

The concept of driver “celeration” behaviour was introduced by Wåhlberg in 2008. He 

suggested that the celeration is the total sum of all accelerations and decelerations of the 

vehicle. Wåhlberg suggested that drivers’ accelerating, decelerating, skidding, lane changing 

and overtaking behaviours are linked and can be represented by the celeration value. He 
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proposed a theoretical method for predicting the total number of culpable road collisions based 

on driver acceleration behaviour over a chosen time period. The author claimed that the 

celeration value can be useful in classifying and ranking drivers’ performance and safe driving 

(Wåhlberg, 2008). 

 

Identifying important driving parameters that differentiate drivers’ driving behaviours was the 

subject of a study conducted by Takano et al. (2008). The researchers used Hidden Markov 

Models (HMMs) to distinguish these differences. The team used a driving simulator and real-

world driving data in order to construct their driving model. The outcomes suggested that driver 

speed and acceleration are two parameters that are useful for distinguishing driving behaviour 

(Takano et al., 2008). Later, Amata et al. (Amata et al., 2009) took this finding and constructed 

a predictive driving behaviour model for road safety purposes. The predictive model of driving 

behaviour that was developed by them is salient as it was built to provide feedback to drivers 

about their safe driving behaviour in order to reduce collisions. The authors argued that based 

on their research, between 20% and 80% of road accidents could be prevented if a driver knew 

about his / her performance. The method they used to conduct the study is also of interest; the 

team managed to collect real-world driving data and then by using pattern classification 

methods (multiple linear regression analysis and Bayesian network analysis) it was able to 

classify drivers based on their safety attitudes while driving. The continiousion of this work 

led to comperhsive work by Halim and his team that developed a vehicle crash prediction 

model by using real-world driving data and artificial intelligence techniques (Halim et al., 

2016).  
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2.9 Identifying collision-prone sites by analysis of road collision 

records  

By nature, road collision records are fraught with uncertainties, inaccuracies and errors. 

However, the geographical information system (GIS) technology and universal recording 

system are aiding studies that are conducting spatial analysis on road collision records. In the 

UK, reported traffic accidents are documented using the STATS19 system. The form with the 

same name is used to record a comprehensive set of data about each collision53. Every year, 

collision data is gathered from all local authorities approved by the National Statistics 

Authority and published by the Department for Transport. The published record is open for 

access by members of the general public. The website www.crashmap.co.uk is a map-based 

website that post processes these records and presents them on an online map. The provided 

map, CrashMap, is the core level of spatial analysis of the collisions records. Advanced spatial 

analysis of road accident historical data involves using this information for the following 

purposes: traffic safety study, traffic management and enforcing new traffic settings (speed 

limits, traffic lights, etc.).  

 

Road safety engineering is the field that audits and investigates the causation of road accidents 

in specific locations, with the aim being to reduce road collisions at that location. After studying 

collision records at any given location, a road safety engineer often proposes new measures 

(new speed limit, providing better road lighting, instaling speed camera, adding a roundabout, 

etc.) to reduce the road collisions at that particular site. Owing to the sheer volume of collision 

                                                
53 Road collisions have required this documentation since 1979.  
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records and road segments with frequent accident problems, it is vital to identify collision-

prone locations prior to conducting any field observation activities or auditing collision records.  

 

Identifying collision-prone places, also referred to as crash hotspots, black spots, and hazardous 

and high-risk locations, is aimed at prioritising sites with significant collision problems that 

need to be improved. Basic methods, such as ranking collision locations based on the total 

number of accidents and their severity, are widely used by professionals to this end. However, 

given the increasing importance of reducing road injuries, identifying collision-prone sites 

more accurately based on historical data has come to the fore. In recent years, various methods 

have been introduced by researchers to overcome problems relating to collisions records. 

Issues, such as small recorded data size, low sample mean, and having a historical record with 

zero observation of accidents for a period of time, are common problems that have affected the 

results of the identification process (Cheng and Washington, 2005; Loo and Anderson, 2015). 

Table 16 has been developed based on various hotspot identification methods in the literature 

(Cheng and Washington, 2005; Lord, Mannering and Pankow, 2010; Montella, 2010). As 

explained in the following chapter, the confidence intervals method was deemed most 

appropriate for the current research. 
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Table 16. Common collision-prone (hotspot) identification methods 

Method types Method name Description 

Crash frequency 
methods 

Ranking 
Ranking road segments with the highest collision 
records in descending order 

Equivalent property 
damage only 

Weighted ranking method based on the severity 
of the crash and the property damage cost 
associated with each type (slight, serious, and 
fatal) 

Crash rate 
Ranking road segments with the highest collision 
records divided by measured traffic volume 

Proportion 
methods 

Confidence intervals 

Based on the statistical confidence intervals 
method, segment ‘A’ is a hazardous location if 
the total number of recorded collisions at location 
‘A’ is equal to or greater than the sum of the 
average and the standard deviation value of 
neighbouring segments 

The threshold 
proportion 

Based on the Bernoulli trials54, finding crash 
occurrence patterns by crash types (night time, 
poor visibility, wet road, etc.) 

 

 

  

                                                
54 The probability of an accident based on the Bernoulli trials: ! is a type of crash is	# ! = %

& #&'%(&. !	is the 
comparison group, ) is total number of trials. 
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2.10 Naturalistic driving behaviour studies 

As has been discussed in section 2.4, by 1996 in the US and by 2000 in the EU all passenger 

cars were equipped with an OBD-II port. Hence, accessing vehicle parameters, such as vehicle 

speed, engine speed and acceleration provided opportunities for new ways of studying driving 

behaviour in terms of road safety. Additionally, in-vehicle technologies, such as video cameras, 

front radar, GPS sensors and eye tracking cameras, have provided new countermeasures to 

reduce crash involvement. Earlier driving behaviour models were developed based on collision 

history records, self-reporting accident involvement and driving behaviour questionnaires. 

Gathering real-world driving data provided a reliable basis for studying pre-crash driving 

behaviours and therefore, revolutionised the way driving behaviour is investigated and 

modelled (Olsen and Wierwille, 2001; Klauer, 2005; Dingus et al., 2006). By 2006, a 

combination of in-vehicle monitoring systems, cellular technology and GPS sensors allowed 

the possibility of evaluating driving behaviour and his or her safety. A concept that is now 

widely used by fleet management service providers and motor insurers in the form of the Pay 

as You Drive Plan (PAYD) and Pay How You Drive (PHYD) vehicle insurance policies. 

 

Naturalistic driving behaviour studies are those in which driving behaviour is observed and 

recorded in great detail using in-vehicle driving monitoring without interfering with drivers’ 

driving routines. In 2012, 40 large-scale naturalistic driving behaviour studies with the purpose 

of looking at road safety were conducted by transport and road safety intuitions globally (Regan 

et al., 2012). Boyce and Gelle’s study in 2001 is an example of an early naturalistic driving 

study. In their blind experiment, 61 drivers aged between 18 and 82 were asked to complete 22 

miles of normal driving without prior knowledge that their driving was being monitored. The 

outcomes of the study suggested that the in-vehicle monitoring method had the potential to 
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become the primary method of collecting driver's driving behaviour data. Moreover, these 

researchers nominated five measures for comparing drivers’ driving behaviours as follows:  

1. Percentage of safe speed; 

2. Percentage of safe following distance; 

3. Percentage of on-task behaviour; 

4. Percentage maintaining lane position; 

5. Percentage of turn signal use (Boyce and Geller, 2001). 

Following up the study results, they contended that risk-taking behaviour was a function of age 

and not gender (as other self-reporting and survey studies had suggested) (Boyce and Geller, 

2002). 

 

An early work by Olsen and Wierwille (Olsen and Wierwille, 2001), for which they conducted 

a field study with a vehicle equipped with cameras facing inside and outside along with a front 

radar, provided the basis for a highly cited study carried out by the Virginia Tech 

Transportation Institute and National Highway Traffic Safety Administration (NHTSA) that 

started in 2005 (Neale et al., 2005). Initially, the 100-car project was designed to provide 

information about the characteristics of crash, near-crash and incident driving events. Figure 

26 demonstrates the in-vehicle data question system used in the 100-car project. The study 

established the fact that driver inattention is the primary reason for incidents, followed by the 

use of a mobile phone (Dingus et al., 2006)55. In the US, an ongoing transport research 

programme, called the second Strategic Highway Research Program (SHRP2)56, has completed 

                                                
55 Further: (Dingus et al., 2006; Klauer et al., 2006). 
56Details can be found at: http://www.trb.org/StrategicHighwayResearchProgram2SHRP2/Blank2.aspx [last 
accessed March 2016]. 
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the largest in-vehicle field study with 2,900 participants, but the results are yet to be published 

(Dingus et al., 2006).  

 

Figure 26. The in-vehicle monitoring system used in the 100-car project 

 

Studies by Toledo and Lotan (2006) and Toledo et al. (2007) provided a framework for 

analysing, evaluating and modelling drivers’ driving behaviour using an in-vehicle naturalistic 

driving study method. Moreover, collaborative projects in the EU member states as part of 

PROLOGUE, Promoting real Life Observations for Gaining Understanding of road user 

behaviour in Europe, have provided comprehensive documentation about the concept of 

naturalistic driving studies. The project provided a framework for conducting a large-scale 

European naturalistic driving study (Van Schangen et al., 2011). For the first step, a series of 

small-scale projects were undertaken in Israel, Austria, the Netherlands, Spain, and Greece 

(Backer-Grøndahl, Lotan and Schagen, 2011). The success of these led to the UDRIVE57  

project (Eenink et al., 2014; Eenink and European Commission, 2016), which is the EU’s first 

large-scale naturalistic driving study project, is being coordinated by the Netherlands Institute 

for Road Safety Research (SWOV). The project started on October 2012, and it is planned that 

                                                
57 Details to be found at: http://www.udrive.eu/ [last accessed March 2016]. 
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during the four-year period 150 lorries, 80 motorcycles, and 240 passenger cars will be 

monitored. 

 

The UDRIVE project funded by European Commission was the EU first driving and riding 

safety study. In this project, the driving behaviour of drivers using passenger cars, trucks and 

scooter riders was collected using five to six different camera views in six countries across 

Europe (Eenink et al., 2014; Eenink and European Commission, 2016). The UDRIVE objective 

can be summarised into the following three points:  

1. Examine and quantify drivers and riders’ behaviour in different regions of EU in regular 

and near-) crashes conditions; 

2. Investigate and quantify participants behaviour regarding emission levels and fuel 

consumption; 

3. Increase traffic systems safety in a sustainable manner.   

The final naturalistic driving that is discussed in this subsection is one from Australia. Regan 

et al., in their 2011 article on driver distraction, suggested that by conducting in-depth crash 

investigations from an in-vehicle recorded video, it is possible to understand the causation of 

attention failures for drivers involved in car accidents. This conclusion led him and his team to 

study the feasibility of conducting a large-scale naturalistic driving project in that country. In 

2013, four institutions in Australia namely Transport and Road Safety (TARS) Research, 

University of NSW, Monash University Accident Research Centre, Centre for Accident 

Research and Road Safety, Queensland University of Technology, and Centre for Automotive 

Safety Research, University of Adelaide collaborated on the first Australian large scale (400-

car) naturalistic driving study and according to the schedule, the results of the study will be 

published by the end of 2016 (ibid).   
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2.11 A critical review of previous studies  

As has been discussed, there are two types of fields of studies in relation to understanding the 

impacts of drivers’ driving behaviour. The first group comprises those aimed at reducing fuel 

usage and CO2 emissions, whilst the second relates to those that aim to reduce road casualties 

and increase driver safety. A summary of the methods of driving behaviour studies  is 

summarised in Table 17, there are various ways to study drivers’ driving differences.  

Table 17. A summary of the methods of driving behaviour studies  

Method Measures  

Surveys, self-reporting, driving behaviour 

questionnaires and/or historical collision 

data 

Impacts of drivers’ demographics, personality, 

aggression, errors, violation (violating the Highway 

Code) and lapses in driving performance 

Laboratory testing, chassis dynamometer 

testing 

Engine performance under different conditions and 

scenarios (cold start, hot start, controlled weather 

simulation), fuel consumption, and accurate 

measurement of emission gases 

Simulation (computer based, driving 

simulator) 

§ Monitoring vehicle dynamics 

§ Monitoring drivers’ perceptions and attitudes 

based on task-based studies 

§ Measuring hypothetical fuel consumption and 

emissions 
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Method Measures  

On-Road 

Test track  
§ Monitoring vehicle dynamics 

§ On-road and on-track emissions 

§ Drivers’ eye direction whilst driving  

§ Monitoring specific driving tasks (turning left 

or entering a motorway) 

§ Drivers’ speeding and braking behaviour 

§ The distance from the car in front  

§ Recording near crash, crash and incident events 

§ Steering wheel performance and gear shifting 

strategy 

§ Lane keeping and in-vehicle distractions (e.g. 

using a mobile phone, changing music/radio 

channel) 

Field Operational Trial 
(FOT) 

Naturalistic Driving Study 
(NDS)  

   Source: adapted from the works of (McLaughlin, Hankey and Dingus, 2009; Van Schangen 

et al., 2011; Regan et al., 2012) 

 

As has been explained in the previous subsection, drivers’ driving differences can be discussed 

based on various assumptions. However, there are commonly shared views about the 

parameters that can affect a driver’s fuel efficiency performance and his / her safety. 

Nevertheless, the approaches applied in the existing studies and the research questions raised 

have been inconsistent in terms of the terminology used and data acquisition methods as well 

as being subject to bias in relation to the findings.  

 

To make a critical assessment of the existing studies in the field of driving behaviour, in 

particular, naturalistic or real-world driving behaviour studies, four dimensions have been 
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developed to provide a clear perspective on some of the strengths and weakness of the prior 

work carried out in this field, these being: 

• Agreed parameters: a list of parameters that gained a consensus among scholars in 

studies that were published between 1980 and 2016 and that have been reviewed in this 

research;  

• Terminology differences: highlighting the fact that despite the vast number of 

publications in this domain, a number of misused words led to weak conclusions;   

• Data collection methodologies: variation of the data collection strategies makes it 

difficult to evalaute and compare study conclusions;  

• Biassed conclusions and confounding: lack of clear understanding of the complexity of 

naturalistic driving behaviour studies has led to poor, irrational and illogical 

conclusions.  

 

Agreed parameters 

It is generally agreed that drivers’ driving behaviour is governed by driver demographics, 

emotions, driving conditions (road condition, weather conditions, road lighting, unfamiliar 

routes) and travel habits (always using A/C, travelling with extra load, always driving with 

more than one passenger). These parameters can affect a driver’s driving performance. 

Regardless of which of these factors triggers a change in someone’s driving, their impact 

determines how the vehicle is controlled, which can be measured by such phenomena as how 

the pedals are being used, the gears are shifted, and whether excessive vehicle power is engaged 

in. To some extent it can be said that harsh braking can influence excessive fuel usage due to 

the fact that the driver has to speed up (burn more fuel) to reach to required speed after his or 

her harsh braking. If a driver controls a vehicle in such a way that it operates under inefficient 
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conditions (driving in the wrong gear, high engine speed), then his or her driving affects fuel 

consumption. Regarding safe driving, it is not always clear which part of a driving task can 

cause a driver to get involved in a car crash. However, indicators such as exceeding speed 

limits, harsh acceleration and deceleration, losing control of the vehicle, driving in a way that 

harms others and public property, distraction, not driving inside the lanes, and changing lane 

aggressively, can all be signs of a driver who is driving unsafely. 

 

Terminology differences 

According to Shinar, Tasca, Dual and Geller, loose usage of terminologies in this field, e.g. 

aggressive driver and aggressive driving, have led to many misinterpretations in road safety 

studies (Shinar, 1998; Tasca, 2000; Dula and Geller, 2003). This is also true when it comes to 

classifying driver behaviour into different categories, because a whole range of unclearly 

defined terms and their attributes, such as calm driver, aggressive driver, sportive driver, risk-

taking driver have been used. Regarding emissions studies, drivers’ driving behaviour and 

aggressive driving are inappropriate concepts when researching fuel usage and vehicle 

emissions as they are purely mechanical matters, where the driver should only be considered 

in terms of being the operator of a vehicle, i.e. using the pedals, shifting gears, and using a 

steering wheel and not in terms of his or her psychological state. However, a review of 

emissions studies shows that these psychological terms have been used, which has led to some 

confusion as to what is actually being measured. This is clearly not satisfactory when the aim 

is to study drivers as individuals with their unique set of behaviours, emotions and 

demographics. It needs be clarified that in this study an aggressive driver / driving aggressively 

refers to an unusual set of driving habits that situate a particular driver away from other drivers 

in the group. The method through which outlier driving behaviours are detected is based on 
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their driving parameters, including: driving above the speed limit, excessive usage of vehicle 

power (high engine speed) and sharp acceleration/deceleration. 

 

Data acquisition methods 

There are a broad range of data acquisition methods for quantifying drivers’ driving behaviour. 

It is important to acknowledge that the field of studying driving (driver) behaviour is a 

multidisciplinary subject and a large number of questionnaires and driving monitoring methods 

have been developed and employed by researchers over time to study drivers’ differences. 

Regardless of the study approach in studying driver behaviour, it is crucial to avoid issues such 

as poor and bias sampling methods and lack of randomisation in the sample. For example, 

studies that use only any one or two cars or just one or two drivers to conduct a driving 

behaviour field test are not effective for investigating the phenomenon. Additionally, studies 

that use only one round of surveys with a low sample size, or those that only use one set of 

questionnaires are subject to sample bias. That is, such studies do not represent any population 

and therefore, their results are not sufficiently statistically significant to draw any scientific 

conclusions. 

 

As has already been addressed by the PROLOGUE project, it is important to have an integrated 

data acquisition method, where both the field test and survey test results of a vast number of 

participants are reviewed together. A similar approach was used by the EcoDrive team in their 

data collection strategy. In their work, the team developed a clear and integrated data 

acquisition method strategy to collect, use and compare driving data from multiple devices 

from multiple providers. It is important to mention that the data acquisition device is not a 
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critical issue as long as the study is designed with a naturalistic driving behaviour mind-set and 

with the help of frameworks such as FESTA-V approach. 

 

Biassed conclusions and confounding 

There have been many studies which, despite their efforts to examine the differences in drivers’ 

driving behaviour, have conducted their research in the following ways (the following wording 

is based on a number of studies that have been reviewed and to keep the confidentially of their 

authors no references have been made to their work): 

“…drivers asked to drive aggressively...” or “… First-day driver invited to drive calmly. On 

the second day, he was asked to drive aggressively…” or “…one female driver and two male 

drivers are asked to drive normally and then aggressively...” 

 

Whilst these types of studies are useful as pilot studies or for proving a concept, unfortunately, 

they show a lack of understanding of the nature of the driving task. They suffer from a lack of 

representation of different driver types, vehicle models, and road conditions and have too few 

trials, hence resulting in biassed conclusions. This also provides evidence that undertaking 

naturalistic driving behaviour and a FESTA-V approach will allow for these issues to be 

addressed during the design of the study.  

 

Confounding refers to when during a study the impact of a factor that is of interest to the 

researcher (in this case aggressive driving) is not distinguishable from the effect of other factors 

that might contribute in the same measure, when, for instance, “...by comparing driving time, 

it shows aggressive drivers finish faster than others…”.  
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In this example, the researcher omitted the impact of factors, such as road traffic or the amount 

of time each driver waited at red lights during a trial. This is a problematic because the paucity 

of experimental description makes it impossible for other researchers to replicate the research 

and thus, test the validity of the outcomes. Moreover, the driving parameters are 

interconnected. Therefore, it is difficult to quantify one parameter as the only major factor of 

an accident, or of an excessive amount of fuel usage. To avoid this type of mistake, it is 

important to be careful that these issues are clearly addressed at an early stage of the research, 

such as during the designing of the experiment phase.   
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2.12 The eco-driving and safe driving studies  

As has been discussed, drivers, as the operators of vehicles, have a significant impact on how 

efficiently the car is operated (eco-driving) and how safely a journey is completed (safe 

driving). However, studying the effect of these two driving aspects together has only been 

undertaken during the last decade. In both the fields of study (eco-driving and safe driving), 

several highly cited scientific works have been conducted to understand the impact of driver 

driving differences. Research carried out by institutions, research teams and individuals led to 

projects, such as the WLTP and EcoDriver, with the primary goal of understanding the effect 

of driver behaviour on fuel usage and vehicle emissions. Similar efforts were made by road 

safety scholars to understand driver behaviour in regard to them driving safely. These studies 

have led to projects, such as the 100-car and SHRP2 programmes in the US and UDRIVE and 

EcoDriver in the EU. While both concepts are still under investigations and debate (Mensing 

et al., 2014) the new concepts emerged which aims to identify the overlapping between being 

safe and being eco-friendly (Young, Birrell and Stanton, 2011).  

 

The work of Haworth and Symmons (2001) has been an influential milestone towards linking 

the two concepts of eco driving and safe driving together (Haworth and Symmons, 2001). 

Harworth and Symmons’ reasoning for this link is that since the widely accepted driving 

manner to use less fuel is to driver smoothly with less harsh acceleration and braking, this can 

be directed towards driving with higher anticipation and hence, lead to reduced driving risk 

(Haworth and Symmons, 2001).  However, these authors agreed that this link was complex to 

prove empirically and even provided examples that appeared to refute it. Their work 

highlighted the importance of driving training, more specifically, eco-safe driving training 

(ibid).   
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Studying the relationship between drivers’ eco-driving and safe driving gained more attention 

after Wåhlberg’s (Wåhlberg, 2007) study on the long-term effect of eco-driving training on 

drivers’ safe driving attitudes.  

 

In a follow-up study in 2007, Wåhlberg reviewed the effect of his initial work a year earlier.    

(Wåhlberg, 2006). In his first study, he had examined the short-term effects of eco-driving 

training on bus drivers’ fuel consumption in terms of fuel usage, accident involvement and 

acceleration behaviour. Despite the study conclusions not being significant one year after the 

training (2% reduction in fuel usage as well as no effect on accident involvement and 

acceleration behaviour), it is highly cited and has become very influential, because it was 

pioneering in its aim to bridge the gap between the effects of eco-driving behaviour and safe 

driving (Wåhlberg, 2006, 2007). 

 

Moreover, advancement in technology has greatly facilitated researching these two phenomena 

in tandem. Regarding which, feedback devices for advising drivers on their fuel consumption 

were developed as early as 2001 (Van der Voort, Dougherty and van Maarseveen, 2001) and a 

new generation of these was introduced in 2007. This initiative was expanded to intelligent 

transport systems and to using these technologies to reduce fuel consumption by avoiding 

traffic congestion. For example, Kono et al. (2008) used traffic information, route 

characteristics and vehicles parameters to develop the “Eco Route Search” predictive model 

that gave routes that required the least amount of fuel (Kono et al., 2008; Ben Dhaou, 2011). 

Similar initiatives were taken by Ichihara et al. (2009) by developing a driver assistance system 
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that measured drivers’ eco-driving skills and their motivation to drive in an eco-friendly 

manner (Ichihara et al., 2009).  

Extensive research has been conducted to understand the psychological and behavioural forces 

behind drivers’ decision making in relation to operating cars in eco-manner. For example, 

Boriboonsomsin, Barth and Vu (2011) examined the relationship between drivers beahviour 

and attitude towards eco-driving. With a sample of 20 drivers, they evaluated the impact of on-

board eco-driving devices on drivers and managed to show an improvment of 6% on fuel 

econmoy on urban roads (Boriboonsomsin, Barth and Vu, 2011). Emphasising drivers’ driving 

behaviour attitude led to extensive works on eco-driving training and its impact on saving fuel 

and reducing gas emissions (Barić, Zovak and Periša, 2013; Rolim et al., 2014; Ho, Wong and 

Chang, 2015) 

 

While many scholars have measured eco-driving performance of drivers by only assessing their 

driving behaviour, Sivak and Schoettle (2011) have argued that eco-driving should be 

discussed even during an individual’s car purchasing thought process (Sivak and Schoettle, 

2011). Accordingly, they examined drivers vehicle selection and maintenance decisions 

(strategic decisions), route selection and car load (tactical decisions) and finally driving 

behaviour, which they categorised as operational decisions. The classification highlighted the 

fact that, in total, about 45% is the maximum reduction that can be made per driver, if he/she 

drives in an eco-friendly manner (Sivak and Schoettle, 2011). 
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One of the projects that advanced the single concept of eco-driving and safe driving was the 

UK-based project called Foot-LITE58. The idea was to provide innovative driver/vehicle 

interface systems to promote both safe driving and eco-driving, work which then led to the 

development of an in-vehicle advisory system and the notion of ‘smart driving’ (Fairchild et 

al., 2009; Young, Birrell and Stanton, 2009). The concept of smart driving was promoted by 

Zarkadoula, Zoidis and Tritopoulou (2007) in their pilot study on training urban bus drivers in 

Greece. However, according to them, smart driving only rested in the domain of eco-friendly 

driving. (Zarkadoula, Zoidis and Tritopoulou, 2007). In recent years, the concept has changed 

to being more about both eco and safe driving. According to Young et al. (2011), smart driving 

pertains to driving that is both eco-driving and safe, which they defined as follows: “(1) Plan 

ahead to avoid stopping and minimise sharp braking, (2) Use smooth but positive acceleration 

to reach high gears sooner, and use engine braking for smooth deceleration, (3) Use moderate 

engine speeds and a uniform throttle for steady speeds, (4) Obey speed limits” (p. 537).  

 

A similar concept was also developed in Japan at the Toyota Transportation Research Institute. 

The team used a driver’s locations (the GPS sensor) to predict his or her performance. Based 

on the vehicle speed, acceleration and its location, the model was able to promote eco-driving 

and safe driving to drivers (Ando, Nishihori and Ochi, 2010). Ando’s work has been significant 

as it attempted to quantify the eco and safe driving performance of drivers by using a threshold 

rules for evaluating drivers’ eco-driving and safe driving (Ando, Nishihori and Ochi, 2010). In 

2012, Yun et al. developed a smartphone-based, eco-driving and safe driving advisory app by 

using information gathered from an OBD dongle and GPS locations (Yun et al., 2012). Their 

model works based on threshold rules for scoring drivers’ eco-driving performance and safe 

                                                
58 Details to be found at: www.foot-lite.net [last accessed March 2016]. 
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driving by a simple comparison of fuel consumption so as to be able to classify drivers. As 

identifying eco-driving behaviour without in-vehicle device has its limitations (e.g. inaccurate 

assessment and poor data quality), most recent studies have focused on classifying drivers’ 

behaviour based on their aggressive driving/safe driving behaviours by using smartphones 

(Meseguer et al., 2013; Saiprasert and Pattara-Atikom, 2013; Zhao et al., 2013; Hong, 

Margines and Dey, 2014; Castignani et al., 2015; Koh and Kang, 2015)  

 

In fact, many driving parameters can be used to identify and classify eco-drivers and safe 

drivers. The most common method is based on using linear equations with a different 

coefficient ratio being assigned to each driving parameter, according to their impacts on eco-

driving and safe driving. The following table has been developed based on the parameters used 

in the aforementioned studies to identify and classify eco-drivers and safe drivers (Table 18). 

Table 18. A summary of the driving parameters used to classify eco-drivers and safe drivers 

Eco-driving  Safe driving 

§ Exceeding vehicle speed 

§ Exceeding the engine speed to above 4000 

rpm  

§ Number of sharp accelerations and 

decelerations 

§ Idling time  

§ Fuel consumption  

 
 

§ Quick start and take-off  

§ Quick stops and turning off the vehicle without 

considering safety measures  

§ Waiting time in the driveway  

§ Exceeding vehicle speed 

§ Speeding for a long duration of time 

§ Number of sharp accelerations and decelerations  

§ Bad handling of the vehicle, including rash 

overtaking, inappropriate turning, and unsafe 

lane changing/handling 

§ Failing to signal and to obey traffic signals  

§ Following too closely  

Developed based on the following studies: (Amditis et al., 2007; Inata, Raksincharoensak and 
Nagai, 2008; LeBlanc, Sivak and Bogard, 2010; Handel et al., 2014; Luke and Heyns, 2014; 
Jamson, Hibberd and Jamson, 2015) 
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In order to have scoring methods for differentiating drivers in terms of eco driving and safety 

it is necessary to have key driving performance indictors capable of providing that information. 

Combining parameters shown in the table above led to conclusion that the following represent 

the minimum requirements for building a viable driving scoring model. That is, listed below is 

a summary of the minimum set of driving parameters for building a scoring model and the 

threshold rules that need to be violated by drivers in order to count the event as an alarming 

one as defined by the CASTEL research and development team (CASTEL Company, 2014).  

• Speeding events: Number of times above the speed limit and percentage of journey 

spent speeding  

• Exceeding PRM (revolutions per minute): Based on excessive engine speed, typically 

above 3500 rpm 

• Harsh acceleration: Based on g force value, typical threshold rules from 0.2 g to 0.6 g  

• Harsh braking: Based on g force value, typical threshold rules from - 0.2 g to - 0.6 g 

• Sharp cornering: Based on speed and cornering force, if the value exceeds 0.2 g  

• Unsafe lane changing: Based on driving speed, location and a g force value exceeding 

0.2 g  

 

The most recent study linking eco-driving and safe driving is that conducted on a driving 

simulator at the Institute for Transport Studies, University of Leeds (Jamson, Hibberd and 

Jamson, 2015). The researchers examined the impact of real-time visual feedback on the eco-

driving and safe driving performances of drivers. Two hypotheses were examined using a 

driving simulator. Firstly, the researchers checked whether drivers learn to drive in an eco-

friendly manner at different rates and secondly, they probed whether drivers prioritise between 

eco-driving and safe driving (Jamson, Hibberd and Jamson, 2015). They did not observe any 
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improvement in terms of eco-driving performance among the participants, who were asked to 

drive a driving scenario three times with eco-driving feedback being provided. The second part 

of the study was interesting in that the researchers introduced a high traffic density scenario in 

the simulator and the participant drivers prioritised safe driving over eco-driving (Jamson, 

Hibberd and Jamson, 2015). The findings of this study suggest that in the field of studying eco-

driving and safe driving there are unknown parameters that require in-depth investigation, if 

they are to be uncovered.  

 

Jamson, Hibberd and Jamson, 2015 have suggested that drivers tend to piroritse safe driving 

over eco-driving. However, the two related challenges remain, i.e. reducing emission gases and 

to having safe drivers. To date, both topics (eco and safety,) ,separately or jointly, have been 

investiaged. For example, work by Ayyildiz’ (2017) looked at the impact of fleet (10 light 

commercial and 15 heavy-duty vehicles) eco-driving trainng in the reduction in fuel 

consumption and carbon emissions and reportedly managed to reduce the former by 5.5%  

(Ayyildiz et al., 2017).  
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2.13 This research in context  

In recent years, using affordable technologies, such as an OBD dongle and GPS sensor, have 

provided the opportunity to track and monitor vehicles and drivers remotely. Two sectors 

currently benefit from this technology: firstly, the vehicle fleet management providers and 

secondly, the vehicle insurers who provide usage-based insurance policies (Bruneteau et al., 

2013; Husnjak et al., 2015; Karapiperis et al., 2015). The pay-as-you-go concept from the 

telecommunications industry has been adapted by insurers and fleet management service 

providers as the most successful pricing model. The Pay as You Drive Plan (PAYD) and Pay 

How You Drive (PHYD) motor insurance policies are two examples of this adaptation. As a 

tracking device the basic OBD dongle is utilised with an accelerometer and GPS sensor to 

detect crashes and careless driving, a concept that Ippisch (2010) has put forward is one of the 

added value aspects of telematics technology to the insurance industry (Ippisch, 2010). Apart 

from OBD + GPS models, a standalone blackbox is also a method for tracking drivers and 

capturing dangerous events. Regarding which, Insure The Box59 in the UK is primarily using 

a black box or the in-tele-box. These tracking boxes come fitted with a GPS sensor, 

accelerometer and transmission unit, which sends the data using the GPRS network.  

 

 

 

 

                                                
59 Details can be found at: www.insurethebox.com 

Figure 27. Example of how telematics insurance works illustrated by 
Confused.com 
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To clarify the two aforementioned concepts, i.e. PAYD and PHYD insurance products, the 

following tables has been developed based on Tselentis et. al.’s (2016) idea of risk indicators 

classification (Tselentis, Yannis and Vlahogianni, 2016). 

Table 19. The list of suggested parameters to be used in PAYD and PHYD insurance premiums   

PAYD PHYD  

§ Time and date (higher risk in rush hours and 
specific seasons)  

§ Total distance driven by the user (high 
mileage high risk exposure)  

§ Road types  
§ Trip frequency (total number of trips per 

month)  
§ Vehicle brand and model  
§ Previous claims locations (danger zones)  
 

§ Time and date 
§ Road types  
§ Familiarity (number of times driver has 

passed down the same road in the last 30 days)  
§ Weather conditions  
§ Previous claims locations (danger zones)  
§ Speeding as a proportion of kilometres driven 

or time travelled  
§ Harsh acceleration and braking  
§ Harsh cornering  
§ Combined metrics: speeding at night on a 

highway, in different weather conditions   
§ Telematics claims history  
§ Idle time  
§ Fatigue (as a measure of making a number of 

stops as part of long trips) 

Developed based on the following studies and whitepapers: (A. T. Kearney et al., 2010; 
Paefgen, Staake and Thiesse, 2013; Jubraj and Moneta, 2014; Husnjak et al., 2015; Intel, 2015; 
Tselentis, Yannis and Vlahogianni, 2016) 

 

The results of an investigation using telematics technology to reduce accident risk conducted 

by the International Transport Forum in 2011, suggest that providing financial incentives and 

feedback to drivers will make them motivated to engage in safe driving behaviour. However, 

there needs to be clear understanding of how to identify and score drivers who drive poorly 

(Bolderdijk and Steg, 2011). One recent discovery regarding telematics based solutions is the 

fact that it can have a positive behavioural impact on drivers’ safety. Moreover, the feedback 

can lead to more efficient control of the vehicle, in particular, in terms emissions, which is why 

14 US states have incorporated telematics into their green initiatives and climate projections,  

According to a TRL report in 2015, there have been at least 30 experimental studies aimed at 
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studying the effect of telematics systems and their feedback on (young drivers) drivers (Tong 

et al., 2015). It needs to be acknowledged that some initial behaviour changes are due to the 

effect of drivers knowing that they are being monitored. The impact of providing feedback 

to drivers is that it has helped a number of fleet companies in reducing their drivers crash 

rate. For instance, in 2011, GreenRoad (one of the leaders of driver performance and fleet 

safety management providers) reported that 70,000 fleet drivers who were using their 

solutions were experiencing, on average, 50% reduction in crashes and 10% reduction in fuel 

consumption (Ron, 2011).   

 

Only a small number of parameters so far are used for scoring drivers and providing them 

with feedback by fleet operators and insurers who are offering telematics-enabled policies, 

these being things that are within the drivers’ power to change. These parameters are: 

• Speeding events 

• Exceeding PRM  

• Harsh acceleration  

• Harsh braking 

• Sharp cornering  

• Unsafe lane changing 

In addition to these core parameters, insurers are constantly defining and using new metrics 

to increase their capabilities to score drivers fairly and accurately. Examples of additional 

metrics are familiarity (driving similar route in one-month period) and driving in rush hour, 

at night or early mornings. 
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In recent years, smartphone driving monitoring mobile applications have been accommodated 

using a Bluetooth enabled OBD dongle to engage more with drivers and to reduce operation 

cost. However, to insurers, the main benefit of this technology is to be able to predict risk and 

develop pricing models closely associated with drivers’ driving differences. Weiss and Smollik 

(2012) addressed this in their work geared towards the insurance market and actuaries’ 

profession. These authors argued that telematics data provide a unique opportunity for insurers 

to customise their underwriting process by using individuals’ driving data (Weiss and Smollik, 

2012). 

 

Azzopardi and Corti (2013) investigated the benefits of using the aforementioned technologies 

for the fleet management industry. They concluded that the key strength of using this system 

is because of its ability to monitor driver fuel consumption and behaviour, while other benefits, 

such as recording mileage and driver locations can be controlled by cheaper methods (regular 

mileage recording, geo-fencing)(Azzopardi and Cortis, 2013). According to the Association of 

British Insurers’ (ABI) report, in the UK, the rising market of usage-based technology is due 

to the young driver (under 25) sector. They are willing to have a device installed in their car 

and to be monitored in return for cheaper car insurance (The Association of British Insurers 

(ABI), 2015). However, the report points out that according to a survey60 conducted by the 

price comparison website uswitch.com, among UK drivers, 62% were worried about their 

privacy, and 37% did not want their driving to be monitored (The Association of British 

Insurers (ABI), 2015). Nevertheless, the market for using OBD dongles and GPS sensors to 

monitor drivers for fleet management and insurance purposes is emerging, and it is expected 

to increase in the EU from 5 million policyholders in 2014 to 27 million in 2019 (Bruneteau et 

                                                
60 Survey conducted on April 2015 with 1,146 UK car insurance owners.  
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al., 2013; Husnjak et al., 2015; Karapiperis et al., 2015; The Association of British Insurers 

(ABI), 2015). In sum, as shown in Figure 28, it is predicted that the total number of telematics-

based policyholders in the EU and US will increase substantially. 

 

Figure 28. The predicted total number of telematics-based vehicle insurance holders 

 

Whilst telematics-enabled premiums or connected premiums is relatively new, with the first 

piloting of the concept being conducted by Progressive Insurance in 2004, the concept of usage 

based premiums is not a new one to the insurance industry. For instance, Allstate in 1939 

introduced a premium based on mileage and car usage, whilst in1991 Progressive Insurance 

tested a credit score concept to underwrite premiums. However, the uniqueness of telematics-

enabled premiums is having real-world and real-time driving data streaming towards insurance 

servers. The motor insurance industry has evolved a lot in the past decade. According to 

multiple sources, UBI progrmmes are now active in countires such as Italy, the US, Canada, 

Spain, Austria, South Africa, the Netherland, Japan and the UK (based on public records 

between 2011 and 2014) (Troncoso et al., 2011; Friedman and Canaan, 2014; Husnjak et al., 

2015).  
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Given the confidentiality of scoring methods that have been used by insurers worldwide, such 

as Progressive in the US and  Generali and Unipol in Italy, publicly available the extensive 

work conducted by Handel is  crucial for those wanting to investigate the impact of driving 

scoring  in telematics-enabled insurance (Handel et al., 2014; Wahlstrom, Skog and Handel, 

2015). Handel et al. made a thorough analysis the feasibility of using smartphones as a method 

to collect and score drivers. The team concluded that whilst smartphone only usage based 

insurance products can be a scalable option, the huge variation between hardware devices and 

poor data quality makes it difficult to use this with a high level of confidence (Handel et al., 

2014). As a result of their work, (Wahlstrom, Skog and Handel, 2015) investigated various 

approaches to clean and filter phone’ sensor signals, which they then evaluated the usage and 

effectiveness of using smartphone GPS data to detect the cornering behaviours of drivers.   

 

 From the early stages of the current project, it was decided that it should be conducted as if 

the participatory drivers were part of a group of fleet drivers or as if they were usage-based 

insurance policyholders. With this approach, the choice of monitoring devices was narrowed 

down to those that are commonly used by both of the groups. The following table was 

developed to summarising the current state of widely used technologies for monitoring and 

tracking drivers, as of December 2015 .  
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Table 20. A summary of commonly used technologies to track and/or to offer telematics enabled 
premiums 

Industry  Typical usage 

Motor insurance 
market  

Blackbox  OBD dongles  Smartphone   Combined   

Used mostly for 
PAYD premiums 

Used for both 
PAYD and PHYD 
premiums 

Used mostly for 
PAYD and on few 
cases as  PHYD 
premiums, highly 
used as a 
communication 
platform to 
provide feedback  

Blackbox and 
smartphone or 
OBD and 
smartphone as 
way to collect 
accurate data and 
provide feedback  

Fleet tracking 
and managing 
market  

Highly used as a 
tracking device  

Highly used as 
tracking device 
and for service 
and maintenance 
purposes including 
fuel usage  

Just as a 
communication & 
navigation device, 
rarely used to 
provide feedback  

Highly used as 
tracking device 
and for service 
and maintenance 
purposes including 
fuel usage  

Source: public information available from the following insurance companies: Allstate, 
Generali, Progressive, Insurethebox, and Unipol.  

 

Moreover, two of the recent studies in the EU, the EcoDriver and UDRIVE, have been a great 

inspiration in terms of developing a small-scale eco-safe driving platform to conduct a study, 

with the aims of investigating drivers’ driving behaviour with regard to fuel consumption and 

their safer driving abilities (Eenink et al., 2014). With this in mind, this study was designed 

and conducted according to the naturalistic driving study guidelines provided by the FESTA 

Handbook61 on conducting field studies. According to this handbook, a field study has to be 

completed in three stages: preparation (design of the experiment), data acquisition (data 

management) and post-processing (Van Schangen et al., 2011; FESTA Project Consortium, 

2014). This study was designed and conducted according to these guidelines. That is, driving 

data were analysed in three steps: (1) identification of a trait of behaviour or abnormal driving 

                                                
61 Field operational test support action (FESTA). 
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performance; (2) grouping of those drivers with similar driving habits; and (3) using this 

information to model drivers’ driving behaviours. In the next chapter (methodology) the three 

stages of conducting the field study, acquiring the data and the post-processing analysis are 

explained and justified in detail.



      Chapter 3 – Research Methodology 

 

Chapter 3 

Research Methodology  

 

“What we observe is not nature itself, but nature exposed to our method of 

questioning”. 

 – Werner Heisenberg 

 

 

3.1 Introduction 

From the critical review of existing studies conducted in the research field of driving behaviour, 

it is concluded that the most relevant applications of research similar to this project focus on 

two industries: the fleet management industry and usage based insurance market (see 2.13). 

The key challenge for these industries is that they want to monitor drivers in their daily routines 

and score them based on their eco-driving and risk driving performances. In this setting, the 

monitoring device has to be economical and cost effective as well as the method being robust. 

Moreover, scores have to reflect reality since business decisions will be made based on them.  

 

 

As it has been highlighted in the final section of the chapter 2, the general methodological 

approach to accomplishing the objectives of this project was to conduct a study according to 

the Naturalistic Driving Study (NDS) guidelines. Specifically, the aim was to observe drivers 

in their natural setting while they were completing an ordinary driving task by using in-vehicle 

technology unobtrusively. In this case, the biases discussed in chapter 2 were kept to a 
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minimum, whereby the observed participants were not influenced by allocated interventions 

from the observers. An unsupervised approach can affect the sampling procedure and make 

effective comparisons between driver performances very difficult. However, fully supervised 

Field Operational Tests (FOTs) (e.g. proving ground testing) ignore important information 

regarding the natural driving setting, such as daily routine. Consequently, this project involved 

combining both ways of collecting actual driving data. That is, whilst there were controls on 

some aspects of the driving experiment, there were still opportunities for unexpected 

phenomena or behaviour to occur. In this way, the occurrence of different traces of driving 

behaviour and habits could be captured. As a result, this research lies in the overlapping area 

between the fully controlled and completely unfettered studies, as illustrated in the figure 

below. 

 

Figure 29. Experimental control continuum of field studies 

 

This means that in this project despite having a number of predefined and predesigned 

parameters (driving route, vehicle types, fuel, etc), the drivers  received very little input on how 

to behave and how to operate the car. Various methodological considerations need to be taken 

into account when creating a field test to examine the naturalistic behaviour of drivers (Dingus 

et al., 2006; Klauer et al., 2006; Van Schangen et al., 2011; Mejuto, 2016).  

 

The Field 
Operational Test 

(FOT)

The Naturalistic 
Driving Study 

(NDS)

Experimental Control  

Low control   High control  
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As discussed in chapter 2, there are three main areas to consider associated with such a study: 

first, there is the concern about the experimental design not interfering with the drivers’ 

performance; secondly, there is the data acquisition, and monitoring method; and finally, there 

is the data analysis method as well as the post-processing approach towards the collected data. 

To address these areas, a framework was developed based on the Field opErational teSt 

supporT Action (FESTA) handbook on the methodology of implementing and operating FOTs, 

in accordance with Van Schangen et al (2011) (Van Schangen et al., 2011), so as to take into 

account naturalistic driving behaviour study requirements. The modified version of the 

framework by Van Schangen et al. (As it is shown graphically in Figure 31) ensured that 

naturalistic driving research was conducted while addressing every issue of concern in a well-

regulated manner. This strategic framework was designed based on the V-model approach that 

is broadly used by industry for system design, hardware and software development as well as 

conducting tests (Osborne et al., 2005; Van Schangen et al., 2011). The framework allows for 

every step to be completed in a scientific manner as well as in a sustainable and repeatable 

way, as far as possible. In regard to conducting field studies, the V-model places emphasis on 

two methodological concepts: validation and verification. As achieving the objectives of the 

tests involves breaking the process down into detailed steps, this helps to ensure test validation. 

Secondly, since it is visually arranged in the shape of the letter V, every step from the right 

side of the framework can be validated by the left side. These two concepts (validation and 

verification) have been disused by Osborne et al. (2005) as being a successful approach to both 

managing and executing a multi-dimension and multi-task process, including software 

development, benchmark testing and field studies (Osborne et al., 2005). Hence, all naturalistic 

driving behaviour studies have adopted this concept in order to design, manage, execute the 

project (Van Schangen et al., 2011; Sadigh et al., 2013; Eenink and European Commission, 

2016). The general version of V-model is illustrated below. Here, the project starts from the 
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left hand side, with project definition phase, then it is the implementation phase (at the bottom 

of the V) and finally, there is the outcome phase. The usefulness of the model is that if an error 

is observed during the integration, test and verification phase (right hand side), the cause can 

be found on the opposite side in the detailed design phase.  

 

Figure 30. General V-model or V-approach framework (Osborne et al., 2005) 

 

Adapting the research plan to this framework and executing its methodology62, brought 

substantial benefits to this project and the following list summarises what these are:  

• Providing a structured, and coherent stepwise project plan with common vocabulary to 

the other scholars working in this domain;  

• Adapting the model that has been used by OEMs to conduct field studies such as BMW;  

• Providing a platform for validating  the project that is in accord with similar studies; 

• Assuring issues that otherwise might not be addressed. e.g. ethical issues and the data 

management plan are covered.  

 

                                                
62 More details available at: http://wiki.fot-net.eu/index.php/FESTA_Handbook  
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The framework for conducting and implementing a naturalistic driving field study (Figure 31) 

has three main phases: (1) preparation, (2) data acquisition and management and (3) post-

processing. In this case, the field study preparation required identification of the aims and 

objectives when conducting such an experiment as well as clarifying the procedure and 

requirements. The data acquisition and management involved providing details about the 

measurement sensors, the data acquisition procedure, data handling and the data storage 

method. The post-processing stage of the framework pertained to the approaches to analysing 

the data and reporting the findings (see Figure 31). 

 

Based on the framework, at each stage of implementing this research study, it was necessary 

to address issues considering ethical, legal, and personal privacy regarding studies that 

involved human participants as test subjects (see 3.5). The research presented, at its core, has 

involved being committed to the Belmont Report’s63 basic principles when conducting an 

investigation that includes human participants, which is “to acknowledge the autonomy of test 

subjects and to protect those with diminished autonomy” (if applicable). 

 

This chapter’s aim is to present the methodological concerns regarding each stage of 

implementing and conducting a real world driving study. It includes detailed information about 

the steps taken to design the aforementioned experiment and the study procedure, as well as a 

review of the monitoring devices used and the approach chosen in terms of acquiring and 

managing the data. The chapter is structured as follows. Section 3.2 contains the experimental 

design and section 3.3 covers data acquisition, whilst section 3.4 explains and justifies the post-

processing and analysis of the data. Finally, in section 3.5 ethical and privacy issues regarding 

                                                
63 The Belmont Report, Ethical Principles and Guidelines for the Protection of Human Subjects of Research, 1979. 
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this research are discussed in detail. The table below provides a detailed view of this project’s 

research plan, according to the FESTA V-model guidelines.  

Table 21. The detailed research plan based on FESTA V-model steps 

Preparation 

  

Function identification 

and description 

Investigating the impact of naturalistic driving 

behaviour differences on energy consumption and 

road safety  

 

Use cases  
Telematics-enabled motor insurance premiums 

and fleet tracking and scoring systems  

Research questions and 

hypotheses  

1. What driving parameters (e.g. vehicle speed, 

acceleration, and engine speed, road 

geometry) can identify drivers’ driving 

differences? 

2. What is an effective way to classify, rank, and 

group drivers based on driver differences and 

similarities? 

3. Is it feasible to model variations of driving 

behaviour based on collected real driving 

data? 

4. What driving parameters (e.g. vehicle speed, 

acceleration, and engine speed, road 

geometry) can identify drivers’ attitudes to 

driving safely? 

5. What is an effective way to classify, rank, and 

group drivers’ safe driving based on 

dangerous driving habits? 

Performance indicators  

1. Understanding and characterising the impact 

of real world driving on fuel economy  

2. Eliciting the contributing factors of drivers’ 

driving behaviour to road safety  

3. Investigating potential analytics approaches to 

rank drivers and the effect of drivers driving 

behaviour differences  
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Study design  

Road: pre-defined 4 km route with uphill, 

downhill and flat sections  

Vehicle: Less than 5 years old medium size car  

Driver: Public announcement to recruit drivers, 

with the target age being between 18 and 34  

Measures and sensors  
OBD II dongle with wired connected GPS sensors 

and a dedicated sim card  

Data acquisition 

and management  

  

  

Data acquisition  
Speed, engine speed, total fuel consumption, and 

locations  

Database  Secure MySQL database developed 

Data analysis  
Exploratory data analysis, descriptive statistics, 

and Geo-analysis of driving data  

Post processing  

  

  

Research question and 

hypotheses 
Examine 5 research questions  

System and function 

analysis  

Evaluating the system and function strengths and 

weaknesses  

Socio-economic impact 

assessment  
Identify drivers who are eco and safe driving  

Ethical and legal 

issues  
  

Anonymised personal information  

Anonymised driving data  
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Figure 31. The framework for conducting and implementing a naturalistic driving field study 
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3.2 Experimental design 

Organising a driving event, where the effects of selection bias (inadequate population with 

insufficiently randomised representation) and performance bias (allocating interventions by the 

participants and researcher during the test) are kept at their minimum, requires an accessible 

and equal opportunities communication platform. The Eco-Safe Driving Challenge (ESDC) 

was developed as a communication interface to connect potential drivers to the research team. 

By being provided with a website and an online signup form, potential drivers were able to 

apply to participate at driving events. The ESDC web pages also worked as a campaign to raise 

awareness about the effect of drivers on fuel economy and road safety in addition to providing 

accessible information about event regulations and criteria. On the web pages, one entire 

section is dedicated to providing a clear statement of ethical and legal issues and well as 

answering any concerns regarding data protection and privacy. The general approach towards 

designing and experimentation in this study is based on the principles of the following 

standards (listed below) on driving behaviour64 (vehicle characteristics) and vehicle dynamic 

field studies, as commonly employed, so as to achieve repeatable and reliable test results. There 

are eight principles that the following standards are based upon, and that need to be addressed: 

test scope, test method, testing variables, measurement equipment(s), test conditions, test 

procedure, data analysis method, and finally, the data evaluation and presentation approach. 

 

1. ISO 4138:2012 Passenger Cars: Steady-state circular driving behaviour, Open-loop test 

method (BS ISO 4138:2012, 2012). 

2. ISO 7975:2006 Passenger Cars: Braking in a turn, Open-loop test method (BS ISO 7975, 

2006). 

                                                
64 In this case, this does not refer to drivers’ driving behaviour, but rather, to vehicle dynamic characteristics. 
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3. ISO 9816:2006 Passenger Cars: Power-off reaction of a vehicle in a turn, Open-loop test 

method (BS ISO 9816, 2006). 

 

Since one aspect of this field study was the decision to conduct the trials under control 

conditions, reviewing these standards helped to establish a test protocol, as follows:  

 

1. Engine cold start (Roberts, Brooks and Shipway, 2014): to avoid the cold start effect on the 

test, the first round of driving was not included in the study;  

2. Review each car’s MOT report and previous service records; 

3. Make a physical check of tyres, engine oil level, fuel level, lights and diagnostics alarms’  

3. Unwanted traffic: to avoid train like traffic caused by the participants, each driver asked to 

wait 3 to 5 minutes, if another driver left the parking prior to him/her;  

4. Record and report weather including humidity, temperature and wind speed as part of the 

data collection.  

 

Due to the nature of a driving task, there are many possible variables available to measure and 

monitor, which can be classified into three categories: variables relevant to the road, variables 

that present drivers’ information and finally, those variables that provide information about the 

vehicle. Designing a successful naturalistic driving study requires consideration of these 

variables, selecting useful parameters and installing a monitoring system so as to be able to 

collect data throughout the driving event. This section presents the planning steps taken to host 

the main driving event, which all the findings and results of this project are based upon. The 

event took place on 9Th February 2014. Before this, two pilot studies were conducted in May 

and November 2013 to confirm the feasibility of organising a driving event as well as testing 

monitoring devices with a large number of drivers.  
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3.2.1 Driver selection  

Drivers and driving enthusiasts were invited to register their interest in the driving event using 

the online form. The event was an equal opportunities occasion and voluntary in nature, in 

which all drivers qualified according to certain guidelines were able to participate (Appendix 

B). Three Sundays were offered for them to choose from and they were asked to note any 

special requirements they had. Appendix B shows the driver eligibility criteria designed for the 

event. All drivers had to nominate a co-driver to accompany them during the event. Having 

met these criteria, a further condition was set for eligibility to attend was being between 18 and 

34 years old. This demographic was set for the event, due to the fact that according to 

Association of British Insurers (ABI), the single biggest cause of accidental death of young 

people aged 15-24 is being involved in a fatal car accident65. Moreover, other campaigns in the 

UK, such as ABI Campaign for Safe Young Drivers66, RoSPA's Young Drivers Campaign67 

and Young Driver Focus68, pointed out that young drivers (18 - 34) are more at risk owing to 

their being over-confident, having poor assessment of hazards and having a higher tendency to 

take serious risks while driving (Bates et al., 2014). While the were no limitations to signing 

up to become a driver in this project, after this period, it became clear that those most interested 

were between 25 and 34 years old.  

 

3.2.2 Vehicle selection and allocation 

Vehicle selection was decided based on three factors: firstly, by reviewing statistics concerning 

the top brands of vehicles that can be insured cheaply by young drivers (18 to 34 years old); 

secondly, by ascertaining which had low maintenance and running costs; and thirdly, by 

                                                
65 Details available at https://www.abi.org.uk/Insurance-and-savings/Products/Motor-insurance/Young-
drivers/ABI-campaign-for-safe-young-drivers 
66 Details available at https://www.abi.org.uk/Insurance-and-savings/Products/Motor-insurance/Young-drivers 
67 Details available at http://www.rospa.com/campaigns-fundraising/current/young-drivers/ 
68 Details available at http://youngdriverfocus.org.uk/youngdriverfocus/  
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ranking the sales figures of the UK's best-selling new cars. Subsequently, the Castel Wireless 

Telecommunications Co. Ltd Company (the monitoring device provider) and the Hertz 

Corporation Car Rental Company were asked whether the chosen monitoring device would 

work in the preferred vehicle and in the case of Hertz, they had been asked whether they would 

be able to provide sufficient numbers of the selected cars. Firstly, regarding the different brands 

of vehicles that can be insured cheaply by drivers, taking into account two groups of vehicles 

(group 1 and 2) classified by insurance groups69, the results of the UK’s largest ownership 

survey70 completed by 61,000 UK motorists and car owners, were scrutinised to find the 

cheapest to insure for young drivers and amongst these were: the Dacia Sandero, Skoda Citigo 

and the Vauxhall Corsa.  

 

Secondly, regarding car brands sales figures, according to The National Franchised Dealers 

Association (NFDA) report71 about new car sales figures, the top three sellers are Ford, 

Vauxhall, and Volkswagen. Amongst the models that these manufacturers offer, the best-

selling cars in 2013 – 2014 were the Ford Fiesta, Vauxhall Corsa, Ford Focus, and Volkswagen 

Golf. As part of the aforementioned survey, they looked at the running costs, which were based 

on data provided by drivers about the cost of their new owned vehicle for a three-year period 

over 36,000 miles of ownership duration. Table 22 shows a summary of the cheapest cars in 

the UK regarding running cost and insurance group. As the shading shows, the Vauxhall Corsa 

is the only car that is listed in all three categories.  

 

                                                
69 Groups 1 and 2, according to the Group Rating Panel and the insurers, are four or five door small cars with a 
small engine capacity. According to Thatcham Research, there are eight factors that are used for group ratings: 
Damage and Parts Costs, Repair Times, New Car Values, Parts Prices, Performance, Safety, Bumper 
Compatibility, and Car Security (Thatcham Research, 2013). 
70 The survey is organised by Auto Express annually and the results can be seen at: 
http://www.autoexpress.co.uk/driver-power  
71 Details available at http://www.nfda-uk.co.uk/reporting/new-car-figures/ [Accessed: January-2015]. 



      Chapter 3 – Research Methodology 

 135 

Table 22. A comparison of top-selling vehicles and cheapest cars to insure and maintain, 2013 –
14  

The top 10 best-selling 
vehicles (ranked) 

Cheapest cars to insure 
(alphabetically ordered) 

Cheapest cars and models to run 
(ranked) 

Ford Fiesta Dacia Sandero 1.2 Toyota Aygo – 1.0 VVT-i 3dr 

Vauxhall Corsa Hyundai i10 1.0 Peugeot 108 – 1.0 Access 3dr 

Ford Focus Peugeot Bipper Tepee Citroen C1 – 1.0 VTi Touch 3dr 

Volkswagen Golf Renault Twingo Dacia Sandero – 1.2 Access 5dr 

Nissan Qashqai SEAT Mii Kia Picanto – 1.1 1 5dr 

Vauxhall Astra Skoda Citigo Hyundai – i10 1.0 S 5dr 

Volkswagen Polo Skoda Fabia Vauxhall Corsa – 1.4 3dr 

Audi A3 Smart ForFour Skoda Citigo – 1.0 S 3dr 

Mercedes C-Class Vauxhall Corsa Volkswagen up! – 1.0 3dr 

MINI Volkswagen Up! SEAT Mii – 1.0 S 3dr 

 

The Vauxhall Corsa was the only car that statistically showed the highest sales of newly 

registered vehicles, while providing low running cost and insurance. Consequently, it was 

selected as the primary vehicle to study. However, as mentioned above, it was necessary to 

consult with both the Castel Company (project collaborator and monitoring device provider) 

and the Hertz Rental Company (provider of rental vehicles for the event) to get agreement that 

this would be our primary choice of vehicle, that it was compatible with the monitoring device 

and that they would be able to supply sufficient numbers.  

 

The secondary choices were decided upon based on the following criteria. Firstly, it was agreed 

that instead of drawing on the table above (Table 22), the selection would be made based on 

the following: the vehicle’s similarity to the Vauxhall Corsa (in terms of engine size, build and 

insurance cost); its availability in the week prior to the event; and finally, that a range of vehicle 
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classes should make up the study sample. Consequently, the other vehicles selected were the 

Nissan Note (classified as B, B+, or MPV depending on the model), as well as the Nissan Juke 

and the Fiat 500L, the last two of which are both mini multi-purpose vehicles (mini MPV).  

  

Hertz provided, in total, three of the Vauxhall Corsa VXs, four of the Nissan Notes, one Fiat 

500 L and one Nissan Juke. Hence, the Vauxhall Corsa VX and the Nissan Note were the two 

primary vehicles for the event. Cars were allocated to drivers on a random basis. In total, seven 

out of nine drivers drove Class B vehicles and as a result, they became the main test subjects 

The other two drivers were given Class C cars, the Fiat 500L (Driver 8) and the Nissan Juke 

(Driver 15), and their results were kept separately to those of the Class B drivers, only being 

used in studies where drivers are compared in terms of fuel consumptions and safety attitudes. 

With the exception one of the Vauxhall Corsa vehicles, which was manufactured in 2008, the 

rest were manufactured in or after 2013, and all had manual transmission. Out of the nine 

participating vehicles, only one of the Nissan Notes (car number 12) and the Fiat 500L (car 

number 8) were run on diesel fuel. To avoid any misconceptions regarding the drivers’ ID (for 

example the driver’s ID that is 1 being considered to be the best driver) drivers ID this started 

from number 7. The table below presents a summary of the drivers and vehicles participating 

in the driving event on 9th February 2014.  
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Table 23. Drivers’ details, and vehicle information 

Driver ID 
Driver 
Gender 

Age 
Vehicle 
Mark 

Model 
Engine 

class 
Year of 

manufacture 
Drag 

Coefficient 
Fuel type 

Transmission 
types 

7 Male 25 – 34 Vauxhall Corsa VX B 2008 0.33 Petrol Manual 

8 Male 25 – 34 Fiat 500 L C 2013 0.31 Diesel Manual 

9 Male 25 – 34 Nissan Note B (MPV) 2014 0.29 Petrol Manual 

10 Female 25 – 34 Nissan Note B (MPV) 2014 0.29 Petrol Manual 

11 Male 25 – 34 Vauxhall Corsa VX B 2013 0.33 Petrol Manual 

12 Male 25 – 34 Nissan Note B (MPV) 2013 0.29 Diesel Manual 

13 Female 25 – 34 Nissan Note B (MPV) 2014 0.29 Petrol Manual 

14 Male 25 - 34 Vauxhall Corsa VX B 2013 0.33 Petrol Manual 

15 Male 25 - 34 Nissan Juke c 2014 0.35 Petrol Manual 
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3.2.3 The route design and criteria of selection 

The main objective when designing the test route is to have a significant amount of control 

over drivers’ safety and to ensure the accuracy of the collected driving data. To ensure 

repetition and precision of the data collection, a closed driving loop was designed for this study. 

The route has been developed based on three main objectives: Firstly, it had to be in an urban 

area so as to represent city driving with everyday traffic settings (e.g. urban traffic flows and 

traffic obstacles) and road configuration (e.g. traffic lights, a roundabout, and a pedestrian 

crossing). Secondly, it had to cover a sufficient distance so as to represent a common inner city 

driving experience as well as such that it provided sufficient data. Finally, for the convenience 

of drivers and the organising team, it had to begin and end at a location in which drivers’ 

continuous starting and stopping did not violate the Highway Code and put other road users in 

danger. As a result, a route was selected that was 4 km long and which took approximately 8 

minutes to drive. 

 

The University of Bath West Car Park was chosen as the event’s primary stop and start location 

and allocated parking spaces were assigned for the day by the University Security Department. 

The event organisers’ stand, refreshments and toilet facilities were all at the same location for 

drivers’ comfort. The driving route started at the University of Bath West car park entrance to 

North Road. It then followed the A36 towards Bath city centre towards Bathwick Hill 

roundabout. After taking the roundabout’s first exit, the route went along Bathwick Hill Road 

back towards the University of Bath. Finally, it went left along North Road and turning right 

finished at the same starting point. The following tables and figure present driving direction, 

route properties and location.  
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Table 24. The step by step direction table 

Sign Descriptions  Distance  

Start Head west on North Rd towards Golf Course Rd  1.40 km 

  Turn left onto Warminster Rd/A36 378 m 

  Turn left onto Sydney Gardens 306 m 

  At the roundabout, take the 1st exit left onto Bathwick Hill 1.66 km 

  Turn left onto North Rd 309 m 

End North Road, Bath, Bath and North East Somerset BA2, UK 4.1 km 

 

Table 25. Road properties including the route elevation data 

Road properties  Values  

Start altitude 164 m 

End altitude 164 m 

Start and end longitude  -2.335130 

Start and end latitude  51.378410 

Maximum altitude 173 m 

Minimum altitude 29 m 

Distance 4.1 km 

Total ascent 145 m 

Total descent 145 m 

 

 

Two secondary characteristics were purposefully included in the driving route. Firstly, it 

covered the two main roads leading to the two main entrances to the University of Bath coming 

from the city centre, carrying the highest commuter volume from that direction. Hence, it was 

anticipated that the findings of this research would be of interest to those driving to and from 

Figure 32. The driving route map 
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the university. The second important feature about this route is the fact that it contains an equal 

amount of downhill driving and uphill driving, that is, around 1.4 km of each. Introducing a 

steep incline to the route meant that driver behaviour in both the uphill and downhill directions 

could be analysed and compared.  

 

Figure 33. The road profile; the route elevation against distance 

 

As has been mentioned at the beginning of this section, the traffic settings of the route are 

critical for a better understanding of drivers’ behaviour. The route needed to present a sufficient 

number of traffic settings to become a nonbiased representation of everyday driving scenarios. 

The selected route contained three sets of traffic lights, one roundabout, and one zebra 

pedestrian crossing. The table below summarises the traffic settings, road markings, and 

manoeuvres of the driving course.  

Table 26. The traffic configuration, road markings, and manoeuvres 

Distance (km)  Road details  

0-1.4 km Start point, downhill driving  

1.4 km Entering main road, STOP, turn left 

1.5 km, 1.8 km, and 2 km 
First, second and third traffic lights positions from the 
start point  

2.1 km Bathwick Hill roundabout, first exit off the roundabout  
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2.4 km Zebra pedestrian crossing with a Belisha beacon lighting  

2.4 -3.8 km Uphill driving 

3.8 km 
Sharp left turn, short downhill section towards car park 
entrance 

 

The information above is demonstrated graphically in the two figures below. As is evident, the 

drivers had to pass through a series of junctions (traffic lights) over the length of the driving 

route (top map). The topographic contour map72 in the second figure provides details of ground 

relief as well as both the natural and man-made surroundings. 

 

 

 

 

 

 

Figure 34. The driving route traffic settings (top), the topographic contour map of the road 
(bottom)  

  

                                                
72 Also refers to as the ordnance survey (OS) map. 
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3.3 Data acquisition 

The methods of collecting data for naturalistic driving studies include collecting three classes 

of information: background data, static variables and digitally acquired data from monitoring 

devices and sensors. This separation meant that the fixed background data would not interfere 

with the data processing as these were not going to be employed in the analysis. Moreover, the 

static variables were used to access the digitally collected time series data for comparative 

analysis, as explained. This section covers data acquisition methods of these variables as well 

as discussing the utilised monitoring devices, technology and its applications (See Table 27). 

 

3.3.1 Background data 

The information about the participating drivers and co-drivers, as well as documents about 

planning along with running the event was classified as background data. This information was 

recorded for safety, legal and monitoring purposes. The participants’ background data were 

gathered online from the Eco Safe Driving Challenge (esdc2013.com) website.  

 

3.3.2 Static variables 

The static variables refer to information that remains constant throughout the field study, which 

are assumed to have only a minor effect on the outcomes of driver performance (e.g. vehicle 

dimensions, or the road profile). Such variables are partially used in the analysis of the data, 

for instance, to classify drivers based on their cars or to make a comparison between two roads. 

The static variables of a vehicle pertain to the details about its physical appearance as well as 

the engine and powertrain system specifications. This class of variables for roads includes 

unchanging information about road type, traffic settings, and road markings (See Table 27). 
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3.3.3 Digitally acquired (time series) variables  

The information successively measured over a time interval (time series variables) by in-

vehicle Data Acquisition Systems (DAS), is classified as digitally acquired variables. This 

includes any of the data attained through using sensors mounted on the vehicle. For this study, 

this involved collecting data from an Engine Control Unit (ECU) by data loggers and vehicle 

location by GPS sensors. 

 

The data logger device uses a standard on-board diagnostic (OBD-II) port to access a car’s 

ECU. It is a common method to monitor vehicle performance along with checking any faults 

in the vehicle control unit. The dongle connects to the OBD II port of the vehicle to read data 

from the ECU. Based on the number of available streaming channels of data from the ECU, 

the dongle can record many parameters, for instance, vehicle road speed (km/h), engine speed 

(rpm), intake manifold absolute pressure (kPa), intake air temperature (�), engine coolant 

temperature (⁰C) and data from the mass air flow sensor (g/s), to name a few. Each car’s 

location was gathered by the Global Positioning System (GPS) sensor device. This includes 

information acquired from vehicle direction, latitude, and longitude at 10-second intervals. The 

GPS sensor time was synchronised with UTC to avoid latency between the time that the actual 

event took place and the time marked in the dongle, which was then saved in the server. It is 

important to mention that despite the dominant source of error with the GPS positioning 

method being due to a satellite's position and atmospheric disturbances, it is an excellent source 

for providing accurate information about speed and distance travelled (see Table 27)
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Table 27. Detailed table of acquired information 

Type of variable Recorded information Primary data source and instrument  Classification level  

Background data 

Drivers and co-drivers 
• Age  
• Gender 
• Driving licence 
• Vehicle ownership details 
• Personal information 

The event sign up forms and ESDC web page  
 
All documentation related to host and run the 
event 

Highly classified under the Data 
Protection Act 1998 (DPA). 
 

Static variables 

Vehicle details and specifications  
• Mark and model 
• Engine class 
• Year of manufacture 
• Fuel type 
• Dimension details 
• Engine specification and transmission 

types 

Vehicle user’s manual and information provided 
by the manufacturers  
 

Moderately classified, access 
limited to the research team and 
educational use; no public access 
allowed except under RCUK open 
access conditions. 

Route information 
• Road types  
• Traffic settings and road markings  
• Roads speed limit information 
• Route elevation profile  
• Historical collision data of the route  

Online map providers and the road collision 
historical data published by the Department for 
Transport. 

Moderately classified, accessed 
through open access and open 
government licence (OGL) to copy, 
publish, distribute, adapt, and 
transmit the information. 

Time series variables 

In-vehicle data from OBD dongle 
• Vehicle speed and engine speed (rpm) 
• Second level of priority of vehicle 

variables73  
GPS sensor (direction, irection, latitude, longitude 
and altitude) 

Real-time diagnostic and tracking system of 
IDD212G from Castel and its online platform; 
user access level: management  

Moderately classified, access 
limited to the research team and 
educational use; no public access 
allowed except under RCUK open 
access conditions.  

                                                
73 Parameters such as intake manifold absolute pressure (kPa), intake air temperature (�), engine coolant temperature (⁰C) and mass air flow (g/s) were recorded, if available. 
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3.3.3.1  Tracking system and monitoring instruments 

Castel Company was the industrial partner of this project and provider of the tracking system. 

The monitoring system included an ECU reader, a GPS sensor and an online monitoring server 

and database. Their real-time diagnostic and tracking dongle, called IDD212G, comes with a 

mobile SIM card functionality to send recorded real-time data. The GPS sensor collected 

vehicle location attributes and was connected to the dongle by an external wire. The ECU 

parameters and the location data were transmitted to the Castel Company live server via the 

Global System for Mobile communication (GSM). Figure 35 demonstrates the Castel IDD-

212G monitoring device function and data collection procedure. Data from the OBD dongle 

and the GPS sensor was transmitted by the built-in SIM card function to their online server, 

which could be accessed live for monitoring purposes and later on, stored securely on their 

server for post-processing purposes. 

 

Figure 35. Monitoring device setting 
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3.3.3.2  Monitoring instrument set-up procedure 

The Castel IDD-212G monitoring device is a programmable dongle74 with GSM functionality. 

This means that its settings can be customised to record specific vehicle parameters for the 

ECU, and it can transmit them to the Castel server via a mobile network. The Castel PC-Tool 

software can program the device and the settings to include: defining the GSM network 

information, customising threshold rule limits, choosing the uploading time interval, assigning 

the required parameters to upload, identifying the vehicle engine size and fuel type and finally, 

synchronising the local time with UTC (Eidson, 2005). All nine monitoring devices used at the 

event were customised using the provided software. Before the driving event, the mobile 

network coverage and 3G coverage of all the major mobile network providers were 

compared75. According to the mobile network coverage map provided by Open Signal, the area 

is strongly covered by all mobile network providers. A special arrangement was made with the 

EE Limited network provider to supply mobile SIM cards for the event, with 3G coverage as 

the Castel devices were all configured to support a 3G network including 800, 850, 1700 and 

LTE bands 1900. Table 28 summarises the general protocol used to configure the parameters 

of the monitoring devices. 

 

The next step after the required changes were made to the dongles was to connect the 

monitoring devices to the vehicles’ OBD ports. As Figure 36 shows, the GPS sensors were 

attached to the dongles by cable. This is for two important reasons, firstly, the GPS sensor 

could use the dongle mobile network to transmit location data to the server. Secondly, the GPS 

sensor needed to be mounted in the car, on the car dashboard beneath the windscreen, in order 

to have a clear signal without interference from the vehicle body parts. Each dongle came with 

                                                
74 Supported protocols are: J1850-VPW, J1850-PWM, KWP2000, ISO9141, ISO 15765. 
75 Comparison made by using: http://opensignal.com [Accessed: January-2013]. 
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a SIM card tray, in which the full-size SIM card was inserted to transmit both vehicle and 

location data. The Castel device uploads raw GPS signal to its server second by second. The 

acquisition frequency of OBD II data is up to the operator to determine. For this project, the 

uploading data of data was selected to be every 5 seconds. Despite having 1hz location data, 

Castel only provides the contextual data combined with OBD data to the third parties. Hence, 

in this study the contextualised data (GPS coordination matched with the map data) has been 

combined with OBD information, namely, the engine speed for every 5 seconds. As one 

objective of the project has to been defined as being a low-cost solution, other in-vehicle 

devices, such as cameras, LIDAR sensors, and steering wheel sensors were not considered for 

inclusion.  

Table 28. Monitoring dongle settings 

Configuration parameters  Setting details  

The GSM network information The EE Limited mobile network with the 3G SIM card  

Threshold rules for driving 
behaviours categorised as alarming 
or dangerous driving 

The default excessive value setting chosen: 
§ Engine speed over 4500 rpm 
§ Speed over speed limit 
§ Hard acceleration over 0.4 g 
§ Hard deceleration over 0.6 g 

The uploading time interval 
10 sec intervals for both vehicle engine data and location 
information  

Parameters to monitor  

The following parameters were selected: 
§ Engine speed (rpm) – for all vehicles  
§ Vehicle speed (km/h) – for all vehicles  
§ Intake manifold absolute pressure (kPa) – if available 
§ Intake air temperature (�) – if possible 
§ Engine coolant temperature (⁰C) – if possible 
§ Mass air flow sensor (g/s) – if available 

Engine size and fuel type For each vehicle, the engine size and fuel type were set  

UTC synchronisation 
All devices synchronised to UTC for precise time keeping 
(Eidson, 2005) 
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Figure 36. The monitoring device setup 

 

The vehicle OBD port, as suggested in the SAE standards, has to be located inside 

the vehicle compartment. As is stated in the standard for passenger cars, it needs to 

be located within 90 cm of the steering wheel, and it must not require any device to 

access it. The variations in OBD port location depend on the make and models of 

the car manufactures, but they can only be located in one of the eight locations, as 

presented in the figure below (source: http://delphiobd.installernet.com/)  

 

 

Figure 37. The eight possible locations of an OBD port in a vehicle manufactured after 2000  

 

The OBD port of the Vauxhall Corsa cars is located beneath the dashboard control unit (under 

the radio and heater control system (location 6). This port for Nissan Note cars is situated on 

the right side of the steering wheel, and it is covered with a plastic lid (location 1). The correct 
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installation of the monitoring instrument can be checked by the beep sounds the device makes 

when the right connection has been achieved between the dongle and the vehicle.  

 

3.3.3.3  Live monitoring and the online server 

The Castel monitoring package includes an OBD reader, GPS sensor and an online platform 

for monitoring and storing driving data. The live monitoring feature was extremely helpful 

during the data collection procedure, as driver safety could be ensured by checking the 

participants’ performance in real-time. Additionally, live monitoring of the participating 

vehicles’ locations assured the accuracy of the data acquisition procedures. Each OBD dongle 

and GPS sensor had a designated ID and password and by using each device’s ID and password, 

each driver’s performance could be monitored. The Castel online platform provided two levels 

of access to its users. The first basic access level was for the drivers. The individual drivers 

could use their device’s ID and password to log into the Castel server. They could obtain their 

driving history, their driving performance and their driving scores (eco-driving score and safe 

driving score) according to the Castel scoring method. The second level was access to all 

drivers’ information, performance and scores. The Castel divides this access level into four 

main classes: monitoring, tracking, report, and management. 

 

The monitoring section 

At the manager access level, the monitoring section was where drivers with active monitoring 

devices could be monitored in real-time. The primary goal was to check their safety at all times 

and secondly, in the case of fleet managers, they can assign digital fencing for each driver and 

to be notified, if one drives outside a specified area. In this project, the monitoring section was 

used to check whether drivers were keeping to the assigned route during the driving event. 

Each journey was recorded during the live monitoring for further use. 
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The tracking section 

All recorded journeys could be replayed and checked by providing the date, time and vehicle 

number. This was particularly useful when the authenticity of the driving data (e.g. the driver 

following the event route) needed to be checked. The tracking section simply provided access 

to the recorded data in the form of a video replay.  

 

The report section 

After each journey was completed, the server recorded the data and displayed it in a tabulated 

format. The Castel online platform provided basic reports about vehicle performance including 

their eco and safety score, fuel usage, total mileage and last recorded location. These reports 

are available for three months after the date that data are collected and they are then deleted 

from the server. The Castel reasoning regarding this is, firstly, to protect users’ privacy and 

secondly, the server performance depends on the volume of the saved data. Consequently, 

regular elimination of past data helps service quality and server response speed. It is important 

to mention that all recorded data could be accessed and downloaded at any time during the 

three months subsequent to the event date.  

 

The management section 

The final part of the Castel online platform was for changing and modifying settings related to 

the online platform.  
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3.3.3.4   SWOT analysis and P-diagram to evaluate the monitoring 

approach  

The Castel company profile has been discussed in the first chapter (see 1.6.2). It's collaboration 

and support provided an excellent opportunity to conduct this research; however, it is important 

to assess the chosen monitoring method and monitoring instruments. SWOT (strengths, 

weaknesses, opportunities and threats) analysis is a useful and a structured method for 

evaluating the use of an OBD dongle and GPS sensor monitoring system as a means of 

monitoring driver performance. Since the primary users of these devices are motor insurers and 

fleet management companies, the SWOT analysis was conducted according to these 

beneficiaries’ interests. This analysis helps to identify the advantages and constraints of the 

monitoring devices. The SWOT analysis was conducted for both the tracking system and the 

Castel monitoring devices. The results of the study have been tabulated for comparison 

purposes and are provided below (see Table 29). 

 

The second part of the monitoring approach is to evaluate the system (i.e. OBDII dongle and 

GPS sensor) item by item. Through this, potential faults and undesirable outcomes could be 

identified prior to the case study. To adapt the P-diagram five elements were addressed that 

were relevant to this project, these being: 

• Input signal: system defined input signals;  

• Control factors: settings that can be changed or modified to achieve objectives;  

• Noise factors: any non-inherent faults that can impact on the design that are not out of 

the scope of the control factors;  

• Desired output: to have a tangible driving and location database useful for addressing 

the research questions; 

• Undesired output: output dataset that facilitates achieving project objectives (see 1.4). 
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Table 29. The SWOT analysis of the monitoring method and chosen monitoring package 

 Monitoring method (OBD dongle and / or GPS sensor) Chosen monitoring package from the Castel Company  
St

re
ng

th
s 

• Has indirect positive impacts on the environment and fuel 
consumption  

• Has an indirect positive effect on road safety due to a 
positive incentive to drive carefully and be more alert  

• The motor insurers can individually charge drivers 
according to their style of driving by using the telematics-
based monitoring method  

• The device is low cost and requires low maintenance  
• It is compatible with major mobile network providers  
• It is easy to use and to set up  
• The Castel online platform is an excellent tool for monitoring 

drivers  
• Secure method of data storage and accessing data  

W
ea

kn
es

s • There are some concerns with using telematics as a primary 
method for insuring vehicles, such as personal data privacy 

• The costs of purchasing, installing and decommissioning 
devices are unclear  

• There is a limitation regarding the number of parameters that can 
be monitored at the same time 

• Data collection interval is 10 secs (0.1 Hz), and this might be an 
issue in the case of potential studies on collision detection 

• High-frequency data only available for live monitoring 
•  Continuous fuel consumption is not always easy to monitor  

O
pp

or
tu

ni
tie

s 

• The cost of telematics monitoring devices is decreasing 
rapidly  

• The ability to discriminate based on driving data, rather than 
a driver’s age or gender, is useful for insurers  

• Online driving feedback to drivers has indirect benefits to be 
eco-friendly and safe drivers  

• There is the capacity for added services (real-time feedback, 
remote diagnostics)  

• Many regulations have come into effect since 2014 to track and 
monitor vehicles 

• Devices are gaining more attention from the private sector and 
individual drivers  

• The online feedback for drivers is an attractive way to help them 
improve their driving skills and style  

T
hr

ea
ts

 

• There are legal risks involved in customer tracking 
• Laws in some countries preventing insurers from charging 

for the rental of monitoring devices  
• New technology and app-based systems might affect the 

market’s future 

• The Castel server is sometimes difficult to access, as is the case 
with all live servers and the three-month data access period can be 
problematic, especially for longitudinal studies 

• New types of vehicles (autonomous cars, alternative fuelled and 
electric vehicles) can change the market future in terms of using 
these devices  
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Function 
• Collect car locations 
• Collect vehicle wheel speed 

and engine speed  
• Collect diagnostics alarms  
• Fuel data (if available)  

Noise factors 
• Jammed or discontinuous data GPS data 
• Not compatible with OBD setting  
• Not able to access to wheel speed, engine speed, and fuel signals  
• OBD II device unplugged  

Control factors 
• Right setting to access correct signals from OBDII port  
• Synchronise device clock  

 

Desired outputs 
• Collect instantaneous signals for 

GPS signal, vehicle wheel speed, 
engine speed and fuel usage  

Input signals 
• Raw location data  
• Wheel speed and engine speed 

signals  
• Fuel signal  

 

Undesired output 
• Collecting discontinuous data  
• Few or no location data  
• Few or no wheel speed, engine 

speed and fuel data  

Figure 38. P-diagram assessment of monitoring devices 
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3.3.4 The study and data acquisition procedure  

This subsection covers the data acquisition procedures as well as the driving event day plan. 

 

3.3.4.1  Driving date  

To prevent a causation of tail-like traffic flow due to the driving event, over the course of two 

weeks, the traffic flow of vehicles driving in and out of the West car park was observed on 

Saturdays and Sundays between 11 am and 2 pm. Finally, it was decided that the event should 

take place on a Sunday so as to have a low traffic volume. Drivers received three potential 

dates on a Sunday to participate in the driving event, and the 9th February 2014 was selected as 

the most convenient day for all drivers to attend. Appendix C presents the recorded weather 

conditions on the driving day. It was scattered clouds with light rain and visibility of around. 

8.7 km (Appendix C). 

 

3.3.4.2  Vehicle arrangement 

As has been mentioned, the Hertz car rental company provided vehicles for the study and the 

drivers were asked to be present at the Hertz branch on Saturday 8th February 2014 with their 

valid UK driving licence to receive their assigned car. All the drivers drove to the West car 

park to park their car in the designated area allocated by the university for the driving event. 

All vehicles were rented with a full tank of fuel, and they were all returned to Hertz in the same 

way. All drivers, vehicles and, later on, monitoring devices, were assigned to the same numbers 

between 7 and 15.  

 

3.3.4.3  Monitoring devices  

The monitoring devices (OBD dongle, GPS sensor, and SIM card) were numbered and assigned 

to all nine drivers. Each monitoring device was programmed according to the assigned 
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vehicle’s specifications. All were installed in vehicles on Saturday 8th February 2014 and were 

left in the vehicles for the driving day. The devices were obtained from the drivers after the 

driving event.  

 

3.3.4.4  The map of the route arrangements 

The drivers received maps of the driving route in two formats; firstly, as a printed map with 

the direction descriptions and secondly, in a digital map format (KML file) to be opened by a 

driver’s mobile phone map and navigation app. Moreover, the drivers familiarised themselves 

with the route by following the lead car marshal during their first trial.  

 

3.3.4.5  The field study arrangements and tasks    

On the day, every driver received the information package which asked them to accomplish 

five uninterrupted driving rounds on the event route, without interfering with monitoring 

devices.  

 

The event aims and objectives 

The drivers were briefed about the research and its goals and objectives as well as the driving 

event rules and criteria. They were also informed about the health and safety aspects of 

participating in the event. Drivers and co-drivers were also assured about the voluntary nature 

of their attendance at the event. Drivers received an information package including the route 

map, the event information and consent forms, which they duly signed.  

 

Task one: First driving lap with two lead cars 

After the briefing and having completed the consent forms, they were assigned to participate 

in a driving task to familiarise themselves with the route and driving conditions. The 
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participating vehicles were escorted by two marshal cars to complete a driving lap. These cars 

(one in front and one at the back) guided the drivers to leave the West car park and followed 

the route designed for the study. When using the online fleet management platform from Castel, 

the monitoring devices were checked to make sure they were working appropriately and 

accurately on an ongoing basis throughout the driving test. 

 

Task two: The driving event 

The drivers were then asked to complete five separate driving laps which started and finished 

in the West car park. They were requested to take a break and to leave at least five minutes 

between each driving attempt. Moreover, if they saw a driver leave the car park, they had to 

allow another five minutes to prevent train-like traffic. Special arrangements were made to use 

the university 8W building foyer as a reception and relaxation area for participants during the 

event.  

 

The event closure  

After completing five laps and having returned to the car park, a final debriefing was carried 

out, and the monitoring devices were decommissioned from each vehicle. The Castel online 

server was checked to ascertain whether all the driving data had been uploaded correctly. 

 

 Figure 39. The Eco Safe Driving Event, 9th February 2014, the West 
car park, the University of Bath 
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Table 30. The driving day and data acquisition procedure and timetable 

Date  Timings Task details 

8th February 2014 To be completed before 5 pm Collected the vehicle and parked it in the West car park  

8th February 2014 - Monitoring drive installation  

9th February 2014 

9:00 to 9:30 Set up, preparation and team gathering 

10:00 to 10:30 Drivers arrival, monitoring devices checked (1st attempt) 

10:30 to 11:00 Briefing session consent forms, map of the route  

11:00 to 11:30 Driving trial with two lead cars, monitoring devices checked (2nd attempt)  

11:30 to 12:30 Driving session: cars left the campus with 5 min timing space between each car  

12:30 to 13:30 Lunch break (location: 8W building foyer)  

13:30 to 14:30 Driving session  

14:30 to 15:00 Participants return to the car park  

15:00 to 15:30  Monitoring devices collected, the final check and the end of the event  

15:30 to 16:30 All vehicles refuelled and returned  
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3.4 Post-processing and data analysis methods  

According to the driving field study framework (see Figure 31) (the modified version of the V 

approach by FESTA), the next stage of the analysis is to post-process the data. This step 

includes taking required action to prepare the data so as to be able to respond to the research 

questions and hypotheses. The data preparation step involves managing all recorded data, 

developing a data cleaning strategy, and finally developing a database. The data analysis 

contains all methods applied to the data to provide answers to the research questions. The first 

part of this section is dedicated to data management and the second half explains the methods 

applied to address the hypotheses and research questions.  

  

3.4.1 Data management   

As previously described, the data were stored according to three categories, namely, 

background information, static variables and time-series data. Each driver was allocated a 

number, which was duplicated for their car and their monitoring device, thereby anonymising 

the participants.  

 

3.4.1.1  Data clearing strategy  

Because the drivers started their trip from the University of Bath West Car Park, their driving 

records included driving data while they were driving in and out of the car park. Consequently, 

a data cleaning process was applied to the data points according to route location to eliminate 

the driving data inside the car park. The data cleaning strategy involved removing the driving 

data of drivers driving inside the car park area and knowing where these occurred in the time-

series data meant that each individual’s driving loop data could be accurately identified. The 
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start of the loop was at the junction between the link road to West Car Park and North Road, 

which was deemed appropriate because the drivers have to stop according to the Highway 

Code, as the latter is a main road. That is, it was easy to see where the cars were stationary in 

the mined data. However, as the engine and GPS data were reported at 10-second intervals on 

many occasions they came from slightly before or after this particular junction and when this 

was the case the next sampling point was selected. All the drivers’ data were arranged based 

on the laps they completed during the driving event. Each driver completed five laps and to 

identify each of them; the following strategy was applied to the dataset. The third trip of driver 

number 10 was assigned the code 10, 3, thereby linking the lap number to the universal ID for 

each driver, i.e. their ID number was linked to the vehicle and monitoring device. The 

significance of this data cleaning approach was to reduce the prime data to a core manageable 

data set that was easy to access and structured so as to facilitate comparative spatial analysis.  

 

3.4.1.2  The development of the driving database  

Having arranged the driving data as explained, the next activity was to develop a database in 

tabular form so as to allow for multiple enquiries. That is, regarding a naturalistic driving study, 

it is important to build a responsive and functional database, for this then provides the 

opportunity to conduct complex analysis and make various comparisons among the different 

drivers. Several studies have suggested methods for handling driving data and developing a 

driving database (Inata, Raksincharoensak and Nagai, 2008; Han, Yao and Liu, 2014). 

Regarding the academic research perspective, such a database can be accessed during future 

research for comparative purposes, and it can be revisited for further analysis by the lead 

researcher.  
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As a result, a data uploading protocol was designed and implemented so as to maintain a 

reliable database. The data were classified according to sensitivity and the importance of the 

information in relation to the research objectives. The database was built using SQL (MySQL 

server) and uploaded to the University of Bath MySQL server. The database was designed 

according to two main concerns, firstly, as a secure method of data management and secondly, 

providing dynamic query functionality for analysing data. The database architecture was based 

on the three core elements of the driving task: the road; the driver and the vehicle. 

Consequently, three separate tables were added representing these three aspects. Finally, the 

historical collision data, including crashes and casualties between 2005 and 2013, were taken 

from published reports by the Department for Transport (Graves et al., 2014). However, due 

to the size of the recorded data, only those pertaining to the driving route were considered at 

this stage of database development. The figure below visualises the developed database. As the 

driving data are kept in the Castel online server for only 3 months, all driving records were 

downloaded and added to the develop MySQL database on the University of Bath server.  

 

Figure 40. The driving behaviour database current architecture 
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3.4.2 The Study’s Key Goals   

From the literature review, it became apparent that prior research into eco-driving or safe 

driving has focused on identifying, classifying and/or modelling these concepts. Consequently, 

the aim in what follows is to cover all of these aspects through a series of studies as illustrated 

in topics below.  

 

Figure 41. Research topics 

 

Based on the above research topics, the following table (Table 31) was developed to organise 

the analysis conducted in this research. As the table shows, the post-processing studies have 

been divided into two topics (eco-driving and safe driving) and three categories (identifying, 

classifying and modelling). In total, there were 16 studies undertaken to achieve aims of this 

research. 

Eco-Driving

Identifying 
drivers' 

differences 

Classifying and 
scoring drivers

Modelling variation of driving styles 

Safe Driving 

Identifying 
drivers' 

differences 

Classifying and 
scoring drivers
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 Table 31. An overview of the post-processing analysis 

  Identifying driver differences Classifying and scoring drivers 
Modelling and simulating different driving 
behaviour 

E
co

 D
ri

vi
ng

 S
tu

di
es

 

1. Study of vehicle speed – distance and engine 
speed – distance analysis 
  

2. Study of the relationship between drivers’ road 
speed and engine speed 
  

3. Study identifying drivers’ aggression by 
comparing their speed vs. acceleration 
  

4. Geo-analysis of vehicle parameters in 
conjunction with the route elevation profile 
  

5. Descriptive analysis of vehicles’ speed profile 

1. Evaluating the similarity of drivers’ speed 
profiles 
  

2. Classifying drives based on their fuel usage 
and proposing the Vehicle Specific Power – 
Fuel Consumption metric (VSP-FC) 
  

3. Eco driving classification according to the fleet 
management scoring system 

1. Study of the factors affecting fuel consumption 
and constructing a fuel consumption 
forecasting model  
  

2. Modelling different driving styles and road 
condition effects on fuel usage and car 
emissions by using IPG Carmaker  
  

  

Sa
fe

 D
ri

vi
ng

 S
tu

di
es

 

1. Study of drivers’ safe speed perception when 
approaching road settings 
  

2. Study of drivers’ hard acceleration and 
deceleration habits 
  

3. Study for identifying drivers with coasting 
downhill habits 
  

4. Identifying collision-prone zones 

1. Safe driving classification according to the 
fleet management scoring system  
  

2. Two modifications to the fleet management 
scoring system 
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3.4.3 Identifying drivers’ driving performance differences just from vehicle 

engine data 

The first step toward examining driver’s differences is to study the primary data that is collected 

from vehicles via the monitoring devices in the context of eco-driving. The aim of the following 

analysis is to differentiate drivers’ driving performances from one another by observing the 

vehicle information. This includes investigating such matters as identifying individuals with 

aggressive acceleration and deceleration behaviour as well as the excessive speed habits of a 

particular driver. To achieve the aim of distinguishing different driving patterns and driver 

behaviour five studies were carried out. In the following studies the drivers’ vehicle speeds, 

engine speeds, driven distances and time taken to complete each lap are made as the parameters. 

Specifically, these studies are as follows: 

1. Study of vehicle speed – distance and engine speed – distance analysis (3.4.3.1). 

2. Study of the relationship between drivers’ road and engine speed (3.4.3.2). 

3. Study to identify drivers’ level of aggression by comparing their speed vs. acceleration 

(3.4.3.3). 

4. Geo-analysis of vehicle parameters in conjunction with route elevation profile (3.4.3.4). 

1 Geo-analysis of the vehicle parameters 

2 Geo-analysis of acceleration behaviour among drivers 

3 Geo-analysis of the vehicle-specific power among drivers 

5. Descriptive analysis of vehicles speeds profile (3.4.3.5). 

1 Analysis of drivers’ consistency and the range of chosen speed 

2 Descriptive analysis of drivers’ speed distribution 
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3.4.3.1  The analysis of vehicle speed – distance and engine speed – distance 

graphs 

Two parameters for which data were collected from all the participating drivers were the 

vehicle and engine speeds. First, for each driver their trips were identified and separated (this 

is explained in the data cleaning section). One only completed four laps owing to a monitoring 

device malfunction and two, completed six, with the data for the final lap only being used 

partially in the analyses recorded correctly. Secondly, the precise distance travelled for each 

trip was calculated by integrating the speed-time function, with the area under the speed-time 

curves representing this. 

Equation 8. The distance travelled when !(#) is non-negative 

%&'()*+,	(.)/,00,1 = / ( 1(
3

4
 

where, the time between ( = ) and ( = 5 is the duration of each driving trips. 

 

As a result, the vehicle speed – distance and engine speed – distance graph can be plotted. The 

results are self-explanatory, showing the variations in their vehicle and their engine speeds, 

which is a standard procedure when reporting type of investigation. 

 

3.4.3.2 Study the relationship between drivers’ road speed and engine speed 

In every vehicle powertrain system, the drivetrain characteristics determine the link between 

the vehicle road speed (km/h) and the engine speed (rpm). Since the relationship is a fixed and 

linear one, it is possible to examine whether drivers’ habits when shifting gears are efficient or 

not. With a view to find the relationship between the vehicle speed and engine speed, the 

following equation was used. Drawing on the work of Tutuianu et al. (2013) in relation to 
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determining the gearshift strategy for vehicles with manual transmissions, a simplified version 

of their method for calculating the WLTP76 for this aspect is employed (Tutuianu et al., 2013). 

The calculation requires information on the gear ratios, the final drive ratio and the rolling 

circumference of tyre, which can be extracted from vehicle specification manuals. 

Equation 9. For estimating the engine speed using the known road speed77 

678 = ('9,,1×;,).×<&*)0	1.&/,	×88)
>&.  

where, 

678 = The engine speed 

?9,,1 = The vehicle road speed (mph) 

@,). = The gear ratio for each gear 

A&*)0	1.&/, = The final drive ratio 

The combined conversion factor constant = 88 

>&.	= The tyre-rolling circumference (feet) 

 

The only uncertain parameter in this equation is the tyre rolling circumference. Since the 

standard wheel sizes of the Vauxhall Corsa and Nissan Note are known, the rolling 

circumference values obtained from tyre suppliers’ data sheets were used for this calculation. 

The area of interest when conducting this analysis is to compare the ideal calculated values 

with the drivers’ so as to elicit which of them performed abnormal gear changes and when the 

                                                
76 Worldwide Harmonised Light Vehicles Test Procedures. 
77 Simplified equation based on (True, 2003) 
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drivers’ engine speed was higher than usual (one of the signs of a late gear shifting habit). The 

outcomes of this study have been plotted for all the Vauxhall Corsa and Nissan Note vehicles78.  

 

3.4.3.3  Drivers’ level of aggression by comparing their vehicle speed vs. 

acceleration 

Several studies have investigated the relationship between vehicle speed and acceleration, in 

order to understand the accuracy of vehicle emission measurements or to ascertain the vehicle 

performance and fuel consumption efficiency (Jiménez-Palacios, 1999; Johansson, Färnlund 

and Engström, 1999; Bokare and Maurya, 2013). Other researchers (Mierlo et al., 2004; 

Joumard et al., 2006; Pelkmans and Debal, 2006; Felstead, McDonald and Fowkes, 2009) have 

studied the effect of driving styles on vehicle emissions by comparing real world driving data 

and hardware in loop testing on chassis dynamometer test cycles. It was generally concluded 

that driver style in terms of calmness or aggression differences can be identified by comparing 

their speed vs. acceleration diagrams. Some studies have used the vehicle speed vs acceleration 

diagram in various ways, such as to investigate real-world naturalistic driving behaviour 

differences (Alessandrini et al., 2006; Felstead, McDonald and Fowkes, 2009) and for 

improving in-vehicle driving assistance systems (Miyajima et al., 2007; Forbes, 2009). A 

similar approach to that of Felstead, McDonald and Fowkes (2009) has been taken into account 

to evaluate the differences among drivers. Appendix D shows an example from Felstead, 

McDonald and Fowkes (2009). where they compared passive and aggressive driving with 

laboratory results.   

 

                                                
78 Vehicle number 12 is diesel engine hence it is excluded from this study. 
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In this research, in order to identify drivers’ differences regarding their driving style (passive, 

normal, aggressive) the speed vs. acceleration data were used in a scatter plot format, to 

illustrate the drivers’ driving variations and their choice of acceleration. It was anticipated that 

there would be a concentrated distribution of acceleration vs. speed for calm drivers and widely 

scattered one for aggressive drivers.  

 

3.4.3.4  Geo-analysis of vehicle parameters in conjunction with road profile 

Geo-analysis of the vehicle parameters is an analytical method using GPS information to 

understand the overall distribution of vehicles’ road speed, engine speed, and driver 

acceleration patterns over the route driven. Moreover, it is an excellent way to demonstrate 

driver’s differences in a visual form. This type of analysis has been used in investigations 

regarding intelligent traffic management methods as well as studies that consider the topology 

of the road as a factor influencing vehicle emission and performance. Including the spatial 

characteristics of the route is seen as a robust way for understating differences between driver 

behaviour (Alessandrini et al., 2006; Van Schangen et al., 2011), determining the accuracy of 

vehicle emissions performance monitoring techniques (Frey et al., 2001; Noland et al., 2004; 

Pelkmans and Debal, 2006) or developing driving models (Pentland and Liu, 1999; Amditis et 

al., 2007; McGordon et al., 2011).  

 

As explained earlier in relation to the route criteria, the selected route contained downhill and 

uphill driving. Specifically, it comprised 1.8 km of downhill and obviously, 1.8 km of uphill 

driving, with an average ±16% change in gradient. When taking this into account, it sheds more 

light on the vehicle engine data in terms of driver differences in relation to uphill and downhill 

driving situations, which is unavailable when referring simply to the raw data. There were three 
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parts to this analysis, which was aimed at identifying and presenting drivers’ different 

behaviour according road gradient. Firstly, the geo-analysis of the vehicle road speed and 

engine speed in combination with the route setting was investigated. Secondly, each driver’s 

acceleration profile was compared with the road elevation profile, for the first, third and fifth 

lap. These were chosen for two reasons, first, so as to reduce the amount of data needing 

displaying and second because driver differences came over as more distinct by omitting the 

even laps. This selection of laps only pertains to when graphical illustrations are presented. The 

final part of this analysis pertained to a comparison between the drivers’ vehicle specific power 

(VSP) against road gradient, for this analysis also the first, third and fifth driving trials were 

considered. 

 

3.4.3.4.1 Geo-analysis of the vehicle parameters  

This study comprised an analysis of vehicle speed and engine speeds in relation to road profile 

and was divided into two stages. For the first, the drivers’ first, third and fifth vehicle and 

engine speeds were plotted against the driving route elevation data. The second stage involved 

investigating driver differences using a geoprocessing tool to draw their vehicle and engine 

speeds according to the GPS location points. The benefits of using this geo-analysis method 

are, first, its simplicity for exploring the distribution of vehicle parameters within the driving 

route and second, the ease by which it can identify differences among drivers. The ArcGIS 

geoprocessing tool provided by the Esri Company was used to build separate layers of data on 

a map for each driving lap. Every layer contained each driver’s location for one of the engine 

parameters, that is, either the vehicle speed or the engine speed data, at that location. This 

accumulates across all the laps, thus producing a solid route illustrating the behaviour of that 

parameter. In total, the Vauxhall Corsa and Nissan Note drivers’ data collection led to seven 

maps representing road speed profiles and seven pertaining to vehicle engine speed profiles.  
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3.4.3.4.2 Geo-analysis of the acceleration/deceleration behaviour among drivers  

A comparison between the drivers’ road and engine speed provides insights into their 

differences regarding speed at different locations (see subsection 3.3.4.1). The first part of the 

above study involved investigating driver differences with regards to the gradient. The same 

method can be applied to the instantaneous acceleration/deceleration of the drivers while 

driving downhill and uphill. To illustrate drivers’ differences in acceleration (B 'C) and 

deceleration (- m/'C) of the first, third and fifth driving laps were calculated at ten second 

intervals. 

 

3.4.3.4.3 The geo-analysis of the vehicle specific power among the drivers  

The final geo-analysis study that was conducted to compare differences among drivers 

pertained to the use of Vehicle-Specific Power (VSP). As it has been discussed in chapter 2, 

the VSP was introduced by Jiménez in 1999 as a method to quantify measured vehicle 

emissions more accurately through the use of remote sensing (Jiménez-Palacios, 1999). The 

application of VSP has evolved since then, with recent applications involving examination of 

the effect of road gradient and driving style on real-world vehicle emission measurements (Van 

Mierlo et al., 2004; Frey, Zhang and Rouphail, 2008; Wyatt, Li and Tate, 2013, 2014). Studies 

such as those of (Wyatt, Li and Tate, 2013; Sentoff, Aultman-Hall and Holmén, 2015) used the 

VSP as an instantaneous, second by second, vehicle engine power to examine and model 

vehicle emissions on the Motor Vehicle and Equipment Emission System (MOVES) 

software79. In contrast, to previous VSP applications that have used it to calculate vehicle 

emissions, here, it is used to demonstrate differences in driving styles. The VSP is the 

instantaneous power the vehicle generates based on its speed and acceleration on a certain road 

                                                
79 Details available at: http://www3.epa.gov/otaq/models/moves/ [Accessed: January-2014]. 
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with known slope. It can be calculated using the (Jiménez-Palacios, 1999) method, with the 

simplified version of the VSP equation (see equation 10). 

Equation 10. The vehicle specific power (VSP) equation (Frey et al., 2001; Zhai, 2007) 

D?7	 = 	/	×	()	 + 	;	×	'&*(F) 	+ G	) 	+ 	H	×	/I	 

Where,  

VSP = vehicle specific power (J K; = BC 'I) 

 / = vehicle speed (B ') 

) = vehicle acceleration (B 'C) 

F = road gradient 

G = rolling resistance coefficient  

H = drag coefficient (BLM) 

; = gravitational acceleration (B 'C) 

The road gradient is calculated based on the route elevation record, and a rolling resistance of 

0.03 is assumed based on the typical value for car tires on tar or asphalt. The following is the 

summary of the input variables used to calculate the VSP.  

Table 32. Input data to the VSP equation 

Equation variables Input data 

Vehicle speed Collected speed data 

Vehicle acceleration  Calculated from speed data  

Road gradient  Google earth road elevation  

Rolling resistance coefficient  0.03 

Drag coefficient  Based on each car specification  
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In contrast to previous studies that suggested using the data binning method to reduce the effect 

of slightly differing observations, in this study the actual instantaneous value of all the VSPs 

was calculated (Frey, Zhang and Rouphail, 2008; Wyatt, Li and Tate, 2013; Duarte et al., 

2015). Finally, the VSP trajectory of the drivers is compared with the gradient at the different 

points on the course so as to illustrate drivers’ differences as they drove round the undulating 

route. In this study, the comparison is only made for the drivers first, third and final driving 

laps, for reasons explained previously. 

 

3.4.3.5  Descriptive analysis of the vehicle speed profile 

Drivers’ attitudes towards choosing appropriate speeds determine their risk-taking behaviour 

and hence, their chance of being involved in a car accident. Moreover, a direct link was 

established by early researchers between vehicle speed and the severity of a crash (Fildes, 

Rumbold and Leening, 1991; Norris, Matthews and Riad, 2000). Other studies have found 

drivers with neglectful behaviour, such as disregarding the traffic rules and not following speed 

limits, are more likely to put themselves and other road users at risk of harm (McCarthy, 2001). 

Further studies have elicited that there is a positive correlation between measured vehicle 

emissions and drivers’ speed (Mierlo et al., 2004), which implies that reducing the road speed 

limit will lessen them. From what has been discussed, it can be concluded that drivers with a 

tendency to ignore the speed limit have a higher risk of involvement in an accident, producing 

more harmful emission gases (>NC and ONP) and using more fuel (Madireddy et al., 2011).  

 

In the following subsections (3.3.3.5.1 and 3.3.3.5.2), the aim is to investigate the consistency 

of the vehicle speed for the drivers across the different laps as well as the profile of their chosen 

speed across all the laps. In order to accomplish this objective, first, they are compared 
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according to their consistency in relation to their chosen vehicle speed (speed cumulative 

frequency) and in terms of the range of speeds they drove. Secondly, by using descriptive 

analysis, the drivers’ road speed distribution is examined and the normality of their speed 

distribution investigated. It is only logical to consider that the distribution of speed could not 

be normally distributed, because over the course of each driving trip, drivers were mostly 

driving close to the speed limit. That is, for the driving speed to be normally distributed, it 

would mean that a driver spent an equal amount time at high and low speeds, which would be 

very unlikely. Hence, the study presented in subsection 3.3.3.5.2 is carried out only to confirm 

this fact. Here is the summary table of the analysis undertaken in this section:  

 

Table 33. Summary table of the descriptive analysis of the vehicle speed profile 

Study objective  Analysis conducted  Approach and visualisation  

Driver consistency and 
the range of chosen 
speed (3.3.3.5.1) 

Drivers speed consistency over 
the course of five laps of driving 

Cumulative frequency is plotted 

Proportion of choice of speed in 
certain ranges 

Stack bar chart 

Comparison between driver's 
driving speed profiles 

Box-and-whisker plot 

Descriptive analysis of 
drivers’ speed 
distribution (3.3.3.5.2) 

Speed distribution and normality 
test 

The normality test for all the 
drivers’ speed distribution and the 
Q-Q plot (probability plot) 
 
Individual histogram graphs for 
all nine drivers so as to compare 
drivers’ speed distributions 
(Appendix E) 
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3.4.3.5.1 Analysis of driver consistency and the range of chosen speed  

In this subsection, three methods for comparing and demonstrating driver differences in terms 

of their driving speed are described. Firstly, to illustrate their speed consistency over the course 

of five laps of driving, their speed cumulative frequency is plotted for all the laps and 

reproduced in graphic form., with the main aim at this stage being to identify drivers with 

distinguishable differences in terms of the range of speed they used (Redsell, Lucas and 

Ashford, 1993; Haworth and Symmons, 2001; De Mol et al., 2009). The work of the Daniel, 

Brooks, and Pates (2009) has shown that the speed cumulative frequency plots are robust 

indicators of drivers with a tendency to exceed speed limit as well as drivers’ speed range 

consistency (Daniel, Brooks and Pates, 2009). Analysis. such as comparing drivers speed 

fluctuations between each trial was considered, however, it was concluded that this would be 

more beneficial in future works when larger quantities of driving data could be recorded.   

 

The second method for illustrating driver differences in their chosen speed is by calculating the 

percentages of certain speed ranges that each driver drove within. It is important to mention 

that the speed limit throughout the driving route is 30 mph, and this process allows for 

identification of when a particular driver exceeded the speed limit and for what duration. This 

value was calculated based on the number of times drivers are in a certain speed range. Four 

speed ranges were defined as a guide, and the outcome is illustrated in a percentage stacked 

bar chart format, these ranges being: 

• Between 0 and 5 mph (time at rest) 

• Between 6 and 24 mph 

• Between 25 and 30 mph 

• Over the speed limit  
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The relative distribution of speed within the sample reveals useful insights into driver 

preference regarding the different range of speeds. The final method for identifying driver 

differences is to compare their speed profile by plotting a box-and-whisker plot (box plot), 

which demonstrates the patterns of speed range used by the drivers. Specifically, the boxplot 

illustrates driver speed profile central tendency, interquartile range as well as showing those 

drivers who exceeded the speed limit. Prior to drawing the plot, the value of the median, the 

first and third quartiles and the maximum and minimum of the speed profiles were calculated. 

In both this and the previous study, the outcomes for drivers 8 and 15 are also included. 

 

To summarise, all three methods discussed in this section are aimed at illustrating the 

differences in the drivers’ speed profiles. The findings, as presented in the next chapter, 

highlight the fact that driver’s choice of speed is an identifiable parameter that can reveal useful 

insights regarding differences in driving behaviour. 

 

3.4.3.5.2 Descriptive analysis of drivers’ speed distribution  

In this subsection, the distribution of the drivers’ speed profiles is compared. This step has been 

necessary to proceed to compare drivers’ driving performance with the proposed power and 

network analysis.  

 

A Note regarding driving speed distribution 

There has been extensive work on investing the overall distribution of driving speed for 

applications, such as defining the speed limit, or re-examining the road safety measures (Berry 
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and Belmont, 1951; Salter, 1974). As it has been ascertained driving speeds are normally 

distributed on any stretch of road, such as motorway segments. Recent work by the Iowa State 

University Institute for Transportation investigated this claim by conducting a exhaustive study 

on speed distribution on Iowa state highways (Center for Transportation Research and 

Education, 2001; Souleyrette, Stout and Carriquiry, 2009). In their research, they aimed to 

establish safe and reasonable speed limits based on real-world driving data rather than 

predefined speed limits. They worked with the idea that drivers tend to travel at a speed relative 

to the road conditions, level of congestion, weather conditions etc. Below is the typical driver 

speed distribution on the road (Center for Transportation Research and Education, 2001; 

Souleyrette, Stout and Carriquiry, 2009; Hashim, 2011).  

 

Figure 42. Typical speed distribution on the road (Center for Transportation Research and 
Education, 2001) 
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While the overall shape of a driving speed distribution for a large sample takes the form os of 

symmetric shape around the speed limit, the key to individual differences is not whether they 

are normally distributed or not, but rather, the degree of the differences between the skewness 

and kurtosis coefficient. Hence, it is important to emphasise the fact that the nature of speed 

distribution is not the key, but rather, the interest lies in differences between the peak and the 

“tailedness” of the distributions. 

 

The significance of conducting the normality test of speed distributions is to verify and present 

the degree of skewness and non-normally distributed nature of speed profiles, as this needs to 

be taken into account during subsequent analysis. The following steps were taken to analyse 

drivers’ speed distributions. Firstly, for every driver the standard descriptive statistics 

parameters. Including the sample mean'	(Q), and standard deviation (R) of the driving speeds 

are calculated. The degree of symmetry or skewness of the distributions is ascertained, which 

in this case refers to the measure of speed distribution asymmetry around the average speed 

and a: positive skew, is where the right tail is longer, whilst a negative one, is where the left 

tail of the distribution is longer. The skewness value (?) provides a numerical insight into 

drivers’ speed distribution tendency, and it has been calculated by using Equation 12.  

Equation 11. The equation to estimate the standard deviation from a sample  

R(Q) = (QS − Q)CU
SVM
(W − 1)  

Equation 12. The equation to calculate the skewness of a distribution  

?(Q) = (QS − Q)IU
SVM
W − 1 ×RI  

Where, for both equations above:  
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R Q = The sample standard deviation 

?(Q)= The sample skew 

QS= The non-missing values in the sample 

Q = The mean of the sample  

W= The number of non-missing values in the sample  

 

The sample excess kurtosis value is the final value that is calculated by conducting the 

normality test and the goodness-of-fit test on the drivers’ speed samples. This describes the 

tailedness and the shape of the sample, which along with the skewness value will help to 

determine whether the drivers’ speed samples are distributed normally. The excess kurtosis (K) 

is calculated by following equation, where the parameters are the same as in Equations 11 and 

12 (Tsay, 2013). ‘The importance of communicating the computing method to calculate the 

skewness and excess kurtosis is the fact that there are different ways to calculate them. The 

aforementioned formulas are easy to adapt and compute in a timely manner. The calculation 

has been conducted in Microsoft excel with the help of add-on formulas provided by a software 

company called NumXL.  

Equation 13. The equation to calculate the sample’s excess kurtosis 

K(Q) = (QS − Q)YU
SVM
(W − 1)RY − 3 

The normality test of the drivers’ speed profiles is the final analysis that has been undertaken. 

There are two methods used to illustrate that how drivers’ speeds are distributed and whether 

they are normal. Firstly, graphically comparing the empirical speed sample distribution against 

a theoretical Gaussian distribution (normally distributed) and the Q-Q plot (probability plot), 
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shows how closely the distributions are correlated. The diagram is created by plotting the 

quantiles of all the drivers speed samples against the theoretical sample that is normally 

distributed. The second method applied to examine the goodness of fit of the drivers speed data 

is by using the Jarque-Bera test (JB test) (Bera and Jarque, 1982).  

 

Among the widely used methods to test the normality and goodness of fit of driving speed 

samples including Pearson’s chi-squared test, the Kolmogorov-Smirnov test (Hashim, 2011), 

and Anderson-Darling test (Rakha et al., 2011), the JB test is the most successful in examining 

the normality of the sample according a skewness coefficient and kurtosis (Bera and Jarque, 

1982; Thadewald and Büning, 2007; Kuhn and Johnson, 2016). In Thadewald and Büning’s 

(2007) comparison study of the power of several tests80, they concluded that “the JB test is 

superior in power to its competitors for symmetric distributions with medium up to long tails 

and for slightly skewed distributions with long tails” (Thadewald and Büning, 2007).  

 

The characteristics Thadewald and Büning (2007) described are presented in individual driving 

speed histograms (see Appendix E). Every histogram shows a symmetric distribation with long 

tials (in one or both sides) and all are slighly skewed. This confirmed the fact that the JB test 

would be an excellent choice to test the goodness of the sample. The JB test checks the 

deviation and departure of the speed sample data from being one that is normally distributed 

by comparing its skewness and excess kurtosis value against a normally distributed sample. 

The JB value is found using the following equation, with the parameters being those previously 

used.  

                                                
80 Tests included in the study are the Jarque-Bera, Kuiper, Shapiro-Wilk, Kolmogorov–Smirnov and the Cramér-
von Mises tests (Thadewald and Büning, 2007). 
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Equation 14. The Jarque-Bera equation to test the goodness of fit within the sample (Bera and 
Jarque, 1982) 

[\ = U
] ?C + ^_

Y   

 

The following graphs are presented in the results section.  

• The normality test of all drivers’ speed distribution and the Q-Q plot (probability plot) 

• Individual histograms for all nine drivers to compare speed differences (Appendix E)  
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3.4.4 Classification of drivers’ driving performance from vehicle engine data 

Driver profiling, driver classification, driver DNA and driver scoring are terms used in both 

the literature and industry for grouping drivers based on their driving similarity. The goal of 

this grouping procedure is to classify drivers in an appropriate manner to distinguish their 

differences in a measurable order. Given the classification outcome can have repercussions for 

drivers, the accuracy and fairness of this ranking procedure are crucial. That is, based on the 

results of the classification, drivers with risky behaviours could face penalty charges and in the 

case of vehicle insurance providers, it can cost the Pay How You Drive insurance policyholders 

more money. If this type of classification reflected real driving conditions, which in many cases 

it does not, then the assessment of driving behaviour would be more accurate and hence, fairer 

to the motorist. In this subsection, three methods of classifying drivers are covered. Firstly, the 

drivers are grouped together based on the similarity of their vehicle speed. Secondly, they are 

ranked based on their fuel consumption and finally, they are scored using a fleet management 

technique. The following table summarised all the methods covered in this subsection. 

Table 34. Summary table of drivers’ driving performance from vehicle engine data 

Study objective  Analysis conducted  Approach and visualisation  

Classifying the drivers 
based on the similarity of 
their speed distribution 
(3.4.4.1) 

The Wilcoxon-Mann-Whitney 
(WMW) U test method 

Nonparametric test of the null 
hypothesis 

Network analysis  
Visualisation of drivers’ 
relationship  

Ranking drivers based on 
their fuel usage (3.4.4.2) 

Fuel economy and fuel 
consumption rating 

Metrics including fuel per fixed 
unit of distance	 `/100cB  and 
distance per fixed unit of fuel 
(cB/`) or miles per gallon 
(mpg), 

The Vehicle Specific Power – 
Fuel Consumption metric  

Fuel usage as a ratio of VSP 

Drivers’ performance 
classification according to 
the fleet management 
scoring system (3.4.4.3) 

  

Driving score based on the 
number events of excessive 
acceleration, deceleration and 
engine speed  
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3.4.4.1  Classifying drivers based on similarity of their speed distribution  

Given the driving speeds of the participants were not normally distributed, but rather, 

symmetrically distributed with tails and skewed slightly, the parametric techniques, such as 

ANOVA or a t-test for comparing their driving speeds is not appropriate. Hence, to address 

this a nonparametric method that first introduced by Mann and Whitney in 1947 is used (Mann 

and Whitney, 1947). With this method the degree of similarities between each two samples is 

investigated to measure the effective sample size (Lenth, 2001).  

 

3.4.4.1.1 The definition of statistical power and effective sample size  

Power testing of a binary hypothesis refers to finding the probability of whether the test 

correctly rejects the null hypothesis when the other hypothesis is true (Ellis, 2010). In statistical 

terms, the power of the test is the probability that the test returns statistically significant 

differences between two samples (Lenth, 2001; Ellis, 2010; Tabachnick and Fidell, 2012). In 

the case of the driving trials, the number of laps was five, and each drivers’ speed profile was 

paired off to determine their degree of similarity for this duration. If two drivers have very 

similar profiles, then the power test will require an effective sample size that is very large 

before there is a significant difference detected between the drivers’ profiles and vice versa 

(Lenth, 2001; Ellis, 2010). In other words, the test calculates not only the number of times the 

trial would need to be repeated before two drivers’ speed profiles would be distinguished, for 

it also identifies the degree to which two drivers drive in the same manner. The power test is 

used to establish the sample size for surveys, field studies and lab tests. For instance Bartlett, 

Kotrlik and Higgins (2001), used a power test and the effective sample size method to dermine 

the adequate sample size for survey research (Bartlett, Kotrlik and Higgins, 2001).  
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This interoperation of the statistical power and the sample size to measure the degree of 

association (similarity) between two drivers is a novel approach to the field of naturalistic 

driving behaviour.  

 

3.4.4.1.2  The Wilcoxon-Mann-Whitney (WMW) U test method 

The method used to conduct the power analysis so as to determine the effective sample sizes 

between pairs of drivers’ speed profiles and hence, the level of similarity between the two, as 

explained above, is the Wilcoxon-Mann-Whitney (WMW) U test. The method works under 

conditions where the samples of studies are not normally distributed. The nonparametric nature 

of this analysis means that the analysis does not have pre-assumptions about the probability 

distribution of the assessed samples. This contrasts with other methods, such as the t-test, for 

which requires a normal distribution. The U test (WMW test) works robustly with small 

independent samples for calculating effective sample sizes (Mann and Whitney, 1947; Lenth, 

2001; Faul et al., 2009; Faul and Erdfelder, 2014).  

 

In order to adapt this analysis for the purposes of the study, every pair of drivers’ speed data 

sets were compared to see whether they were similar or not. The null hypothesis, in this case, 

is where two samples are equal while the alternative is where they are not. In simple terms, the 

test computes the differences between each driver by calculating their level of similarity using 

the “shift model” and subsequently the effective sample size for pair is displayed.  

Equation 15. The shift model equation 

∆: @ Q = A Q − ∆  for all	Q  
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In order to calculate the total sample size, the mean and standard deviation values of each driver 

were computed. The power error was set to 1 − f	,..g.	9.g5)5&0&(h = 0.95, and it was 

assumed that every sample had an equal number of trials. The outcome is the effective sample 

size for these two groups and the results have been tabulated in a matrix format.  

 

3.4.4.1.3  Network analysis of drivers’ speed distribution similarity  

The network analysis is a visualisation tool to present the relationships and level of association 

between nodes in the network. For this study, network analysis was conducted to demonstrate, 

diagrammatically, the associations between the drivers in terms of their vehicle speeds. Link 

analysis is a form of network analysis where the relationships between members of a sample 

are investigated, which works based on a node and edge principle. Individual drivers are the 

nodes in the model, and the links between them (edge) depend on their similarity. In this case, 

the similarity value is defined as the sample size values from the previous study (i.e. if the 

sample size value is high, then the two nodes are similar and hence, the link between them is 

strong). That is, the sample size values determine the edge weight and hence, the strength of 

the association between two drivers (two nodes). 

 

This relationship is translated into the weight of the connected link between two nodes. The 

similarity of two drivers is, firstly, demonstrated by the distance between two nodes. Small 

weights (small effective sample size) means that there is a weak relationship, and hence, the 

drivers are distant from each other and vice versa. The Gephi software81 has the capacity to 

include both the length and the thickness of the line between two nodes to demonstrate the 

level of association between them, in this case, the drivers’ speed profiles. However, 

                                                
81 Details at: www.gephi.org  
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visualisation by distance/thickness is not an effective method of demonstrating the relationship 

between drivers in this case, because the range of sample size values is from 37 to 22,785. In 

order to visualise the association between drivers in a homogeneous manner the sample size 

values are standardised using the following method (Equation 16). 

Equation 16. Sample data standardisation method  

ij =
Qj − min	(Q)

max x − min	(x) 

Where, 

ij = The normalised value of effective sample size value of the &th data point 

Qj = The effective sample size value of the &th data point 

min	(Q) = The smallest sample size value  

max x = The biggest sample size value  

 

The weighted edge values are changed to the standardised version of the effective sample sizes, 

thus demonstrating the relationship between all the drivers (nodes). That is, the nodes are 

arranged in a clockwise manner using NodeXL, where the thickness of the lines connecting 

them signifies the level of association between the drivers. In sum, whilst the Gephi software 

was initially used to analyse the network relationships so as to determine the drivers’ degree of 

similarity, after standardisation, the NodeXL package allows for simple representation of the 

level of association of all the drivers’ profiles with all the other participants. 
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3.4.4.2  Ranking drivers based on their fuel economy and fuel consumption 

The second approach towards classifying drivers is to rank them based on the amount of 

consumed fuel at the driving event. This subsection, firstly, investigates the different methods 

and metrics for calculating a driver’s fuel economy and consumption ratings. Standard methods 

of reporting and measuring drivers and vehicles’ fuel efficiency are then explained. 

Subsequently, a metric is put forward for investigating fuel consumption in the context of real-

world driving, i.e. taking into account the impact of the road topography on fuel consumption.  

 

3.4.4.2.1 Fuel economy and fuel consumption ratio 

To rate drivers’ driving performances in terms of fuel consumption, it is important to consider 

the three common ratios employed by the motor industry to rank drivers’ (vehicles) fuel 

economy. The two most important and widely used metrics are: 

• The amount of consumed fuel per fixed unit of distance	 0/100cB ; 

• The distance per fixed unit of fuel (cB/0) or (miles per gallon mpg) (which is the exact 

metric commonly used and is displayed for drivers on modern car dashboards). 

As it has been mentioned before, the following parameters are recorded by monitoring devices: 

• The total travelled distance (by GPS signals);  

• The total travel time (accumulated trip durations); 

• The total litre of consumed fuel (total fuel consumption according to the OBD II 

dongle). 
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The total fuel economy values were calculated using both measures for all the drivers. The 

results are presented in bar chart format so as to provide a clear comparison between the 

participants’ amount of fuel consumed. 

3.4.4.2.2  The Vehicle Specific Power – Fuel Consumption metric  

As it has been discussed in chapter 2, the precise evaluation of the fuel consumption is critical 

for regulating new measures to increase air quality and reduce gas emissions. The methods 

covered in the previous sections were aimed at providing a metric measure to evaluate fuel 

consumption of vehicles, and they are useful because they can help drivers to drive in a more 

eco-friendly manner (Boriboonsomsin, Barth and Vu, 2011). However, they are not designed 

to take into account outside influences on fuel consumption, such as road gradient. To this end, 

first, the standard method of evaluating a vehicle’s fuel efficiency is discussed and later a new 

metric is introduced to compare drivers’ performances on level ground by including parameters 

of vehicle dynamics4 and road topography. The standard method of reporting and measuring 

vehicle fuel efficiency is to calculate the Brake Specific Fuel Consumption (BSFC). This 

makes it possible to compare the fuel efficiency of different engines and hence, different 

drivers’ performances. The BSFC is computed by dividing the fuel consumption ratio (\) by 

the vehicle power	7 (cJ), which becomes 5p	 ; cJℎ  (Equation 17). 

Equation 17. The (brake) specific fuel consumption equation 

 5p = \ 7  

Power as 7 = 8.s = 2. u.8. * 

Where, 

 5p= BSFC	(; ⁄ cJℎ) 

 \ = Fuel consumption rate (K; ℎ) 
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 7 = Vehicle power (cJ) 

 8 = Torque (OB) 

 s = Angular velocity (.)1/') and * = Engine speed .9B  

According to two standards of the internal-combustion engine (IC engine) DIN 1940 and 

DIN70020 (DIN 1940, 1976; DIN 70020-7, 2013), the precise calculation of specific fuel 

consumption is found by dividing the fuel usage ratio \ by the effective power, 7pww cJ , 

instead of vehicle power, 7. The effective power is calculated based on the engine pistol 

displacement value and it represents the net engine horsepower supplied by the IC engine 

(Robert Bosch GmbH, 2011). Therefore, the brake specific fuel consumption equation from 

the above section can be modified by replacing the vehicle power with effective power in the 

denominator, and the specific fuel consumption can be expressed as follows: 

Equation 18. The specific fuel consumption based on effective power (Robert Bosch GmbH, 
2011) 

5p = \ 7pww 

7pww = Dy. 9p. * K 

Where,  

 5p= BSFC(; ⁄ cJℎ) 

 \ = Fuel consumption rate (K; ℎ) 

7pww = Vehicle effective power (cJ) 

 Dy= Displacement of the engine (1BI) 

  Dy =
z
Y . 5g.,

C. '(.gc,. *{B5,.	g<	+h0&*1,.'  

 9p= Mean piston pressure (bar)  
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* = Engine speed .9B  

K=
K = 1	<g.	2 − '(.gc,	,*;&*,	
K = 2	<g.	4 − '(.gc,	,*;&*,	 

It is important to note that the aforementioned specific fuel consumption equations are not 

entirely computable for studies similar to this one, because many of the engine characteristics 

are inaccessible to researchers. Moreover, without having instantaneous fuel usage data 

collected with the Portable Emissions Measurement System (PEMS), it is not possible to 

classify drivers styles’ based on previous attempts in terms of such an issue as fuel usage (Zhai, 

2007; Wyatt, Li and Tate, 2013). It is also not possible to compare their real-world emissions 

under the influence of their driver aggressiveness (Nam et al., 2003; Sentoff, Aultman-Hall 

and Holmén, 2015). However, a solution to this problem is proposed next. 

 

In order to include the effect of road conditions on fuel usage and vehicle dynamic 

characteristics82, a new metric is proposed based on the specific fuel consumption model. 

However, instead of the vehicle effective power being used as the denominator of specific fuel 

consumption equation, the vehicle specific power is deployed. In this case, the road specific 

fuel consumption can be calculated, because the effect of the road conditions on fuel usage is 

included in the model. The Vehicle Specific Power – Fuel Consumption metric (VSP – FC) 

allows for comparison of drivers on an equal footing since a vehicle’s engine capacity, and its 

characteristics are excluded from the equation. Instead, parameters such as road gradient, 

rolling resistance and the vehicle drag coefficient are used to calculate the rate of fuel 

consumption. To demonstrate the effectiveness of this method, the (VSP – FC) values are 

calculated for all drivers. In this analysis, the total fuel consumption (g/s) has been used to 

                                                
82 The vehicle dynamic characteristics includes: vehicle speed and acceleration, aerodynamic drag and rolling 
resistance (subsection 3.4.3.4.3).  
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calculate the (VSP – FC) for total fuel consumption per total vehicle specific power. The VSP 

– FC values can be calculated based on following equation: 

Equation 19. The Vehicle Specific Power – Fuel Consumption metric  

D?7 − 	A> = \j |Wg()0	D?7|	 

Where,  

D?7 − 	A> = 
~�ÄÅÇ É

Ñ ^~ÖÅÜáàÇÅ
 

 \j = Fuel consumption (g/s) 

D?7 = Vehicle specific power (J K; = 	BC 'I) 
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3.4.4.3  Classifying driver performance according to the fleet management 

scoring system  

The standard scoring practice among fleet management service providers and the usage-based 

vehicle insurers, such as the insurance premium called the Pay How You Drive (PHYD), is to 

rank drivers based on a set of time interval threshold rules. This method of driver profiling is 

commonly known as the telematics scoring or driving analytics method. This subsection is 

aimed at examining this approach by applying its techniques to rank the drivers’ performance 

based on the fleet management scoring approach. To achieve this goal, firstly, the telematics 

driving scoring method is explained. Secondly, the technique is applied to the driving data 

collected from the driving event so as to classify them according to the fleet management and 

insurers’ methods for calculating premiums, commonly known as driver scoring (driver DNA).  

 

The telematics driving scoring method is a technique that works based on recording the 

occurrence of dangerous behaviours. A ranking method orders the drivers according to a 

number of registered alarms. There are four general alarms and risky behaviours that auto 

insurers and fleet managers are interested in capturing via threshold rules, which are excessive 

engine speed (rpm), speeding, harsh acceleration, and sudden deceleration. The scoring model 

is based on counting the number of times the drivers commit these risky behaviours and then 

ranking them accordingly. Each alarm comes with a coefficient ratio, which presents the 

severity of the effect it has on the driving score of any given driver. The value assigned to each 

alarm is set by the service providers and insurers. According to the Castel method of scoring 

the eco-driving performance of drivers, three alarms affect this, these being high engine speed 

(rpm), total number of sudden acceleration, and sudden deceleration. The occurrence of these 

alarms is captured by using the GPS and the OBD monitoring data. The Castel allocates a 



      Chapter 3 – Research Methodology 

 191 

specific coefficient ratio to these alarms, with the threshold rules for these alarms and their 

coefficient ratios being presented in the table below.  

Table 35. Excessive limit values for eco-performance scoring and eco-driving coefficient ratio 

Alarming Behaviour Excessive limit value Coefficient ratio 

High engine speed events 4500 rpm 4 

Hard acceleration events  0.4 g 3 

Hard deceleration events 0.6 g 2 
 

Based on the fleet management scoring system, the drivers are ranked according to their eco-

driving scores. In order to allocate a numerical value to each driver, every driving attempt is 

scored out of a maximum 50 marks, where 50 means the driver never made any dangerous 

mistakes. For each driver, the total number of sudden accelerations, decelerations and times a 

driver exceeded the engine speed are counted and then the final mark for every driver is 

calculated using the following equation. 

Equation 20. Telematics scoring method to calculate the eco-driving score of drivers  

Eco − driving	score = 50 − *{B5,.	g<	'{11,*	)++,0,.)(&g*'	×,+g	.)(&g +

*{B5,.	g<	'{11,*	1,+,0,.)(&g*'	×,+g	.)(&g + *{B5,.	g<	ℎ&;ℎ	678'×,+g	.)(&g   

This equation can be rewritten in a shorter format as follows: 

Eco − 	driving	score = 50 − ?ì×a + ?%×b + 678×c   

Where,  

SA = Total number of sudden accelerations on all locations 

SD = Total number of sudden decelerations on all locations 

RPM = Total number exceeding the high engine speed threshold  
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) = Eco-driving coefficient ratio for sudden acceleration 

5 = Eco-driving coefficient ratio for sudden deceleration 

c = Eco driving coefficient ratio for high engine speed  

 

The following guide was developed to allocate an alphabetic representative for every driving 

score range, as illustrated in table below. The results of this study are then visualised through 

graphs using the alphabetic markings and standard energy consumption colouring.  

Table 36. An alphabetic representation of drivers’ scoring range 

Driver scores range Alphabetic representative 

45≪ %.&/,.	'+g., ≪50 A 

35≪ %.&/,.	'+g., ≪ 44 B 

20≪ %.&/,.	'+g., ≪34 C 

%.&/,.	'+g., ≪ 19 D 
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3.4.5 Developing a fuel consumption forecasting model and modelling drivers’ 

differences by virtual simulation  

As explained at the beginning of this section, well-grounded comparative research on drivers’ 

driving includes identifying differences, classification according to similarity and finally, using 

this information to create models for simulation. In subsections 3.4.3 and 3.4.4, both the 

identification phase and classification stage were discussed, respectively. This subsection 

addresses the development of models based on the real-world data gathered from the previous 

phases. To achieve this objective, there are two methods selected to model drivers’ differences. 

The first involves using the data collected from vehicles to determine the factors that greatly 

affect fuel usage and subsequently, a regression model is constructed based on these so as to 

predict the fuel consumption of the tested vehicles. The second study is based on using the IPG 

Carmaker83 driving simulation software to model and simulate drivers’ driving utilising the 

collected data from the driving event. Two simulation scenarios are designed and tested to 

examine the feasibility of using this method to model various driving behaviours in the future. 

The following list summarises the post-processing studies that are pursued in the next two 

subsections.  

1. The factors affecting fuel consumption and constructing a fuel consumption forecasting 

model (3.4.6.1). 

2. Modelling different driving styles and studying the effect on fuel usage and car emissions 

by using IPG Carmaker (3.4.6.2). 

  

                                                
83 For more information, visit: www.ipg.de/simulation-software/carmaker/ 
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3.4.5.1  A study on the factors affecting fuel consumption and constructing a 

fuel consumption forecasting model 

The correct evaluation of real world fuel consumption is highly related to factors influencing 

fuel usage, such as the various vehicle specifications, drivers’ behaviour, traffic flow rate and 

road topography. The measurement of fuel consumption is a complex task, not least because 

direct measurements are not always available, and consequently, it is necessary to predict the 

fuel consumption of vehicles in specific testing settings indirectly (Skog and Handel, 2014). 

This study seeks to predict the fuel consumption of the test vehicles by, firstly, identifying the 

parameters that are significantly affecting it and secondly, constructing a multivariable 

(multiple) linear regression model to establish the relationships between the influencing factors 

and fuel usage (Redsell, Lucas and Ashford, 1993; Sa, Chung and Sunwoo, 2003). The first 

step involves considering all the recorded data available, as illustrated in the table below, to 

ascertain which parameters (independent variable [IVs]) have the greatest effect on fuel 

consumption (dependent variable [DV] and thus, should be considered in the subsequent model 

building. 

Table 37. The available parameters selected to test their level of significance in fuel usage 

Available parameters from vehicles engine and drivers driving 
Consumed fuel 

Average engine speed 
Average engine coolant temperature (℃) 

Average vehicle speed (KB h) 

Average distance (KB) 
Average journey time (') 

Cylinder capacity (++) 
Number of sudden accelerations 
Number of sudden decelerations 
Number of high engine speeds 
Number of high temperatures 
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3.4.5.1.1 Identifying the factors affecting fuel consumption  

For this stage, the association between the variables was investigated by checking the 

correlation between the parameters. First, the parameters with a high level of correlation (at the 

1% level) were eliminated from the study and pertained to those that provided engine data. In 

the second stage, the correlation between the real values of the consumed fuel, the DV, and the 

IVs, i.e. the parameters shortlisted from the previous stage, are used to construct a linear 

regression model. As a result, out of 10 recorded parameters, the most affecting factors on fuel 

consumption are identified. 

 

3.4.5.1.2 Constructing the fuel consumption forecasting model for the test vehicles 

Based on the parameters nominated from a previous study, a Multivariable Linear Regression 

model (MLR) is built. The goal of the MLR model is to estimate the relationship between 

multiple independent variables and the dependent one. The regression model was developed in 

two steps. First, the independent variables with insignificant individual coefficients are 

eliminated. In the final step, based on the parameters with the highest effect on real fuel 

consumption the regression model is developed (see equation 21). 

Equation 21. The multiple linear regression model general equation  

ô = fö + fM. independent	variableM + fC. independent	variableC + ⋯

+ fü. independent	variableü+∈ 

Where,  

ô= Model real consumption 

fj= The partial regression coefficient for each independent variable  

∈= The corresponding random error of the model  
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c= The number of independent variables in the model 

 

To evaluate whether or not the error is normally distributed within it, the outcomes, including 

a histogram of the parameters’ distribution and the P-P plot84 of the regression model, are 

presented in the results chapter.  

  

                                                
84 probability–probability plot. 
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3.4.5.2  Modelling the variations in driving styles by using virtual driving 

simulator software  

As part of this project, IPG’s Carmaker software was offered to the researcher to investigate 

the effectiveness of their solution in the domain of driving behaviour studies. To pursue this, 

similar conditios to the real-world driving event were modelled in the software environment 

and the feasibility of using such a model for further studies was investigated.  

 

This subsection is dedicated to the final phase of conducting the research into naturalistic 

driving behaviour and involves modelling and simulating different driving behaviours based 

on the gathered real-world driving data. As discussed in the literature chapter (chapter 2), there 

is a clear distinction between lab developed driver and driving models that do not consider 

aspects other than driver behaviour and industrial standard driving simulation software, which 

whilst containing many more parameters, deals with simulation in a rather simplistic way. This 

calls for investigation into the best solution for simulating naturalistic driving differences 

among drivers. Moreover, there is a great desire from car manufacturers and research teams to 

have an accurate representation of different driving styles within simulation packages so as to 

be able to simulate virtually drivers’ differences with accuracy.  

 

Most of the vehicle virtual test packages available to industry have robust features for 

modelling and simulating many parameters of real driving, such as various settings to present 

vehicle dynamics parameters, 3D road construction facilities and options to run countless 

driving scenarios. However, the capacity to simulate a driving event with different driver 

categories remains underdeveloped. Applying modifications to existing simulation packages 

appears to be widely accepted and supported by car manufacturers as well as vehicle research 
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and development groups. This is because any new solutions and developments can be 

integrated into their existing simulation packages. The IPG Automotive driving simulation 

packages are amongst the most homologated software and have been widely used by the 

automotive industry leaders, academia, and formula 1 racing teams. Their Carmaker software 

is a very well equipped driving simulation software package that focuses on modelling 4-wheel 

passenger cars. The software’s open source functionality and powerful computing capabilities 

makes it an ideal package for modifying and testing different driving simulation scenarios. The 

software environment provides an opportunity to design, model and simulate the driver, the 

vehicle dynamics, the road, the traffic, and environmental conditions in detail. 

 

The aim of this subsection is to investigate the feasibility of using the driving simulation 

software package (IPG Carmaker) so as to confirm its capability for simulating different 

driving scenarios, where the interest lies in identifying different driver behaviours. To achieve 

this aim, the standard procedure of building a driving model has been followed according to 

the IPG Carmaker user manual. Two driving simulation scenarios have been developed as 

follows. 

1. Scenario I: A study modelling and comparing the Vauxhall Corsa drivers’ eco-driving 

performances (3.4.6.2.3). 

2. Scenario II: A study modelling and comparing the effect of road slope on drivers’ fuel 

usage (3.4.6.2.4). 

 

3.4.5.2.1 Virtual driving modelling procedure 

The standard procedure for building a virtual driving model in the Carmaker package is based 

on how the software compiles information to run a virtual test. That is, to provide the setting 
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information of the desired test scenario and then, letting the software calculate and simulate a 

test run. In order to accomplish a comprehensive driving simulation, the software requires 

information about the tested road, tested vehicle, driving general manoeuvres, road settings and 

the route. Having been provided with this information, the package then compiles a driving 

model and runs a driving simulation. The package can cater for a range of parameters in relation 

to the road settings and topography as well as the vehicle. All of the data related to the actual 

driving event85 were load into the package so as to simulate driver behaviour as realistically as 

possible. For each scenario, there were a number of test runs, the results of which were saved 

for further post processing analysis. 

 

The virtual vehicle 

From the driving event, the Vauxhall Corsa VX was selected to represent the virtual vehicle in 

both of the simulation scenarios. The generic Vauxhall Corsa model was built to present the 

same vehicle characteristics in the software as it had during the driving event. The real Vauxhall 

Corsa VX, 1.4 L, 5 doors, and hatchback model specifications (see Figure 43) were used in 

constructing the virtual car for the simulation. 

                                                
85 Road elevation, traffic settings and vehicle characteristics. 
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Figure 43. The generic Vauxhall Corsa VX, 1.4 L, 5 doors with dimensions  

 

The virtual route and road settings   

In order to simulate the driving tests in realistic conditions, the road settings and the route had 

to be very similar to the actual driving test. For the road configuration, firstly, the event-driving 

route was digitalised by converting the GPS longitude and latitude points into a 2D Cartesian 

format, as shown in Figure 44. Secondly, two important road attributes, track width and road 

curvature, had to be added to the digitalised route information. Other road attributes, such as 

surface friction and roadsides profiles, were kept as the Carmaker default settings. Finally, two 

identical virtual routes were created, one with the real route elevation profile and one without. 

All the road configurations, such as traffic lights, speed limits and pedestrian crossings, were 

added to the model as well as environmental aspects that would not have any impact on the 

outcomes, for aesthetic purposes. The figures on the next page illustrate the steps taken to build 

the driving route in relation to GPS points, road settings and road topography using the 

Carmaker simulation software. 

 

 

 

3999 (mm)
2511 (mm)869 (mm) 619 (mm) 1713 (mm)

14
88

 (m
m

)

Scale 1:25
0 15 25 50

All measurements in millimetres 



      Chapter 3 – Research Methodology 

 201 

 

 

 

 

 

Figure 44. The route details (top), the constructed virtual routes in Carmaker without elevation 
(bottom left), with elevation (bottom right) 

 

3.4.5.2.2 The simulation approach  

The Carmaker model, by default, is integrated with Matlab Simulink, while defining the virtual 

vehicle and the route. The software itself updates Simulink block sets and modifies the values 

of every parameter in the model automatically. The core building block of the Carmaker model 

is summarised in the figure below. As shown in the diagram, by defining vehicle specification 

and road information, the only parameters the software needs to complete a simulation are the 

manoeuvre and driver information. Carmaker allows its users to define and test specific 

manoeuvres, for instance, it is possible to get the program to apply brakes at certain locations 

or at certain times, while running a simulation. 
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Figure 45. The IPG Carmaker test run parameters  

 

For driver information, IPG developed a driver module called the IPGDriver. The module 

allows users to add the control actions of a human driver to the model. These actions include 

braking, steering, accelerator pedal position, gear shifting and clutch operation. In Simulink 

the IPGDriver module block sets are organised as follows. For each test run, Carmaker’s 

IPGDriver Module first collects user inputs about the test vehicle and the virtual road. Then, it 

calculates the desired course (driving path) and desired speed (based on the route characteristics 

and defined manoeuvres). Prior to simulation, Carmaker provides options for users to add the 

vehicle state and steering wheel torques. 
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Figure 46. IPGDriver inputs and outputs for every simulation 

 

In following two scenarios (3.4.5.2.2.3 and 3.4.5.2.4), for every simulation (test run) the value 

of every block is kept the same. To simulate driving performance of the driving event Corsa 

drivers, their speed profiles (speed vs. time) are introduced into the IPGDriver module as 

external vehicle speed data. For simulations that resemble the ideal driving scenario, called 

Ideal Driver, none of the inputs for the IPGDriver model are changed and hence, it is a 

simulation that is based on the Carmaker calculation of the best driving speed, driving path and 

steering wheel torque.  

 

3.4.5.2.3 Scenario I: Study modelling and comparing Vauxhall Corsa drivers’ eco-

driving performances 

 

The study approach 

In this study, the simulator was assigned to use the virtual Vauxhall Corsa as the test vehicle, 

and the constructed 3D road as the test road profile. Once these fixed aspects had been added 

to the software, the variable for each test was the driving speed (speed vs. time data points) of 
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each driver throughout the route. That is, by keeping all the settings constant throughout the 

study, it was possible to investigate variations in driving performance among the Vauxhall 

Corsa drivers, in this case, in relation to their fuel consumption. It should be noted that once 

the speed had been fed into the program, it was then able to compute the other variables, such 

as engine speed, emissions level, acceleration and deceleration. The road speeds of the first, 

third and final rounds of driving of the Vauxhall Corsa drivers were selected. Using the drivers’ 

recorded driving data, nine individual simulations were conducted by Carmaker. In order to 

check how well the drivers performed during the event, a final simulation was run to evaluate 

the ideal driving performance based on the road and simulation test settings. The software 

compiles the best driving performance by calculating the required speed instead of using the 

real drivers speed as an input. For the final simulation, the road and traffic conditions were kept 

the same; the only manoeuvre information provided to the model was the road speed limits. 

Table 38. List of simulation specifications for Scenario I 

ID Route condition Vehicle Model Manoeuvre input to the model  

1 to 3 With elevation Vauxhall Corsa  Corsa drivers’ fifth trial road speeds  

4 With elevation Vauxhall Corsa  Ideal driver, 30 mph speed limit max 
 

The study objectives  

Carmaker’s ability to use real-world measurements as a time series input file in the simulation 

makes it possible to overwrite the default manoeuvres setting in the model. This provides the 

opportunity to investigate three important objectives. The first was to study the capability of 

the Carmaker software package delivering results that identify distinct driver behaviour by only 

using variations in driving speeds. The second goal was to examine whether the introduced 

scoring method in the previous sections actually reflected the eco performance of the drivers 

or not. The final purpose of this study was to explore the feasibility of making the claim that 
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the drivers speed profile is an excellent tool to classify drivers. If these objects were met, then 

this would show that it is possible to simulate different classified driving behaviour just using 

drivers’ speed profiles. This would prove to be a very useful benchmark for modelling a diverse 

range of naturalistic driving behaviours. 

 

The post-processing analysis and reporting  

It was concluded that to illustrate the outcomes regarding the three objectives of this study, the 

most suitable method was to compare the drivers’ performance by employing Brake Specific 

Fuel Consumption (BSFC) contour maps. BSFC helps to determine how efficient an engine is 

being operated at and hence, provides an insight into drivers’ driving performance. Figure 47 

is the example of an ideal engine BSFC contour map as suggested by (Goering and Cho, 1988), 

for despite being an old reference the principle still applies. The ‘sweet’ spot, depicted by (⬛ 

in blue) in the figure, is the most efficient spectrum of engine performance. A similar approach 

by Ma et al. 2014 involved using the same principle to measure the effect of city bus drivers’ 

acceleration behaviour on fuel consumption (Ma et al., 2014). 

 

 

Figure 47. The generic brake specific fuel consumption contour map example (Goering and 
Cho, 1988)  
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The BSFC contour maps (fuel island plot) were plotted for all three drivers and from the 

simulator outputs by using the AVL Concerto post processing package. The contour maps are 

effective indicators of the amount of time drivers spent in each region of the map and the more 

they spend around the sweet spot, then the more efficient their driving. Finally, from the BSFC 

values it is possible to compare the most efficient simulation results. The engine’s efficiency 

is found by calculating the efficiency percentage using the average BSFC value and the Lower 

Heating Value (LHV) (the LHV for the standard gasoline is 18,679 Btu/lb or 0.0120687 

(kWh/g). 

Equation 22. The engine’s efficiency 

° = 1
(\?A>×`¢D) 

Where, 

 °	= The engine’s efficiency 

BSFC= The average Brake Specific Fuel Consumption value (g/kWh) 

LHV= The Lower Heating Value (kWh/g) 

 

3.4.5.2.4 Scenario II: Study modelling and comparing the effect of road slope on 

drivers’ fuel usage  

The study approach 

The second scenario was designed as a case study in which the effect of the road elevation 

profile on drivers’ fuel consumption was investigated. For this study, the simulator was 

assigned to use the virtual Vauxhall Corsa vehicle model as the test vehicle. The simulations 

were conducted on two modelled roads. The first road was the flat digitalised one without any 

elevation and the second was the digitalised road with the same elevation profile as the actual 
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route. As with the first scenario, all the settings in the Carmaker software were kept identical, 

except for the driving manoeuvres, regarding which the fifth lap driving speed profile of the 

three Vauxhall Corsa drivers was selected. In total, eight driving simulations were run for this 

study, that is, three with the drivers’ fifth lap driving speed data on the flat road and three for 

the same lap with different road elevation. The last two simulations were the ideal simulation 

driving behaviours for both road types, with the only variable assigned being the road speed 

limit.  

Table 39. List of the simulation specifications for Scenario II 

ID Route condition Vehicle type Manoeuvre input to the model 

1 Without elevation Vauxhall Corsa VX Driver 7 final lap driving speed  

2 Without elevation Vauxhall Corsa VX Driver 11 final lap driving speed 

3 Without elevation Vauxhall Corsa VX Driver 14 final lap driving speed 

4 Without elevation Vauxhall Corsa VX Simulator, with 30 mph speed limit 

5 With elevation Vauxhall Corsa VX Driver 7 final lap driving speed 

6 With elevation Vauxhall Corsa VX Driver 11 final lap driving speed 

7 With elevation Vauxhall Corsa VX Driver 14 final lap driving speed 

8 With elevation Vauxhall Corsa VX Simulator, with 30 mph speed limit 

 

The study objectives 

This case study is aimed at examining the possibility of using virtual driving simulation 

packages, such as IPG Carmaker, to investigate the effect of uphill and downhill roads on 

drivers’ fuel usage. The second objective of the study is to investigate the effectiveness of using 

this package with the actual driving road speeds to compare drivers’ fuel consumption. Finally, 

the study involves examining whether drivers’ eco-driving scores are an accurate 

representation of driver performance. 
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The post-processing analysis and reporting  

A comparison was made between drivers’ instantaneous and absolute fuel consumption with 

those computed as a result of the simulations. Since two road types are designed in Carmaker 

(without elevation and with elevation) consumption was calculated and compared between 

these. The ideal simulated results were also included so as to allow for comparisons to be made 

with actual driver performance. To compare the effect of road slope on fuel consumption, the 

number of litres of fuel used for the downhill section of the route (distance from the start to 

1800 metres) and the uphill section (distance from 2200 metres to the end) was compared with 

the same sections of the road without elevation (flat road). 

 

 

 

 

 

 

Figure 48. The driving route downhill and uphill driving sections 
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3.4.6 Identifying drivers’ safety perception by using vehicle engine data  

The second field of the research for this project is to investigate the naturalistic driving 

behaviour of drivers in terms their awareness of driving safely. The importance of keeping 

individual and fleet drivers safe and incident free led to the next aspect of this multidisciplinary 

research, with the focus shifting away from the drivers’ efficiency to investigating their 

capacity to drive safely. This subsection investigates the possible methods that could help to 

distinguish driving attitudes that lead to risk-taking behaviours and unsafe driving. To achieve 

this goal, a number of distinctive analysis techniques are developed, and they are described 

below.  

 

Four studies are presented here. First, there is the examination of drivers’ speed when 

approaching road settings using vehicle speed data. Second, drivers’ total number and locations 

of hard acceleration and deceleration behaviour are examined so as to establish whether these 

two metrics are able to identify drivers who were driving in an unsafe manner. The third study 

investigates whether, on occasion, any driver coasted86 downhill in neutral gear in an unsafe 

manner, for which a numerical method is introduced to identify those exhibiting such 

behaviour. The final study (3.4.6.4) involves adopting a method that is widely used by the road 

and highway safety engineers and practitioners to identify collision-prone zones and road 

segments. For this part, police reports about road crashes involving human injury and death in 

the last 5 years has been used to identify black-spots on the road. The results are used later in 

subsection 3.4.7.2.2 to modify the drivers’ safe driving scores so as to make them more accurate 

                                                
86 According to the Highway Code from the Department for Transport: “Rule 122 – Coasting: this term describes 
a vehicle travelling in neutral or with the clutch pressed down”. (Driver and Vehicle Standards Agency, 2015). 
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in terms of capturing real driving behaviour. The following is the list of the studies that are 

presented in this section: 

1. Identifying drivers with a safe speed perception prior to approaching road settings 

(3.4.6.1); 

2. Total number, repetition, and locations of hard acceleration and hard deceleration made 

by the drivers (3.4.6.2); 

3. Identifying drivers with a coasting downhill habit (3.4.6.3); 

4. Identifying historical collision-prone road segments (see 2.9 for more details) on the 

testing route based on historical data (3.4.6.4). 
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3.4.6.1  Identifying drivers’ safe speed perception prior to approaching road 

settings 

The aim of this study is to ascertain how often the drivers drove too fast when negotiating 

different road settings, these being: entering a main road, traversing a roundabout and going 

over a pedestrian crossing. Firstly, as it is mentioned previously, the driving route points of 

interests were identified and selected. These are locations on the road where the drivers were 

expected to reduce their speed so as to maintain their vehicle control and hence, drive safely. 

For each traffic setting, an acceptable speed threshold has been developed, which refers to the 

speed drivers should have before approaching these road settings in order to have a high level 

of safety for themselves and other road users. These criteria have been developed according to 

the UK Highway Code. According to the UK Highway Code rules, drivers entering from a 

minor road to a main one should assume the stop (speed = 0) position. Therefore, the criteria 

assigned for their speed was less than 5 mph, for as explained earlier, the GPS data was not 

always taken at the actual road setting location. When they were approaching the roundabout 

or the pedestrian crossing, the vehicle speed limit was set to less than 20 mph in order to prevent 

an unsafe approach. Subsequently, the probability of each driver breaching the set speed limits 

when negotiating the three road settings was calculated. The table below presents details of the 

aforementioned points on the route. 

Table 40. Locations where drivers’ safe driving is compared and each site’s testing criteria 

Distance Traffic setting Algorithm criteria Location 

1.4 km Entering main road 0 ≤ Speed ≤ 5mph The bottom of North Road 

2.1 km The roundabout Speed ≤ 20 mph 
Speed > 30	mph Bathwick Hill 

2.4 km The pedestrian crossing Speed ≤ 20 mph 
Speed > 30	mph 39 Bathwick Hill 
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3.4.6.2  Study of drivers’ hard acceleration and deceleration behaviours  

The second method for studying the differences between drivers in terms of safe driving is 

based on comparing them according to the number of times they harshly accelerated or 

decelerated. As it has been explained in subsection 3.4.4.3, the occurrences of dangerous 

behaviours, in this case, harsh acceleration and sudden deceleration, were recorded for every 

trip made by the participating drivers. This was achieved in two ways. Firstly, it was based on 

the number of times and on which driving trips, they used the acceleration or brake pedal 

sharply. Secondly, a comparison was made between the locations of these actions and those of 

historical vehicle collisions. The following subsections (3.4.6.2.1 and 3.4.6.2.2) explain these 

two approaches in detail.  

 

3.4.6.2.1 Study of the repetition of harsh acceleration and sudden deceleration 

behaviour 

Similar to previous studies, in this study, the aim is to find the overall trend and each driver’s 

attitude towards road safety. The following criteria, in Table 41 were taken as the thresholds 

of hard acceleration and deceleration, as drawn from the Castel recommendations. The able 

below contains  the recommended values of the Castel team.  

Table 41. Excessive limit value to categorise an acceleration or braking action as dangerous 
behaviour  

Alarming behaviour Excessive limit value 

Harsh acceleration events 0.4 g 

Harsh deceleration events 0.6 g 
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The total number of times the drivers exhibited such excessive behaviour per lap was then 

presented in logarithmic graphic form to elicit which drivers were driving unsafely and whether 

their performance improved or deteriorated over time.  

 

3.4.6.2.2 The spatial interpolation of locations with high numbers of alarming 

behaviours and historical blackspots  

In chapter 2 of this thesis, methods for identifying hazardous locations in road networks were 

discussed. Studies aiming to find the collision-prone spots have widely used historical collision 

data as their basis for conducting various mathematical and statistical analyses (Lord, 

Mannering and Pankow, 2010). As it has been clarified in the last chapter, there have been a 

few published papers pertaining to pre-crash driving behaviour analysis based on data collected 

from real-world driving (Norris, Matthews and Riad, 2000; Dingus et al., 2006; Klauer et al., 

2006; Toledo and Lotan, 2006). While speeding events can be linked to drivers risk taking 

behaviour and perception of risk (Darby, Murray and Raeside, 2009; Lee et al., 2013), those 

that are exhibiting more number of harsh acceleration and braking behaviour can be linked to 

poor driver attitude (Iversen, 2004; Luke and Heyns, 2014), failure to obey traffic signals and 

driver distraction (Hanowski, Perez and Dingus, 2005; Luke and Heyns, 2014). To examine if 

there is a meaningful relationship between locations with a previous crash history and drivers 

harsh braking and acceleration the following study was undertaken.  

 

This study’s main purpose was to establish the level of association between locations where 

drivers performed harsh acceleration and deceleration actions and places with a previous 

collision history. To this end, the historical collision data between 2005 and 2013 for the 

driving route were extracted from the Bath and North Somerset District collision database. The 
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information was accessed under open government licence (OGL)87 from the published database 

put out by the Department for Transport. The records of all the collisions, including the year 

of the crash, the number of casualties involved and the severity of the incident were extracted. 

After extracting these data, two maps from Google map were used to visualise and compare 

the two types of collected information spatially.  

 

The route was divided into ten segments of approximately 400 metres, and each was assigned 

the collision data as well as the harsh acceleration/deceleration information. For each segment, 

the level of correlation (correlation coefficient) for the two types of data was calculated. Three 

methods were used to examine the correlation between drivers exhibiting sharp 

acceleration/deceleration and previous collision history along these 10 stretches of road, 

namely, the: Pearson, Spearman method and Kendall methods. The exploratory data analysis 

(EDA) approach was chosen to investigate the aforementioned relationship and hence, no pre-

assumption was made regarding which method might explain the relationship significantly. 

Moreover, the correlation was tested through three methods to ensure that that the level of 

association was calculated consistently across all of them (Hamilton, 1994; Tsay, 2010). The 

following are the equations used. 

Equation 23. The Pearson (1), Spearman rank (2), and the Kendall rank (3) correlation analysis  

1. The Pearson correlation, .P¶ , is defined as follows: 

.P¶ =
(	Qj − Q	)(hj − h	)ß

jVM 	

(	Qj − Q	)Cß
jVM × (hj − h	)Cß

jVM

 

2. The Spearman rank correlation	. is calculated as follow: 

                                                
87 The final visit was made in June 2015: www.data.gov.uk/dataset/road-accidents-safety-data/. The same 
information is accessible at www.crashmap.com [Accessed: June-2015]. 
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. = 1 − (	Qj − hj)C
O×(OC − 1) 

3. The Kendall rank correlation ® is calculated as follows: 

® = O© − O™
1
2O(O − 1)

 

Where, 

Q = the sample average of the first time series ´ 

h = the sample average of the second time series ô 

 Qj= a value from the first time series data ´ 

hj = a value from the second time series data ô 

O = total number of pairs that don’t have missing observation (Qj, hj) 

O©  = total number of concordant pairs of observations88 

O™ = total number discordant pairs of observations 

 

 

 

  

                                                
88 For every pair of	 Qj, hj 	and	 Q̈ , h¨ , these are concordant if	Qj > Q̈ 	and hj 	> h¨ or Qj < Q̈ 	 and	hj < h¨. The 
pairs are discordant if Qj > Q̈ 	and hj < h¨	or Qj < Q̈ 	 and	hj 	> h¨.  
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3.4.6.3  Identifying drivers with a coasting downhill habit 

Drivers putting their car in a coasting position by either travelling in neutral gear or with the 

clutch pressed down, are demonstrating a dangerous driving behaviour, for this causes control 

of the car to become difficult as it inhibits engine braking89. A dramatic increase in vehicle 

speed with little or no change in engine speed on descending roads indicates coasting, because 

as explained in subsection 3.4.3.2, a linear relationship should be observed during normal 

driving. To identify this behaviour, a threshold rule was developed. This involved applying the 

speed limit to Equation 9, which produced an engine speed of 1900 rpm. As this was for an 

ideal situation, the threshold was set slightly lower at 1800. This behaviour could only be 

identified over a distance of 1.8 km immediately after the commencement of a lap, as this was 

the only downhill section. Consequently, the following logical statement was applied.  

Equation 24. Downhill driving algorithm 

If route ID is true, from distance point 0 km to 1.8 km 

If 0 ≤ 1&'()*+, ≤ 1.8 and '9,,1	 ≥ '9,,1	0&B&(	while 678 < 1800 then count the point.  

 

The total number of hypothetical coasting downhill incidents of all the drivers were tabulated. 

Regarding the driver with the highest hypothetical coasting incidents, as identified through 

applying the algorithm, these suspected incidents were assessed by looking at the speed – 

distance and engine speed – distance graphs from the study in 3.4.3.1, to see if such behaviour 

most likely occurred. 

                                                
89 Engine braking refers to when the driver takes advantage of the vehicle compression and friction from the 
moving parts of the engine by lowering the gear, which slows down the car.  
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3.4.6.4  Identifying collision-prone road segments on the testing route  

As discussed in chapter 2, choosing the right method to identify collision-prone zones is a data-

driven process (Cheng and Washington, 2005; Lord, Mannering and Pankow, 2010). The 

method for hotspot identification (HSID) is usually selected based on three criteria: firstly, the 

sample sizes of historical data available and secondly, the presence of road segments with zero 

collisions (zero observations). Finally, it is based on whether the sample is over-dispersed 

(sample-mean > sample-variance) or under-dispersed (sample-mean < sample-variance) (Lord, 

Mannering and Pankow, 2010). For this study, the sample size was comparatively small owing 

to the short length of road that was driven along by the participants and therefore, the following 

analysis suffers from low sample size bias. However, whilst the outcomes might not be 

accurate, they are used in subsection 3.4.7.2.1 along with the results of the pre-collision study 

in subsection 3.4.7.2.2 to modify the scoring method that is commonly used to score drivers in 

terms of their safe driving.  

 

Similar to in subsection 3.4.7.2.2, previous collision information on 10 identified segments was 

gathered and later tabulated, being taken from the historical collision database published by the 

Department for Transport. Figure 49 shows this arrangement on a map. For the first part of this 

study, descriptive analysis was conducted on the dataset, which included calculating the sample 

average, variance, and the standard deviation (σ) (Equation 11). Secondly, prior to the use of 

the statistical confidence intervals method, the coefficient of variation (>Ø) was calculated. 

This was to determine whether the standard deviation was substantial or not. The statistical 

confidence intervals method is applicable when the value of >Ø is less than 1.0. 
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Equation 25. Equation to calculate the coefficient of deviation 

>Ø =
R

Average 

The statistical confidence intervals method is an approach that identifies collision-prone 

locations based on the following terms: if at the segment (a) the number of observed crashes 

c4 is equal or greater than the sum of mean (µ) and the standard deviation (σ), then, the segment 

is unsafe. The algorithm for this is written as follows:  

0g+)(&g*	c4	&'	{*')<,	&<>Ø < 1	and	c4 ≥ ± + R (Cheng and Washington, 2005).  

 

Figure 49. Road segment arrangement for collision-prone analysis 
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3.4.7 Classifying and scoring drivers’ safety differences from vehicle engine 

primary data  

The safety of drivers and other road users is a significant concern for local authorities, motor 

insurers, and fleet managers. As discussed in subsection 3.4.5, scoring drivers according to 

different behaviours allows for their classification in a ranked order. In this case, unsafe driving 

habits are the focus, rather than eco-driving, as in the aforementioned subsection. Any 

decisions made based on the existing driver scoring methods have their weakness. For example, 

in the case of drivers who are willing to pay their vehicle insurance premium based on how 

they drive (Pay How You Drive insurance policy), the use of the insurance provider scoring 

model has been heavily criticised for being too basic. To this end, the major distinction that has 

been made between the two proposed scores, namely, the eco-driving score and safe-driving 

score is the coefficient ratio assigned to each parameter in the scoring function.  

 

In this subsection, the fleet management scoring method that is widely used by industry to 

classify safety aspects of drivers’ driving is employed. Regarding which, the method is 

explained and then applied to the drivers’ data from the event. Subsequently, based on the 

findings from subsection 3.4.7’s studies, two modifications are suggested for improving the 

scoring model. The structure of the following subsections is as follows. 

1. Safe driving classification according to the fleet management scoring system (3.4.7.1). 

2. Two modifications to the current fleet management scoring system and subsequent, further 

classification (3.4.7.2.1 and 3.4.7.2.2). 
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3.4.7.1  Classifying drivers’ safety according to the fleet management 

scoring system  

The standard scoring practice among fleet management service providers and the Pay How 

You Drive vehicle insurers is to rank drivers’ safety score similar to the one used for eco-

performance, which has been explained extensively in subsection 3.4.4.3. To recall, the model 

works based on threshold rules for certain alarming behaviours, i.e. the method ranks drivers 

according to number of times drivers exceed the engine speed threshold or exhibit sudden 

acceleration/deceleration. Similar to the eco-performance scoring method, each dangerous 

behaviour comes with a coefficient ratio set by service providers and insurers. Castel uses the 

same alarms as the rest of the industry, but with different coefficients and their occurrence is 

captured by using the GPS and OBD monitoring data. The threshold rules for these alarms and 

their coefficient ratios are presented in the table below. 

Table 42. Excessive limit values for safe driving score and safety driving coefficient ratio 

Alarm Excessive limit value Safety driving coefficient ratio 

High engine speed 4500 rpm 4 

Hard acceleration 0.4 g 2 

Hard deceleration 0.6 g 2 

 

The same formulation was used to allocate a numerical value to each driver’s driving 

performance in terms of safety, as for the eco-driving scoring equation (see Equation 20). The 

maximum score allocated for each lap was 50 points and a score near to 50 means that person 

was a safe driver. The driving score was calculated using following equation.  
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Equation 26. Calculating the safe driving score  

Safe	driving	score = 50 − [(*{B5,.	g<	'{11,*	)++,0,.)(&g*'	×')<,(h	.)(&g) +

(*{B5,.	g<	'{11,*	1,+,0,.)(&g*'	×')<,(h	.)(&g) + (*{B5,.	g<	ℎ&;ℎ	678'×

')<,(h	.)(&g)]  

The Equation 26 can be written in a symbolic format as follows: 

Equation 27. Symbolic format of the driving score 

Safe	driving	score = 50 − ?ì×e + ?%×d + 678×f   

Where,  

SA = Total number of sudden accelerations for all locations 

SD = Total number of sudden deceleration for all locations 

RPM = Total number of times exceeding the high engine speed threshold 

, = Safety driving coefficient ratio of sudden acceleration 

1 = Safety driving coefficient ratio of sudden deceleration 

< = Safety driving coefficient ratio of high engine speed  

The following alphabetic guide was developed to allocate an alphabetic representative for each 

driving score range. The results of this study are visualised by using alphabetic ranges and 

graphs. 

Table 43. Alphabetic representation of drivers’ scoring range 

Driver scores range Alphabetic representative 

45≪ %.&/,.	'+g., ≪50 A 

35≪ %.&/,.	'+g., ≪ 44 B 

20≪ %.&/,.	'+g., ≪34 C 

%.&/,.	'+g., ≪ 19 D 
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3.4.7.2  Two modifications of the fleet management scoring system  

3.4.7.2.1 Refining drivers’ safety score according to their coasting downhill habits 

For the second part of this study, a change in the fleet management safe driving scoring method 

is introduced, with the aim being to extend the existing threshold rules to create a location, 

sensitive model. The model, as it stands, is unable to identify where an individual driver is 

descending a steep road while coasting in neutral gear. The importance of preventing drivers 

doing so has been discussed in subsection 3.4.7.3., where a method was introduced to identify 

drivers who were coasting downhill during the driving event. This can be incorporated into the 

model by deducting the number of times they coasted downhill. Equation 28 shows a modified 

version of Equation 26 with the deduction of the total number of times drivers were coasting 

downhill.  

Equation 28. Modified version of the safe driving score equation with the deduction of coasting 
downhill behaviour  

Modified	safe	driving	score	Ι = 50 − *{B5,.	g<	'{11,*	)++,0,.)(&g*'	×

')<,(h	.)(&g + *{B5,.	g<	'{11,*	1,+,0,.)(&g*'	×')<,(h	.)(&g +

*{B5,.	g<	ℎ&;ℎ	678'×')<,(h	.)(&g + Wg()0	*{B5,.	g<	(&B,'	+g)'(&*;	1g∑*ℎ&00   

 

3.4.7.2.2 Improving drivers’ safety score based historical collision data 

The study in subsection 3.4.7.2.2, elicited that there was strong positive correlation between 

locations with a high number of alarming behaviours and collision-prone history (pre-collision 

study). Thus, it would appear reasonable to penalise those drivers who exhibited such 

behaviour at incident hotspots. Therefore, for the identified segments of road with a high 

collision history, the number of times a driver exhibited harsh acceleration/deceleration was 

doubly penalised as compared to when he/she did so in other segments, as shown in Equation 

30. Note that the coasting behaviour is not included in equation so that the incremental changes 
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to the drivers’ scores brought about by modifying the scoring model could be assessed 

independently.  

Equation 29. Modified version of the driving score equation based on the effect of collision-
prone locations 

Modified	safe	driving	score	ΙΙ = 50 −

[(*{B5,.	g<	'{11,*	)++,0,.)(&g*'	)(	*g*	+g00&'&g*	9.g*,	0g+)(&g*'	×

')<,(h	.)(&g) +

(*{B5,.	g<	'{11,*	1,+,0,.)(&g*'	)(	*g*	+g00&'&g*	9.g*,	0g+)(&g*'	×')<,(h	.)(&g) +

(*{B5,.	g<	ℎ&;ℎ	678'×')<,(h	.)(&g) + (2×

*{B5,.	g<	'{11,*	)++,0,.)(&g*'	)(	+g00&'&g*	9.g*,	0g+)(&g*'×	')<,(h	.)(&g) + (2×

*{B5,.	g<	'{11,*	1,+,0,.)(&g*'	)(	+g00&'&g*	9.g*,	0g+)(&g*'×')<,(h	.)(&g)]  

 

To conclude, the two modification equations above were combined to reach to a comprehensive 

drivers’ safety scoring model. Hence, the model presents a safe driving score that includes the 

adverse effect of coasting downhill as well as making sudden accelerations and decelerations 

at collision-prone locations in addition to non-prone ones. The final equation is as follows: 

Equation 30. Inclusive average safe driving score 

Inclusive	average	safe	driving	score = 50 − ?ì×e + ?%×d + 678×f + 2×?ì×

	, + 2×?%×1 + W>%   

Where, 

?ì= Total number of sudden accelerations for non-collision-prone locations  

?%= Total number of sudden decelerations for non-collision-prone locations 

RPM = Total number of times exceeding the high engine speed threshold 
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?ì= Total number of sudden accelerations for collision-prone locations 

?% = Total number of sudden decelerations for collision-prone locations 

TCD = Total number of times exhibiting coasting downhill behaviour  

, = Safety driving coefficient ratio of sudden acceleration 

1 = Safety driving coefficient ratio of sudden deceleration 

< = Safety driving coefficient ratio for exceeding the engine speed threshold 
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3.5  Ethical and legal considerations 

According to the driving field study framework, ethical and legal issues need to be considered 

for all three phases of the study, namely, the preparation stage, data acquisition phase and 

finally, during the post-processing phase. This subsection covers the considerations made for 

all stages of this research.  

 

3.5.1 Design experiment ethical and legal issues (preparation phase) 

Each step of the field study was designed in accordance with the ethical and legal rules 

applicable to behavioural research involving human participants as the subjects. Specifically, 

according to the Belmont Report core principles, it is important to take into account the due 

respect for persons, beneficence, and justice before embarking on any research endeavour and 

ensuring that these values are maintained throughout the process. Potential participants were 

recruited via the website set up for the events and initially, anyone was eligible, provided they 

had a current UK DVLA licence.  

 

All drivers and volunteers received information about the voluntary nature of the study as well 

as the aims and objectives of the research. This information was provided through three 

channels, firstly, through an online platform on the event website and a social media page 

dedicated to the event. The second channel was the information sessions prior to the events, 

which took place two days before. Finally, on a driving day, everything was explained verbally 

and in written form, i.e. their driving day information package. All the drivers and co-drivers 

received this package on a driving day containing all the terms and conditions, event criteria, 
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maps, safety information and the consent form (all signed consent forms were archived90). The 

consent form included each drivers’ agreement to have the provided data used for research 

purposes and permission to use any video footage or photographs for future display. Moreover, 

special care was taken when sending correspondence to the volunteers not to make them feel 

pressured into attending the events in any way. All potential participants were informed about 

their right to withdraw from the study at any time with no sanction being imposed.  

 

Regarding the participants’ safety and wellbeing during the events on the university premises 

and whilst driving, a complete health and safety assessment was conducted before the event. 

Potential safety hazard was explained to the participants at the beginning of the driving events 

and relevant documents (university map, driving route, fire assembly points) were given to 

them for personal use. The Castel monitoring devices made it possible to monitor all drivers 

(vehicles) while driving in real time, which were used during all driving events to prevent 

incidents. The university of Bath security department was informed about these events and 

were on hand to help during their duration if they were needed for any reason.  

 

3.5.2 Confidentiality of the participants’ information and acquired driving 

information (data acquisition phase) 

Each contestant’s information including their personal details, having been collected, was 

stored confidentially in a database as explained in subsection 3.4.1.2. All driving data gathered 

during the events from the drivers were also kept secret, being only accessed by the lead 

researcher in accordance with Personal Information Protection and privacy act91. In sum, no 

                                                
90 All documents and signed forms are available upon request. 
91 The Data Protection Act 1998 (DPA). 
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data were passed on to any third party. As explained in subsection 3.4.1.2, each driver was 

assigned an ID number for themselves and their vehicle, which was fully anonymised. All the 

sensitive kept on the Castel online platform was deleted three months after the main event. The 

offline version of the recorded data, which longer contained any data related to the participants 

was saved to the University of Bath online server.  

 

3.5.3 Ethical considerations regarding the analysis outcomes (post-processing 

phase) 

None of those displayed in the presentation of the results can be linked back to a particular 

person owing to the above described anonymisation process. In other words, any driver who 

exhibited poor driving skills cannot be identified from the graphs or charts provided. Finally, 

none of the drivers was publically or privately judged on their driving ability.  

 

3.5.4 Company collaboration confidentiality 

Castel, the supplier of the monitoring devices and online monitoring platform, was a great 

collaborator throughout the project. However, at no stage was the research compromised by 

their involvement. That is, whilst they provided the researcher with technical knowledge, they 

acknowledged that the outcomes might be critical of their products and procedures. Regarding 

collaboration with IPG, an agreement was signed in relation to use of their simulation package, 

and they expressed an interest in being informed about the research outcomes.
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Chapter 4 

Results  

 

“There are two possible outcomes: if the result confirms the hypothesis, then 

you have made a measurement. If the result is contrary to the hypothesis, 

then you have made a discovery.” 

 – Enrico Fermi 

 

 

4.1 Introduction 

This chapter presents the results from the analyses, the methods for which were explained in 

Chapter 3 subsection 3.4 and the findings are organised in the same order as the post-processing 

methods in that subsection. Recall from the previous chapter, the main focus of this project is 

to study driving behaviour differences in terms of two aspects eco-driving performance and 

controlling the vehicle in a safe manner. As previously discussed, there are three areas of 

research that are important to address: identifying driving differences, classifying drivers with 

similar attributes and finally, using those findings to construct models that incorporate the 

differences between drivers. Table 44 below, sets out the order in which the results are 

presented, and this has the same format as the corresponding table explaining the different 

studies in chapter 3. The drivers were asked to complete five driving rounds, with each set of 

driving data being checked to make sure all had been correctly uploaded to the server. Table 

45 presents the participating vehicles and demographics of the drivers.  
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Table 44. An overview of the results of the post-processing analysis  

  Identifying driver differences Classifying and scoring drivers Modelling and simulating different driving 
behaviour 

E
co

 D
ri

vi
ng

 S
tu

di
es

 

1. Results of the study of vehicle speed – 
distance and engine speed – distance analysis 
  

2. Results of the study of the relationship 
between drivers’ road speed and engine speed 
  

3. Results of the study for identifying drivers’ 
aggression by comparing their speed vs. 
acceleration 
  

4. Results of the study of Geo-analysis of vehicle 
parameters in conjunction with the route 
elevation profile 
  

5. Results of the descriptive analysis of vehicles’ 
speed profile 

1. Evaluating the similarity of drivers’ speed 
profiles 
  

2. Classifying drives based on their fuel usage 
and proposing the Vehicle Specific Power – 
Fuel Consumption metric 
  

3. Results of the study of eco-driving 
classification according to the fleet 
management scoring system 

1. Results of the study of the factors affecting 
fuel consumption and constructing a fuel 
consumption forecasting model  
  

2. Modelling different driving styles and road 
condition effects on fuel usage and car 
emissions using IPG Carmaker  
  

  

Sa
fe

 D
ri

vi
ng

 S
tu

di
es

 

1. Results of the study of drivers’ safe speed 
perception when approaching road settings 
  

2. Results of the study of drivers’ hard 
acceleration and deceleration habits 
  

3. Results of the study for identifying drivers 
with coasting downhill habits 
  

4. Results of the study of identifying collision-
prone zones 

1. Results of the study of safe driving 
classification according to the fleet 
management scoring system  
  

2. Results of two modifications to the fleet 
management scoring system 
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Table 45. Drivers demographics, vehicle information, and number of completed trials 

Mark Model Car number Driver Number of valid trials 

Vauxhall Corsa VX 7 Male 6 

Vauxhall Corsa VX 11 Male 5 

Vauxhall Corsa VX 14 Male 5 

Nissan Note 9 Male 6 

Nissan Note 10 Female 5 

Nissan Note 12 Male 4 

Nissan Note 13 Female 5 

Nissan Juke 15 Male 5 

Fiat 500 L 8 Male 5 

 

The valid trials of the driving were those that the data for which were uploaded correctly (for 

the full length of the route) to the server. Moreover, only driving trials were validated for which 

at no point the OBD dongle was unplugged. A set of guidelines was given to the drivers at the 

beginning of the event, which explained all the criteria of a correct driving trial.  As 

aforementioned, the results are based on the data collected during the final eco-safe driving 

challenge that took place on 9th February 2014, and there were nine cars involved: three 

Vauxhall Corsa VX and four Nissan Note, one Nissan Juke and one Fiat 500L. 

 

As is evident from the table above, there were two female and seven male drivers attending the 

driving event. All, except driver 12, were able to complete at least five driving laps of 4km in 

length. Unfortunately, the data collected on the last driving lap by driver 12 were incomplete 

owing to a faulty connection between the OBD dongle and the vehicle OBD port. As explained 

in the previous chapter, time series data collected during the driving event is the primary source 

for the analysis in this project. Specifically, the vehicle road speed, engine speed and GPS 

location were these time series data, which were collected for all drivers every 10 seconds. 
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Other vehicle parameters, such as intake manifold absolute pressure and intake air temperature, 

were collected from vehicles with available ECU ports for collecting those data. Table 46 

shows the time series parameters collected for the participating vehicles. In the following 

sections, regarding the results where the interest lies in comparing drivers driving the same 

make of car, then the Nissan Juke and Fiat 500L are excluded; otherwise, they are part of the 

analysis. The first section (4.2) covers the results for the three research areas in relation to eco-

driving, which include identification, classification and modelling, whilst the final section (4.3) 

presents the outcomes pertaining to the safe driving aspects of the analysis. 
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Table 46. Available time series variables from the participating vehicles  

Car 
Number 

10 (s) 
intervals 

Engine 
speed (rpm) 

Vehicle Speed 
(km/h) 

Intake Manifold Absolute 
Pressure (!"#) 

Intake Air 
Temperature (℃) 

Engine Coolant 
Temperature (℃) 

Mass Air 

Flow (% &) 
GPS Longitude 

and Latitude 

7 þ þ þ þ þ þ — þ 

8 þ þ þ — — þ þ þ 

9 þ þ þ — þ þ — þ 

10 þ þ þ — — þ þ þ 

11 þ þ þ — — þ þ þ 

12 þ þ þ þ þ þ — þ 

13 þ þ þ — þ þ — þ 

14 þ þ þ þ þ þ — þ 

15 þ þ þ — þ þ — þ 
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4.2 Result of studies relating to drivers’ driving performances 

The first step towards understanding individuals’ driving differences was to compare the 

information that had been collected from their driving, which included vehicle data (vehicle 

speed, engine speed, fuel usage) and geo-location information (longitude and latitude points). 

This section presents the results of the conducted analysis in relation to identifying, classifying, 

and modelling the drivers’ behaviours based on their vehicle data. The aim of the subsequent 

comparisons made is to distinguish them in terms of driving performance and their efficiency 

in relation to handling the vehicle. To start with, drivers with excessive speed and aggressive 

acceleration behaviours are identified in subsection 4.2.1, with the purpose being to see 

whether these parameters allow for classification of distinct driver behaviour. Next, the drivers 

are classified based on the similarity of their vehicle speed and on the scoring method widely 

used by the vehicle insurance and telematics industries in subsection 4.2.2. The network 

analysis in subsection 4.2.2.1.2, visualises the closeness of every two drivers according to their 

driving speed. The section’s final study includes the results of employing three metric methods 

to report classifying drivers’ fuel usage and energy consumption differences. The last 

subsection (subsection 4.2.3) presents the outcomes of two approaches to modelling different 

driving behaviour. The first involves a predictive model that uses linear regression to model 

those engine parameters that have a significant effect on drivers’ real fuel consumption. The 

second approach to modelling pertains to using the IPG Carmaker virtual vehicle dynamics 

software package. The drivers’ actual vehicle speeds were used as inputs to the model, and 

their driving performances were compared based on the two proposed scenarios described in 

subsection 3.4.6.2. The results of the simulations using the software package are presented in 

subsection 4.2.3.2. 
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4.2.1 Results of identifying drivers from vehicle engine primary data 

This subsection contains the results of five studies investigating different parameters of a 

vehicle, with the goal of eliciting driving behaviour differences among the participants and 

these are: 

1. Study of the speed – distance and engine speed – distance; 

2. Study of the relationship between drivers’ road speed and engine speed; 

3. A study identifying drivers’ level of aggression by comparing their speed vs. acceleration; 

4. Geo-analysis of the vehicle parameters in conjunction with the route elevation profile: 

4.1. Geo-analysis of the vehicle parameters; 

4.2. Geo-analysis of the acceleration behaviour among drivers; 

4.3. Geo-analysis of the vehicle-specific power among drivers; 

5. Descriptive analysis of the vehicle speed profiles: 

5.1. Analysis of drivers’ consistency and the chosen range of speed; 

5.2. Descriptive analysis of the drivers’ speed distribution.  
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4.2.1.1  Plots of speed – distance and engine speed – distance results 

This analysis provides the foundation for all the subsequent studies. In what follows, whilst all 

the drivers covered the same distance for each lap, that between each GPS reading obviously 

differed according the speed of the vehicle. Hence, when referring to distance here, it is this 

that is being referred to. As can be seen below, the graphs representing speed – distance and 

engine speed – distance, show driving speed (km/h), engine speed (rpm), distance between 

GPS points and lap number, are all presented together for each of the two multiple used cars, 

namely, the Vauxhall Corsa and Nissan Note. This allows for a visual comparison of the 

different profiles for each driver driving the same car for the whole event in terms of vehicle 

and engine speed. It also shows which drivers broke the speed limit of 48 km/h as well as giving 

a general impression of where sudden changes in vehicle speed and where excessive usage of 

a vehicle power, i.e. vehicle engine speed occurred. After each lap in the graphs below, the 

colours for vehicle speed and engine speed change alternately so as to make the distinction 

between each lap clear. In the following charts, the driving speed (km/h) is drawn in blue lines 

for odd numbered trips and the red lines shows the even numbered ones. Moreover, the 

corresponding engine speeds for odd trips are in green, while those for even trips are in purple. 

It is important to mention that the speed limit for the entire route was 30 mph or about 48 km/h.    
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Figure 50. Vauxhall Corsa driver 7: speed - distance and engine speed – distance plots 

 
Figure 51. Vauxhall Corsa driver 11: speed - distance and engine speed – distance plots 
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Figure 52. Vauxhall Corsa driver 14: speed - distance and engine speed – distance plot 
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Figure 53. Nissan Note driver 9, speed - distance and engine speed – distance plots 

 
 

Figure 54. Nissan Note driver 10, speed - distance and engine speed – distance plots 
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Figure 55. Nissan Note driver 12, speed - distance and engine speed – distance plots 

 
Figure 56. Nissan Note driver 13, speed - distance and engine speed – distance plots  
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4.2.1.2  Results of study on the relationship between drivers’ road speed and 

engine speed 

In order to explore the drivers’ gear shifting habits, i.e. whether they did so in an efficient 

manner or not, the vehicle drivetrain characteristics of both the Vauxhall Corsa and Nissan 

Note cars were calculated. Using the method in Equation 9 in Chapter 3, the engine speed for 

known road speed was calculated by using the constant parameters shown in the table below 

to find the hypothetically most efficient gear shifting strategy pattern. The parameters in Table 

47 were used to achieve this (Driver 12 was excluded from the study as the vehicle ran on 

diesel fuel). 

Table 47. Rolling circumference, gear ratios, and the final drive ratio of the tested vehicles 

 Parameters  Vauxhall Corsa  Nissan Note  

The rolling circumference 72.1" (6.00 foot) 72.3" (6.025 foot) 

1st gear ratio 3.55 3.727 

2nd gear ratio  1.96 2.048 

3rd gear ratio 1.30 1.393 

4th gear ratio  0.89 1.029 

5th gear ratio  0.71 0.821 

The final drive ratio  4.18 4.067 

 

In order to investigate drivers’ gear shifting behaviour, first, the linear relationship between 

vehicle speed and engine speed was calculated, by computing the corresponding values from 

10 km/h to 80 km/h at 10 km/h intervals. Then, the drivers’ actual engine speeds vs. vehicle 

speeds were plotted and linear lines representing every gear were added to the graph. The grey 

dashed lines in the graphs below represent the linear relationships between engine speed and 

vehicle speed for the ideal scenarios for the five car gears, whilst the dots represent the actual 

engine and vehicle speeds. There are important observations that can be made from these 

graphs. Firstly, it is clear that the drivers’ gear shifting habits were governed more by individual 
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driving styles rather than vehicle transmission parameters. This agrees with Tutuianu et al. 

(2013) from their global study on driving behaviours (Tutuianu et al., 2013) . Secondly, these 

figures can be used to study driver differences at a granular level. As has been discussed in 

chapter 3, drivers with late gear shifting habits can be identified by comparing actual driving 

data against the ideal. Those occasions are signified by dashed blue circles on each plot (see  

 

 

 

 

 

 

 

Figure 57 and  

 

 

 

 

 

 

 

 

 

 

Figure 58). Moreover, excessive engine speed while driving over the speed limit is identifiable 

in each graph’s right-hand side. Regarding which, Driver 14 of the Vauxhall Corsa drivers and 
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Driver 13 of the Nissan Note users were clear examples of this type of driving. The hypothetical 

lines represent the linear relationship between vehicle speed and engine speed for each gear. 

 

 

 

 

 

 

 

 

 

Figure 57. The Vauxhall Corsa drivers’ actual and hypothetical engine speeds vs. vehicle speeds 
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Figure 58. The Nissan Note drivers’ actual and hypothetical engine speeds vs. vehicle speeds 

 

4.2.1.3  Results of the study of identifying drivers’ aggression by comparing 

their speed vs. acceleration 

In this study, the relationship between the drivers’ acceleration and their road speed is 

investigated, based on Felstead, Mcdonald and Fowkes’ study on the potential effect of driving 

style on fuel consumption and excessive emissions (Felstead, McDonald and Fowkes, 2009). 

In order to identifying driving styles (calm or aggressive), drivers’ instantaneous acceleration 

values are plotted against speed. The study provides two observations. First, the greater the 

vertical distribution between acceleration and braking, then the more the driver was driving 

aggressively. Secondly, if a driver’s speed was over the speed limit of 48 km/h (30 mph), then 

this is another sign that he/she was driving dangerously and ignoring the Highway Code.  

 

As the graphs on figure 59 show, none of the Vauxhall drivers kept below the speed limit all 

the time. It can be seen that driver 14 had the highest tendency to drive aggressively in terms 

of acceleration and braking (deceleration) as well spending the most amount of time over the 

speed limit. Driver 7 was the calmest of the three Vauxhall drivers, with notably very few 
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sudden acceleration incidents and no braking over 40 km/h2. From figure 60, which shows the 

acceleration/deceleration/speeding habits of the Nissan Note drivers, it is clear that drivers 10 

and 12 always adhered to the speed limit. The latter was a particularly cautious driver when 

compared to the others, especially driver 11 and driver 13. Moreover, the clear cluster of the 

dots for driver 12, in particular between 20 and 40 km/h, indicate that his gear changing was 

the smoothest of all the drivers for both car types. This resembles the result Felstead, Mcdonald 

and Fowkes’ study presented (see Appendix D) (Felstead, McDonald and Fowkes, 2009). 
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Figure 59. The Vauxhall Corsa drivers’ acceleration vs. speed distribution: Driver 7 (top left), Driver 11 (top right), and Driver 14 (bottom left) 
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Figure 60. The Nissan Note drivers’ acceleration vs. speed distribution: Driver 9 (top left), Driver 10 (top right), Driver 12 (bottom left), and Driver 
13 (bottom right) 
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4.2.1.4  Results of geo-analysis on the vehicle parameters in conjunction 

with the road profile 

This subsection presents the results from geo-analysis of the vehicle parameters. Three distinct 

analyses were conducted to identify drivers’ differences, as follows: 

1. Geo-analysis of the vehicle parameters (vehicle speed and engine speed); 

2. Geo-analysis of the acceleration behaviour among drivers; 

3. Geo-analysis of the vehicle specific power among drivers. 

As explained in the previous chapter, in order to present distinguishable differences in the 

drivers’ behaviour and to make the dataset more manageable, only the first, third and fifth 

driving trial outcomes were used for these analyses.  

 

4.2.1.4.1 The geo-analysis of the vehicle parameters  

The geo-analysis of the vehicle parameters is visualised in two formats, with the first being the 

plotting of the drivers’ vehicle and engine speeds in conjunction with road elevation. The 

second representation is based on the geoprocessing method, where the vehicle parameters 

according to the GPS points are plotted. Four observations are made from the following graphs. 

Firstly, from the speed graphs of the drivers’ first, third and fifth trials it is clear that there is a 

big difference between vehicle speeds even with the same driving settings. The second 

observation is that it is now possible to see where and why acceleration/deceleration occurs, 

because the road gradient is visible. The third matter is in relation the drivers’ engine speeds 

when driving downhill (first 1.8 km of driving), whereby a low one indicates possible coasting. 

The fourth observation is that when ascending uphill (from 2 km to 3.8 km), some drivers used 

substantially greater engine power to climb Bathwick Hill than others.  
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Figure 61. The Vauxhall Corsa drivers’ vehicle speed vs. road elevation: first lap (top left), third lap (top right) and fifth lap (bottom left) 
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Figure 62. The Vauxhall Corsa drivers’ engine speed vs. road elevation: first lap (top left), third lap (top right) and fifth lap (bottom left) 
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Figure 63. The Nissan Note drivers’ vehicle speed vs. road elevation: first lap (top left), third lap (top right) and fifth lap (bottom left) 
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Figure 64. The Nissan Note drivers’ engine speed vs. road elevation: first lap (top left), third lap (top right), and fifth lap (bottom left)  
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It can be seen from the Vauxhall Corsa drivers’ speed – distance graphs that driver 7 and driver 

11 were very similar in terms of vehicle speed, while driver 14 travelled faster when climbing 

the hill and generally, had a higher speed throughout the driving event than all the other drivers. 

Regarding the Nissan Note drivers plotted vehicle speed – distance graphs, it is clearly 

distinguishable that drivers 10 and 12 had similar styles to each other and drivers 9 and 13 were 

also alike by the time they traversed the fifth lap, but this was not the case to start with. Overall, 

driver 13 was the most aggressive Nissan Note driver, with a higher vehicle speed throughout 

the driving event. The engine speed – distance graphs for both the Vauxhall Corsa and Nissan 

Note drivers, show occasions where some exhibited a lower engine speed than the other drivers. 

This can be observed for driver 7’s first lap driving data and for driver 9’s third. The final 

observation from the above graphs is in relation to the engine speed differences when the 

participants approached the uphill part of the route. It was to be expected that they would all 

have higher engine speed on alighting Bathwick Hill, but clearly, drivers 9, 13 and 14 put their 

foot down on the accelerator harder than the others did. 

 

The second part of the geo-analysis of the vehicle engine parameters pertained to comparing 

the drivers’ vehicle speed and engine speed geolocation wise. As explained in the previous 

chapter, for this part of the study, the mapping geoprocessing tool was used to create maps 

showing the variations in vehicle and engine speeds throughout the route. Layering the data in 

this format provides a clearer picture of each drivers general driving over different terrain. It is 

important to recall from the previous chapter that the ESRI software assigns classes to the 

inputted vehicle and engine speed data that are not uniform. Hence, a comparison between the 

drivers of the two makes of car is not possible, but these maps are still useful for individual 

driving behaviour identification. However, one observation that can be made for all the maps 

is that every driver drove more slowly through the most urban part of the route than when 
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travelling uphill or downhill, perhaps because they were more cautious or there was more 

traffic. The engine speed maps clearly show how some drivers were over revving when going 

uphill. Moreover, there is some evidence that drivers 7, 13 and 14 under-revved, i.e. coasted, 

when going downhill.  
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Figure 65. Geo-analysis of the Vauxhall Corsa drivers’ vehicle speeds; the maps are based on individual driver’s data; the units are in km/h: Driver 
7 (top right), Driver 11 (top left), and Driver 14 (bottom left)   
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Figure 66. Geo-analysis of the Vauxhall Corsa drivers’ engine speeds; the maps are based on individual driver’s data; the units are in rpm: Driver 7 
(top right), Driver 11 (top left), and Driver 14 (bottom left)  
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Figure 67. Geo-analysis of the Nissan Note drivers’ vehicle speeds, the maps are based on individual driver’s data; the units are in km/h: Driver 9 
(top left), Driver 10 (top right), Driver 12 (bottom left), and Driver 13 (bottom right)  
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Figure 68. Geo-analysis of the Nissan Note drivers’ engine speeds, the maps are based on individual driver’s data; the units are in rpm: Driver 9 (top 
left), Driver 10 (top right), Driver 12 (bottom left), and Driver 13 (bottom right)  
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4.2.1.4.2 Geo-analysis of the acceleration behaviour amongst the drivers  

A comparison between the drivers’ vehicle and engine speeds against the road elevation profile 

provides insights into driving differences with regards to the downhill and uphill sections of 

the route. In this section, the drivers acceleration behaviour is compared in relation to the 

gradient throughout the route. In previous studies (4.2.1.4.1), it has been shown that a variation 

in driving acceleration can lead to the identification of different driving styles, such as calm as 

opposed to aggressive driving patterns. To illustrate drivers’ behaviour differences in relation 

to their instantaneous acceleration (! "#) these data were calculated for the first, third and 

fifth driving laps and subsequently, plotted in conjunction with the distance and route elevation. 

As explained in the previous subsection, part of the route involved downhill driving for 1.8 km, 

when the drivers would be expected to watch their speed. The section between 1.8 km and 3 

km from the start entailed urban driving in the centre of the Bath, which has a high volume of 

traffic, including bicycles as well as a high pedestrian density, thus requiring greater 

attentiveness of the drivers. The final part of the driving route is between 3 km and the finish, 

where the drivers’ acceleration uphill was to be expected, although not as excessive as in some 

cases. In the accelerations graphs below, it is possible to observe where sudden changes of 

speed took place according to the road gradient.  

 

As can be observed from the plots below for the first section of the route (descending downhill), 

all the drivers became calmer and more confident in handling the vehicle as they completed 

more rounds. Regarding the second section of the road (urban driving), there were a number of 

sudden accelerations and decelerations observed to start with, but by the final lap they appear 

to have been more relaxed. All the drivers accelerated less harshly uphill on the final lap than 

early on, except for two of the Vauxhall Corsa drivers, namely, drivers 7 and 14. There are two 

possible reasons for the improved engine efficiency. First, most of the drivers were interested 
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in seeing their progress throughout the event and tried to drive more efficiently on subsequent 

laps. This was not the primary focus of this study and hence, the level of driving improvement 

owing to this aspect was not studied in any detail. However, if this was the case, it underlines 

the importance of educating drivers about how to improve their driving skills. Second, they 

obviously became increasingly familiar with the course over time and hence, could anticipate 

the road settings as well as the changes in the terrain. It is also notable that all the Nissan Note 

drivers exhibited very similar acceleration patterns by the time of the fifth lap. The outcomes 

of this study support the conclusion that has been made in the previous subsections about the 

drivers’ behaviour and their driving differences.  
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Figure 69. Vauxhall Corsa drivers’ acceleration vs. road elevation: first lap (top left), third lap (top right), and fifth lap (bottom left) 

 

0
20
40
60
80
100
120
140
160
180
200

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

1.00 1.50 2.00 2.50 3.00 3.50 4.00

El
ev

at
io

n 
(m

)

A
cc

el
er

at
io

n 
(m

/s
2 )

 

Distance (Km)

elevation Driver 7 Driver 11 Driver 14

0
20
40
60
80
100
120
140
160
180
200

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

1.00 2.00 3.00 4.00
El

ev
at

io
n 

(m
)

A
cc

el
er

at
io

n 
(m

/s
2 )

 

Distance (Km)

elevation Driver 7 Driver 11 Driver 14

0
20
40
60
80
100
120
140
160
180
200

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

1.00 1.50 2.00 2.50 3.00 3.50 4.00

El
ev

at
io

n 
(m

)

A
cc

el
er

at
io

n 
(m

/s
2 )

 

Distance (Km)

elevation Driver 7 Driver 11 Driver 14



        Chapter 4 – Results 

 261 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 70. Nissan Note drivers’ acceleration vs. road elevation: first lap (top left), third lap (top right), and fifth lap (bottom left)  
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4.2.1.4.3 The results of geo-analysis of the vehicle specific power among the 

drivers  

In this subsection, the instantaneous vehicle specific power values of drivers are compared. In 

order to make a comparison between these values in conjunction with road gradient, the route 

elevation is included in the following graphs. The VSP values were calculated for the first, 

third and final driving laps, with the constant parameter values for this process being shown in 

Table 48 below.  

Table 48. Vehicle Specific Power (VSP) constant parameters 

Parameter Vauxhall Corsa  Nissan Note 

Rolling resistance coefficient (!) 0.030  0.029 

Drag coefficient (") 0.00033 (#$%) 0.000298 (#$%) 

Gravitational acceleration (&) 9.8 (# '() 9.8 (# '() 

 

Differences among drivers’ driving performances have already been discussed in terms of their 

vehicle speed, engine speed and their accelerating/decelerating habits. In this study, the effect 

of their vehicle speed, acceleration, road gradient and the aerodynamic characteristics of their 

car are all calculated as one value, namely, the VSP. This allows for more accurate comparisons 

regarding driving efficiency amongst the drivers as it incorporates real driving behaviour and 

the road topography with the constant parameters of the vehicle. When including the gradient, 

the results in the VSP increase when travelling uphill and decrease when going downhill, as 

can be seen in the graphs below. Most importantly, having the VSP values means that all the 

cars can now be compared, rather than just those that are the same model.  

 

The plots of the VSP values for the Vauxhall Corsa drivers demonstrate that driver 14 had the 

highest level in both the urban area and when beginning to drive uphill throughout the laps, 

when compared to drivers 7 and 11. This indicates that he was a poorer driver than the other 
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two. Regarding the Nissan Note drivers, they had similar VSP values, which was expected 

given their speed – distance plots and acceleration – distance plots were also similar. Driver 13 

occasionally had a higher VSP than the other Nissan Note drivers. In terms of comparisons for 

both makes of car, driver 14 exhibited the highest VSP values of all throughout the event.  
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Figure 71. Vauxhall Corsa drivers’ VSP values vs. road elevation: first lap (top left), third lap (top right), and fifth lap (bottom left) 
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Figure 72. Nissan Note drivers’ VSP values vs. road elevation: first lap (top left), third lap (top right), and fifth lap (bottom left)  
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4.2.1.5  Results of descriptive analysis of vehicles speed profile 

This subsection presents the outcomes regarding the descriptive analysis of the drivers’ 

variations in the use of vehicle speed. Firstly, in subsection 4.2.1.5.1, the findings regarding 

speed consistency by comparing vehicle speed with cumulative frequency plots are presented. 

Secondly, drivers’ speed based on four speed ranges (driving modes) is investigated, which 

allows for the determination of the range of vehicle speeds that the drivers most preferred and 

their general level of consistency in their driving. Finally, the results of box-and-whisker plots 

of the drivers’ vehicle speeds are presented, which provide a comprehensive view of the speed 

variations and ranges. The second part (4.2.1.5.2) of this is dedicated to descriptive analysis of 

the drivers’ speed distribution, which is so as to verify the assumption that their speed profiles 

were not normally distributed.  

 

4.2.1.5.1 Results of the analysis of the drivers’ consistency and the range of chosen 

speed 

The drivers’ vehicle speed cumulative frequency plots provide insights into the consistency of 

the driving habits and the range of speed they primarily opted to drive within. It allows for 

identification as to whether any drivers exhibited similar vehicle speed trajectories and/or 

preferred driving speed ranges. Similar to the work of  Daniel, Brooks, & Pates (Daniel, Brooks 

and Pates, 2009), the cumulative frequency plots were created using the monitoring data for all 

the Vauxhall Corsa drivers, all the Nissan Note drivers, and both groups combined. On each 

plot, the ‘All Drivers’ line presents the speed data of all nine drivers participating in the event 

and including these data allows for comparison of each driver with the overall population. 

Hence, in each chart, two comparisons can be made, firstly, the consistency of the driver during 

the driving trips. When the lines are close, then this shows that the drivers are similar to each 
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other. The second observation is the comparison between each driver’s trips and the all drivers 

line, shows how an individual drove compared to the rest of the group.  

 

From the cumulative plots of the Vauxhall Corsa drivers, it can be concluded that drivers 7 and 

11 had similar vehicle speed preferences, whilst driver 14 tended to use a higher speed. Among 

the Nissan Note drivers, the variation was greater than for the Vauxhall drivers; for instance, 

driver 12 was always below the speed limit, while driver 13 was above it for a significant 

amount of the time. Perhaps the most important finding from this study can be seen in the final 

graph, where the speed cumulative frequencies for all the drivers are combined into one plot. 

This shows that the drivers who were more cautious on the left and those less so on the right.  
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Figure 73. Speed cumulative frequency graph, all Vauxhall Corsa drivers, (top left), All Nissan Note drivers, (top right), and All Class B drivers 
(bottom left): Speed limits are marked with dashed red lines 
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The second study in this part compares the drivers’ vehicle speed based on the number of times 

they travelled within specific speed ranges. The following speed range criteria were chosen: 

1. Between 0 to 5 mph (time at rest); 

2. Between 5 to 24 mph; 

3. Between 25 to 30 mph; 

4. Over the speed limit. 

 

While from previous charts the consistency of drivers’ speed  during the driving event can be 

examined, the following graph aims to provide an overall view of each driver’s tendency to 

drive in the four mentioned zones. Visualisation of the data in this manner provides an instant 

view of every drivers’ behaviour. For example, drivers 10 and 12 never went over the speed 

limit.     

 

The results are plotted in the percentage stacked bar chart format to show which ranges the 

drivers mainly drove in. The data for drivers 8 and 15 are also included in this study. As has 

been mentioned before, the speed limit is 30 mph92 for the entire driving route and it can be 

seen that drivers 10 and 12 rarely, if ever, went over the speed limit. Drivers 7, 11 and 12 spent 

around 50% or more of their time between 5 mph and 24 mph, while the more aggressive 

drivers, such as drivers 13, 14 and were at at least 25 mph for over half of their time. In fact, 

these drivers spent 20% or more of the whole event over the speed limit.  

                                                
92 For this graph, drivers speed is presented in mph, because the speed limited is also given in this unit.  
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Figure 74. Stacked bar chart of the drivers’ chosen range of vehicle speeds 

 

The final part of this section involves a comparison of the drivers’ vehicle speeds in the box-

and-whisker plot (box plot) format. The box diagram carries information that is not identifiable 

from the previously discussed methods. To plot drivers speed range box plot, the median as 

well as the first and third quartiles of their vehicle speed samples were calculated. The 

computed values are presented in the table below. See a full list of the computed parameters  

in Appendix F.   

Table 49. Drivers’ speed box plot parameter values 

 Driver ID 

Parameters 7 8 9 10 11 12 13 14 15 

Min 0 0 0 0 0 0 0 0 0 

Q1 28.4 28.2 28.5 27.42 26.92 22.27 29.9 31.2 32.9 

Median 38.3 39.3 37.3 37.8 37.2 33.2 42.1 40.5 43.8 

Q3 43.7 48.3 45.4 42.27 42.82 39.57 50.8 48 50 

Max 56.3 79.6 63.1 49.3 58.9 49.2 67.6 73.2 61.8 
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From the box plots, the range of vehicle speed for each driver, their maximum speed, and the 

interquartile range, which indicates the speed range each driver most often drove within, can 

be ascertained. The box part of the graph shows the speed range between Q1 and Q3, while lines 

within each box show the median value. The boxes with their whiskers show the full spectrum 

of the drivers speed from minimum to maximum and the dashed red line represents the speed 

limit (30 mph or 48 km/h). As the plot demonstrates, drivers 7, 9, 11, 10 and 12 appear to have 

been calmer compared to drivers 8, 11, 13, 14 and 15. However, being calm does not necessary 

mean a driver was driving within the speed limit, for example, except for drivers 10 and 12, 

the other drivers were over the speed limit at least once. Among the class B drivers, driver 11 

and driver 12 had the lowest Q2 values, while driver 13 and 14 has the highest. The outcomes 

of the studies in this part have shown the significance of vehicle speed when comparing driving 

performance and identifying differences in driving behaviours. In order to come to any 

conclusions about classifying driver behaviours, it is necessary to assess the nature of each 

driver’s sample speed distribution. Specifically, the data need to be tested to see whether they 

are normally distributed or not. For, such analysis will determine the appropriate statistical 

method to be used for their modelling.  
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Figure 75. Box-and-whisker plots of the drivers’ vehicle speed ranges 

 

§ Drivers are arranged according their speed distribution median, from the lowest value (driver 12) to the highest (driver 15)  
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4.2.1.5.2 Results of the descriptive analysis of the drivers speed distribution  

As has been shown in the above studies, driver vehicle speed has the potential to represent 

driving behaviour differences and preferred driving speed range. Prior to drawing any 

conclusions about vehicle speed profiles, it is important to establish their type of distribution. 

As has been discussed in the previous chapter (3.4.3.5.2), it is very unlikely that the driving 

speed for a single driver is normally distributed, since drivers speed are commonly around the 

speed limit, and tilting to either side depending on choice of speed.  

 

To this end, the sample mean	(#), standard deviation (%), skewness (&) and excess kurtosis 

(') values were calculated for all the drivers’ vehicle speeds. The skewness and excess kurtosis 

values were obtained to determine whether the drivers’ speed data were normally distributed. 

This is the case for any given dataset, if the values of skewness and excess kurtosis are between 

-2 and +2. Subsequently, the Jarque-Bera normality test was applied to the speed profiles to 

check these distributions and the results are presented in the tables below. As aforementioned, 

as the drivers would generally be expected to travel close to the speed limit, it is highly unlikely 

that their values would be normally distributed. However, it is important to confirm that this is 

so as it determines which inferential analysis for classifying the drivers’ in terms of their 

vehicle speed is appropriate. Table 50 summarises the results of the mean, standard deviation, 

skewness and excess kurtosis values for each driver. The second table (Table 51) shows the 

outcome of the Jarque-Bera normality test outcome, where the p-value, skewness outcome, and 

Jarque-Bera normality test outcome are tabulated for comparison. The results show that even 

with the Jarque-Bera normality test, which is suitable for this type of distribution, only drivers 

8 and 14  passed this test.   
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Table 50. Descriptive values of the drivers’ speed datasets (the mean value is in km/h) 

Drivers ID Mean Standard Deviation Skewness value Excess kurtosis 

7 36.86 10.54 -0.83 0.41 

8 39.97 15.51 0.03 -0.04 

9 38.54 10.53 -0.45 -0.06 

10 37.34 7.52 -1.05 0.47 

11 35.76 10.98 -0.68 0.11 

12 32.51 9.77 -0.89 0.11 

13 41.51 12.40 -0.60 -0.20 

14 40.31 13.76 -0.36 -0.07 

15 42.66 11.34 -0.76 0.18 

All Drivers 38.19 11.89 -0.32 0.30 

 

Table 51. Results of the Jarque-Bera normality test outcome 

Drivers ID Z Score P-Value Skewness 
outcome 

Jarque-Bera 
normality test 

7 28.18 0.0% True False 

8 0.06 97.2% True True 

9 7.68 2.1% True False 

10 38.10 0.0% True False 

11 15.80 0.0% True False 

12 23.17 0.0% True False 

13 10.54 0.5% True False 

14 3.88 14.4% True True 

15 16.34 0.0% True False 

All Drivers 38.69 0.0% True False 
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1. The normality test for all the drivers’ speed distribution and the Q-Q plot (probability plot); 

2. Individual histograms for all nine drivers so as to compare drivers’ speed distributions. 

(see Appendix E). 

 

The final stage in this subsection is to present and interpret these results. The histogram plots 

have been used to demonstrate drivers’ vehicle speed distributions, with the continuous lines 

representing what they would look like if they were normally distributed (see Appendix E). 

Despite the skewness and excess kurtosis values being in the normal distribution range for all 

drivers and taken all together the drivers’ distribution being normal, based on the individual 

Jarque-Bera normality tests it can be concluded that except for driver 8, driver 14 and driver 

15, the drivers’ vehicle speeds are not distributed in this way (see Appendix E). These two 

drivers exhibit this distribution because they spent so much time over the speed limit. The rest 

of the drivers’ distributions show negative skewness with larger tails for the lower vehicle 

speeds (see Appendix E). Figure 76 shows the overall speed distribution of all the drivers’ 

driving speed data (average 38.20 km/h). With the JB test, the sample showed that it is not 

normally distributed and hence more trials would be needed for this situation to be reached. 

This is consistent with the conclusion made by other scholars regarding the normally 

distributed driving speed on stretches of roads (Berry and Belmont, 1951; Center for 

Transportation Research and Education, 2001; Souleyrette, Stout and Carriquiry, 2009). Figure 

77 (Q-Q plot) demonstrates how closely the sample is distributed as normally distributed data.  
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Figure 76. The speed distribution of all the drivers 

 

 

 

 

 

 

 

 

 

 

Figure 77. The Q-Q plot of all the drivers’ speed distribution 
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4.2.2  Results of the drivers’ performance classification study 

This subsection presents the results of the classification methods used to group drivers with 

similar driving data together. It also involves ranking them based on their fuel usage, according 

to a scoring method commonly used for usage-based vehicle insurance and by fleet 

management service providers. This part contains three subsections, the first, provides the 

results of the statistical power and the effective sample size analysis from using the Wilcoxon-

Mann-Whitney (WMW) method. The outcomes of this analysis are presented in the form of a 

matrix of effective sample sizes. Next, the matrix results are visualised by network analysis 

and the drivers are grouped together based on their vehicle speed similarities. The second part 

of this subsection contains the results of the study categorising the drivers based on their fuel 

usage. This includes, first, comparing and reporting drivers’ fuel consumption by using two 

common metrics widely used to report the fuel economy of cars and drivers. Secondly, the 

results of the Vehicle Specific Power – Fuel Consumption metric are presented and discussed. 

The final part of the classification study provides the classification results of the drivers 

according to the fleet management scoring method.  

 

4.2.2.1  Classifying the drivers based on the similarity of their speed 

distribution  

This subsection presents the results of the drivers’ classification based on their speed 

distribution, which involved calculating the effective sample size between every pairing of the 

drivers. As explained in the previous chapter, the concept of effective sample size was used to 

represent the difference between two drivers’ driving behaviour. Specifically, if their vehicle 

speed had a similar sample distribution (i.e. sample mean and sample standard deviation), then 

the effective sample size value would be a very large number. This would mean that these two 
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drivers would have to undertake certain number of trial laps before their driving behaviour 

could be distinguished. The table below summarises the drivers’ average speed and standard 

deviation.  

Table 52. Drivers speed mean and standard deviation values (the mean value is in km/h) 

 Drivers ID 

Parameters  7 8 9 10 11 12 13 14 15 

Mean 36.86 39.97 38.54 37.34 35.76 32.51 41.51 40.31 42.6
6 

Standard Deviation  10.54 15.51 10.53 7.52 10.98 9.77 12.4 13.76 11.3
4 

 

4.2.2.1.1  The matrix results of the effective sample size analysis  

As the matrix shows, driver 7, had very similar speed distribution characteristics to drivers 9 

and 11, for the reasons explained above. With the same logic, the effective sample size between 

driver 7 and 8 is comparably small and this indicates that these two drivers were very different 

in their driving styles.  This is true between driver 7 and drivers 12, 13, 14, and 15. The best 

way to show these relationships is by using network analysis, as with such matrix data it is 

possible to use it in order to visualise these relationships in a meaningful way. In the following 

subsection, they are displayed using a node and edge type of network. 

Table 53. The effective sample size matrix of the drivers’ speed profiles 

Driver ID 7 8 9 10 11 12 13 14 15 

7 - 262 12214 2366 22785 305 243 356 161 

8  - 257 144 131 42 18385 7558 889 

9   - 1027 3016 175 239 381 151 

10    - 3578 993 138 179 104 

11     - 284 129 180 92 

12      - 43 52 37 

13       - 3322 1606 
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Driver ID 7 8 9 10 11 12 13 14 15 

14        - 595 

15         - 

 

4.2.2.1.2 The results of the network analysis of drivers’ speed distribution 

similarity  

The network analysis was conducted to demonstrate the associations of drivers according to 

their vehicle speeds. The first visualisation was based on distance of the nodes, whereby driver 

pairs with high effective sample size values (similar speed distribution) are drawn close to each 

other, as illustrated in the three-dimensional network diagram below. In addition to the distance 

of the nodes, the thickness shows the degree of association between the drivers’ speed profiles. 

This visualisation can be interpreted as follows: first, numbers are drivers ID and second the 

thicker the arrow between any two drivers means a higher level of similarity between the two.  
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Figure 78. 3D driver association based on the similarity of their effective sample size values 
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When using Gephi software to demonstrate these relationships, on screen, it is evident what 

the distances are, because it is possible to rotate the network like a three-dimensional object. 

However, in a two-dimensional snapshot this is not the case, for instance, whilst drivers 7 and 

11 appear to be distant, in fact, they were very close. Since the range of sample sizes values is 

from 37 and 22,785, the graph is not entirely capable of demonstrating the association between 

the drivers and so the effective sample size values were standardised with a range of 0 for the 

lowest value and 100 for the highest. The standardised values of the effective sample size 

values are presented the table below. 

Table 54. The standardised, effective sample size matrix the drivers’ speed profiles 

Driver ID 7 8 9 10 11 12 13 14 15 

7 - 0.98 53.53 10.24 100.0 1.18 0.91 1.40 0.55 

8  - 0.97 0.47 0.41 0.02 80.66 33.06 3.75 

9   - 4.35 13.10 0.61 0.89 1.51 0.50 

10    - 15.57 4.20 0.44 0.62 0.29 

11     - 1.09 0.40 0.63 0.24 

12      - 0.03 0.07 0.00 

13       - 14.44 6.90 

14        - 2.45 

15         - 

 

After the standardisation process, the spherical arrangement format was applied to visualise the 

association between the drivers. In this case, as illustrated below, the thicknesses of the links 

(edges) presents the strength of the relationships between them (nodes) and the distances are 

no longer of relevance. The improved diagram was created using the NodeXL network analysis 

and visualisation software. As can be observed in the following graph, driver 7 exhibits strong 

similarity, in terms of speed profile, to drivers 9, 10, and 11. Driver 8 is very similar to drivers 
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13 and 14. Drivers 9 and 11 share similar traits of driving. Drivers 10 and 11 have strong 

association, while driver 10 has slightly less association with driver 12 than driver 11. Driver 

11 is not similar at all to drivers 13, 14, and 15, as is also the case for driver 12. Finally, driver 

13 shows a strong similarity to drivers 14 and 15 (see figure below). 

 

 

 

 

 

 

 

 

 

Figure 79. Network analysis of drivers’ similarity of speed profiles based on the standardised 
effective sample size values 

 

4.2.2.2  Ranking drivers based on their fuel economy and fuel consumption 

The second approach towards classifying drivers was to rank them based on the amount of their 

consumed fuel at the driving event. In the first part, the results of three methods of reporting 

their fuel economy are presented. In the second, the findings from calculating fuel consumption 

efficiency and the adapted method for calculating drivers’ fuel consumption based on their 

specific vehicle power and specific fuel consumption are given. The three fuel economy 

metrics used were:  
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§ The amount of consumed fuel per fixed unit of distance	 (/100,- ; 

§ The amount of consumed fuel per distance per unit of fuel (,-/(). 

 

4.2.2.2.1 Results of the fuel economy and fuel consumption rating 

The following graphs show the results of two metrics for all the class B and class C cars. 

Vehicles 8 and 15 are included so as to provide a comparison between the two vehicle groups 

and these single vehicles. The following charts exhibit the participants’ overall fuel 

consumption according to the two mentioned metrics. For both metrics, drivers’ total fuel 

consumption reported from the OBD dongles in litres has been used. In the first metric, the 

measurement presents fuel consumption, where the lower the value is the less fuel has been 

used. The second chart shows the most fuel-efficient drivers among the participants. It can be 

interpreted as that the higher the value is the more efficient a driver performed.  

1. The amount of consumed fuel per fixed unit of distance	 (/100,-  

 

Figure 80. Comparison of drivers’ fuel usage in l/100km 
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2. The amount of consumed fuel distance per unit of fuel (,-/() 

 
Figure 81. Drivers fuel consumption in km/l 

 

The above metrics, despite being in different units are in agreement with each other in terms 

of showing the amount of consumed fuel and who were the most fuel efficient drivers among 

the participants. However, both fail to take into account the difference that might occur if the 

drivers drove in different driving and road conditions. Whilst both metrics are valid in showing 

what they aimed to communicated, the problematic part is when a comparison has to be made 

between two drivers where one drove on hilly roads and the other drove on a flat route. 

Moreover, these metrics do not take into account parameters such as road gradient or the 

aerodynamic characteristics of the vehicle and hence, are falling short of comparing drivers on 

the same footing . 

 

 4.2.2.2.2 The results of the Vehicle Specific Power – Fuel Consumption metric 

The Vehicle Specific Power – Fuel Consumption metric (VSP – FC) allows for comparison of 

the drivers on equal grounds since vehicle engine capacity and its characteristics are excluded 

from the computing model. Instead, parameters including the road gradient, rolling resistance 
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and the vehicle drag coefficient, are used to calculate the rate of fuel consumption. Whilst the 

comprehensive 0&1 values were available throughout the driving rounds, this was not the case 

for instantaneous fuel consumption. Hence, the metric was calculated for all Vauxhall Corsa 

and Nissan Note drivers by dividing the total amount fuel consumed in (g/s) by the modulus 

values for VSP for each driver (0&1	– 	34 = 67
|9:;<(	0&1|	). 

 

Figure 82. The fuel efficiency of the drivers based on the VSP – FC metric93  

 

In the graph above, for each driver the total grams of fuel is obtained at the end of five laps and 

this total is divided by total time spent driving (s) to calculated the B value. Then, the total 

modulus value of VSP is computed for each driver and the VSP – FC values are calculated. 

The VSP-FC value incorporates individual driving behaviour in terms of driver speed profiles 

and hence, fuel efficiency can be compared regardless of the road gradient and characteristics 

of the vehicle. For instance, calm drivers, such as drivers 7, 11, 10, scored higher than 

aggressive ones, who had excessive vehicle and engine speeds, such as driver 14 and driver 13. 

Table 55 below shows the exact values of the drivers’ efficiency ratios.  
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Table 55. Drivers VSP – FC values 

V
au

xh
al

l 
C

or
sa

 

ID VSP – FC  

7 2.36 

11 1.29 

14 0.48 

N
is

sa
n 

N
ot

e 9 0.56 

10 0.60 

12 0.49 

13 0.30 
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4.2.2.3  Results of the drivers’ eco performance score according to the fleet 

management scoring system  

The standard scoring practice among fleet management service providers and the usage-based 

vehicle insurers is to rank drivers based on a set of time interval threshold rules. In order to 

score the drivers eco-driving performance, first, the total number of times they exhibited 

sudden acceleration, sudden deceleration and exceeding engine speed (above 4500 rpm) was 

counted. Then, the eco scores were calculated based on the total number of occurrences of these 

parameters, with a coefficient being assigned to each of them. The outcomes are provided in 

the table below. The drivers scores were then arranged in the form of an energy efficiency 

diagram. (For the methods employed, please see subsection 3.4.4.3). The scores for drivers 8 

and 15, the class C drivers, are only included in the table below and not on the score 

visualisation graphs.  

Table 56. Total number of occurrences of dangerous behaviours and eco-driving score  

 Number of 
sudden 

accelerations 

Number of 
sudden 

decelerations 

Number of 
incidents of 
high engine 

speed 

Eco 
driving 
score 

Alphabetic 
score 

D
riv

er
 ID

 

7 0 1 0 47 A 

8 14 3 1 0 D 

9 4 1 1 29 C 

10 1 1 0 43 B 

11 2 1 0 39 B 

12 6 0 0 26 C 

13 6 1 0 23 C 

14 14 5 0 0 D 

15 5 4 0 18 D 

 

From the table above, it can be seen that of the Vauxhall Corsa drivers, driver 7 has the highest 

score at 47, driver 11 comes second and driver 14 is the worst driver, with zero score. Regarding 

the Nissan Note drivers, driver 10 is the best, with a score of 43, whilst driver 9 and driver 12 
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come second and third, with 29 and 26 scores, respectively. Driver 13 is slightly the worst 

driver amongst the Nissan Note drivers, with a score of 23. What is salient about the above 

results, is that they show that by the chosen driver scoring method aggressive drivers can clearly 

be identified (driver 14 and 13), since they scored lower than other drivers. In addition, the 

calmer drivers with higher scores can also be singled out. However, the method is not always 

reliable, for example, driver 12 scored quite badly and yet in the earlier studies this driver was 

considered a calm driver, which raises an inconsistency and hence, brings into question the 

reliability of this type of threshold rules scoring model. 
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Figure 83. The Vauxhall Corsa drivers’ average eco-driving score based on the fleet management method of profiling driver performance 
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Figure 84. The Nissan Note drivers’ average eco-driving score based on the fleet management method of profiling driver’s performance 
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4.2.3 Results of developing a fuel consumption forecasting model and modelling 

drivers’ differences by virtual simulation  

In this subsection, the results of the fuel consumption forecasting model and the outcomes of 

IPG Carmaker virtual simulations of drivers’ real driving data are presented. The first study 

involved using the data collected from vehicles to establish the factors greatly affecting fuel 

usage and subsequently, constructing a regression model based on those factors to predict the 

fuel consumption of the tested vehicles. For this study, the IBM SPSS package has been used 

to build the fuel consumption regression model and outputs. The second study involved using 

the IPG Carmaker driving simulation software to model and simulate two simulation scenarios. 

The scenarios were designed and tested to examine the feasibility of using this software 

package to model variation in driving behaviours.  

 

4.2.3.1  Results of the study on the factors affecting fuel consumption and 

the construction of a fuel consumption forecasting model 

The regression model was constructed in two steps. Firstly, the correlation between all the 

available parameters was examined, and those highly correlated (at the 1% significance level) 

parameters were eliminated from the model. Out of all recorded parameters collected with 

OBD dongles the following 6 parameters were found to be highly correlated with the amount 

of fuel used by the drivers. The 6 parameters are: average engine coolant temperature, average 

vehicle speed, average distance, number of sudden accelerations, number of high engine 

speeds, number of sudden accelerations, number of high engine speeds, and the number of high 

engine temperature events. The following table shows the parameters were nominated as 

having a significant effect on fuel usage. An ANOVA (analysis of variance or analysis of 

means) test was conducted to understand the level of differences amongst all the parameters.  
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Table 57. Parameters that highly affect fuel usage based on the correlation analysis 

Driving and vehicle engine parameters 

Average engine coolant temperature (ºC) 

Average vehicle speed (km/h) 

Average distance (Km) 

Number of sudden accelerations 

Number of high engine speeds (rpm) 

Number of high temperatures 

 

The summarised calculation for the initial regression model (model 1) is tabulated as follows. 

Model 1 is constructed based on the retained uncorrelated parameters. 

Table 58. Model 1 ANOVA analysis values 

 

Table 59. Model 1 summary  

Model R95 R Square Adjusted R Square Std. Error of the Estimate 

1 0.95 0.907 0.892 17.1051 
 

Table 60. Model 1, regression model coefficients 

                                                
94 Predictors, i.e. independent variables. 
95 Dependent variable: drivers’ real fuel consumption. 

Model Sum of Squares df Mean Square F Sig.94 

1 

Regression 110933.97 6 18488.995 63.192 0.00 

Residual 11410.75 39 292.583     

Total 122344.72 45       

Model 
Unstandardised 
Coefficients 

Standardised 
Coefficients t Sig. 

B Std. Error Beta 

1 

(Constant) 451.35 41.305   10.927 .000 
Average vehicle speed -1.143 0.562 -0.109 -2.036 0.049 
Number of sudden accelerations -0.017 0.630 -0.002 -0.028 0.978 
Number of high temperatures -0.406 0.618 -0.037 -0.657 0.515 
Average of total distance recorded -43.186 4.363 -0.568 -9.899 0.00 
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For the first model (model 1), the R square value was 90.7%, which means that 90% of the 

variation of the dependent variable can be explained by the independent variables. The 

aggregate model F value was 63.19 and it was significant at the 5% level, whilst the P value 

was P <0.0005 for the model. However, the individual coefficients of the independent variables 

were not all significant and hence, those that were not were eliminated from the model.  

Table 61. Parameters removed from model 1 

Driving and vehicle engine parameters 

Average engine coolant temperature (C) 

Number of sudden accelerations 

Number of high temperatures 

 
 

The final linear multiple regression model was developed based on the rest of the parameters, 

which thus had the following independent variables.  

Table 62. Final driving and engine parameters included to predict fuel consumption 

Driving and vehicle engine parameters 

Average vehicle speed (Km/h) 

Average distance recorded (km) 

Number of high engine speeds (rpm) 
 

 

 

Average engine coolant 
temperature 0.036 0.321 0.006 0.113 0.91 

Number of high engine speeds  -87.345 6.888 -0.722 -12.68 0.00 
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The summarised calculation of the final linear multiple regression model (final model) is 

tabulated as follows. 

Table 63. Final linear multiple regression model: ANOVA analysis values 

 

Table 64. Final linear multiple regression model summary  

Model R R Square Adjusted R Square Std. Error of the Estimate 

Final  0.951 0.905 0.899 16.6076 

 

Table 65. Final linear multiple regression model coefficients 

Model 

Unstandardised 
Coefficients 

Standardised 
Coefficients T Sig. 

B Std. 
Error Beta 

Fi
na

l 

(Constant) !" 461.40 34.715   13.29 0.000 

Average vehicle speed !# -1.12 0.516 -0.107 -2.178 0.035 

Average distance recorded !$ -44.14 3.747 -0.581 -11.78 0.000 
Number of high engine 
speeds !% -87.90 5.772 -0.727 -15.22 0.000 

 

For the final model, the R-square value stayed approximately the same at 90.5% and the 

aggregate model was significant, with an F value of 133.86 and a P <0.0005. Two parameters 

were highly significant, namely, average distance and total number of high engine speed 

occurrences (<1%), whilst average driving speed was so at the 5% level. By looking at 

standardised coefficient values, it can be seen that all had an adverse impact on the real 

consumption value. The number of high engine speeds (rpm) had the greatest effect, the 

Model Sum of Squares df Mean 
Square F Sig. 

Fi
na

l 

Regression 110760.584 3 36920.195 133.860 0.000 

Residual 11584.135 42 275.813     

Total 122344.719 45       
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average distance (km) was second, and the average vehicle speed (km/h) had the least effect 

on consumption out of the three parameters.  

Table 66. Final linear multiple regression model residual statistics values 

  Minimum Maximum Mean Std. Deviation N 

Predicted Value 100.388 282.184 145.50 49.6120 46 

Residual -39.1445 27.0452 0.000 16.0445 46 

Std. Predicted Value -0.909 2.755 0.000 1.000 46 

Std. Residual -2.357 1.628 0.000 0.966 46 

 

The predictive fuel consumption model could now be constructed based on these parameters: 

average vehicle speed, average distance, and total number of high engine speeds. The linear 

regression model was constructed based on the followed equation.  

Equation 31. The fuel consumption multivariable linear regression model 

& = !" + !#×Average	vehicle	speed + !$×Average	distance

+ !%×Number	of	high	engine	speeds 

& = 461.40 − 1.12×Average	vehicle	speed − 44.14×Average	distance

− 87.80×Total	number	of	high	engine	speeds 

 

First, the model error was tested, and the histogram of the standardised residual of the 

regression model was plotted. The main objective of plotting the frequency – regression 

standardised residual chart is to understand whether or not the model residuals are well-

behaved or not. That is, to know that the model assumptions are reasonable and the model 

performs appropriately. The histogram below is a way of visualising whether the residuals are 

normally distributed or not, which can be interpreted as part of the variation unexplained by 

the model.  As can be observed, the graph the distribution is not normal, which is because the 
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sample size is small and hence, methods such as P-P plot or PRESS are recommended (Tsay, 

2010; NIST/SEMATECH e-Handbook of Statistical Methods, 2012; Tabachnick and Fidell, 

2012).    

 

Figure 85. The histogram of the regression model 

 

Rather than computing the model error by PRESS (Predicted Residual Error Sum of Squares) 

the P-P plot has been used to explain the predictability of the model. The P-P plot of the error 

was plotted to check how closely the model (expected cumulative probability, y-axis) agreed 

with the observed data (cumulative probability, x-axis), and it can be seen that the deviation of 

its outcomes from the real fuel consumption line is subtly different. Hence, the results of the 

regression show that model is able to predict fuel consumption by parameters other than 

through direct reading. 
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Figure 86. The P-P plot of the regression model  
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4.2.3.2  Modelling variations of driving styles using virtual driving 

simulator software  

In this subsection, the outcomes from modelling and comparing drivers’ driving performances 

using the IPG Carmaker virtual driving simulation software package are presented. The 

following two simulation scenarios were designed based on the Vauxhall Corsa drivers’ road 

speeds and vehicle characteristics.  

 

4.2.3.2.1 Scenario I: Results of the study modelling and comparing Vauxhall Corsa 

drivers’ eco-driving performances 

The road speeds of the first, third and final round of driving of the Vauxhall Corsa drivers were 

selected and assigned to the simulation model as the inputs for driving manoeuvres. In total, 

four simulations were conducted for the first scenario. The Brake Specific Fuel Consumption 

(BSFC) contour maps were plotted to display, firstly, the capability of the Carmaker software 

package to deliver distinguishable results from only variations in vehicle speeds. Secondly, the 

aim was to compare whether the drivers’ eco-driving scores were an accurate representation of 

their performance and finally, this was to confirm that vehicle speeds are a useful metric for 

distinguishing driving behaviour differences.  

Table 67. List of the simulation specifications for Scenario I 

ID Route condition Vehicle Model Manoeuvre input to the model  

1 to 3 With elevation Vauxhall Corsa  Corsa drivers’ fifth trial road speeds  

4 With elevation Vauxhall Corsa  Ideal driver, 30 mph speed limit max 
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Figure 87. The Brake Specific Fuel Consumption (BSFC) contour maps of three Vauxhall Corsa drivers, Driver 7 (top left), Driver 11 (top right), 
Driver 14 (bottom left) and a simulator (bottom right) 

§ Based on drivers’ actual speed, with the simulator assigned to keep the speed constant at 30 mph. (Results were plotted using AVL concerto) 
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By over lapping drivers’ contour graphs on the simulator, this sows how well each driver drove 

in comparison with the ideal driver presented as simulator driver. In the chart above, the black 

line show the simulator driver, with the dashed lines from driver 7, driver 11 and driver 14 

being, black red and green, respectively. The two objectives of conducting this analysis were 

satisfied as the simulation confirmed that the simulation model is, in fact, capable of delivering 

distinguishable outcomes by only using drivers’ vehicle speeds. Secondly, it can be seen that 

based on the classification results, driver 7 scored the highest, driver 11 came second and driver 

14 was the worst driver. The simulation results, moreover, show that driver 7 spent a significant 

amount of time in the efficient region of the vehicle engine performance map, while driver 14 

drove inefficiently for much of the time. The final consideration is in relation to the 

consumption map of the simulator, which was assumed to be the perfect performance of the 

vehicle calculated by simulation using the IPGDriver module. As has been explained in 

Chapter 3, the results of the engine efficiency values of the drivers and simulator were 

calculated and these can be seen in the table below. The results show that drivers 7 and 11 with, 

16.82% and 16.81%, respectively, were very close in terms engine efficacy and had high eco-

driving scores. It is important to highlight that engine’s efficiency values in the table below are 

entirely computed from output data of the simulator model and the eco-driving score is based 

on drivers’ driving data. Interestingly, drivers who were shown as being efficient in the 

computer model were score highly through the eco-driving score calculated in subsection 

4.2.2.3.   
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Table 68. The results of drivers’ efficiency values based on average brake specific fuel 
consumption 

Test ID  The engine 's efficiency Eco-driving score  

Driver 7 16.82% 47 

Driver 11 16.81% 39 

Driver 14 17.69% 0 

Simulator 18.18% - 

 

Hence, the efficiency values are consistent with the fleet scoring method presented in 

subsection 4.2.2.3. It can be concluded that the fleet scoring method is robust in identifying 

outliers (Driver 14), and accurate when it comes to ranking the most efficient drivers, as can 

be seen from the simulator software outcomes.  Finally, the findings of this study also confirm 

the final objective of this test scenario, whereby the modelling of different driving 

performances by only using drivers’ speed has been demonstrated as being achievable by using 

Carmaker and hence, this method is valid for modelling a range of aspects regarding driver 

behaviour.  

 

4.2.3.2.2 Scenario II: Results of the study modelling and comparing the effect of 

road slope on drivers’ fuel usage  

In this study, the Vauxhall Corsa drivers’ fifth lap driving data was used as the manoeuvres 

input for the simulation model. The model was then simulated under two different types of 

road conditions, first, without any elevation and the second, it was run with a digitalised road 

that matched the elevation profile of the actual route. The drivers’ instantaneous and absolute 

fuel consumption were recorded from these simulations. This study was aimed at checking the 

capability of the IPG’s Carmaker software of simulating roads without slope. 
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Table 69. List of simulation specifications for Scenario II 

 Route condition Vehicle type Manoeuvre input for the model 

1 Without elevation Vauxhall Corsa VX Driver 7 final driving speed data 

2 Without elevation Vauxhall Corsa VX Driver 11 final lap driving speed data 

3 Without elevation Vauxhall Corsa VX Driver 14 final lap driving speed data 

4 Without elevation Vauxhall Corsa VX Simulator, with 30 mph speed limit 

5 With elevation Vauxhall Corsa VX Driver 7 final lap driving speed data 

6 With elevation Vauxhall Corsa VX Driver 11 final lap driving speed data 

7 With elevation Vauxhall Corsa VX Driver 14 final lap driving speed data 

8 With elevation Vauxhall Corsa VX Simulator, with a 30 mph speed limit 
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Figure 88. Drivers’ actual instantaneous and absolute fuel consumption results for simulation on a road without elevation (left) and with elevation 
(right)   
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Since every parameter was kept the same for all the simulations, the effect of road elevation 

and drivers’ vehicle speeds on fuel consumption could be investigated. As it can be seen from 

the right-hand side graphs, uphill driving increases fuel consumption dramatically. The 

simulation results show that the ideal driving behaviour created by the simulator, under both 

test conditions (road with and without elevation), uses less total fuel than the real drivers did, 

according to their vehicle speed profiles. 

 

In order to find the impact of road slope on fuel consumption, the drivers and simulator’s fuel 

usage for both test conditions (without elevation and with elevation), i.e. those sections of the 

routes downhill (distance from start to 1,800 metres) and uphill (distance from 2,200 metres to 

the end)) were compared. As expected, drivers used less fuel during downhill driving (when 

the elevation is included in the model), compared to when the simulation was running on a flat 

road. The important observation is the effect that uphill driving has on fuel usage. For every 

simulation (including drivers and the simulator), more than 40% increase in fuel usage is 

recorded, according to Carmaker (Fig 45). In the case of flat road simulations, it can be 

observed that despite the fact that the digitalised road does not have any elevation to it, the 

results show that drivers used more fuel on the hypothetical downhill section of road than the 

uphill one. To explain this outcome, it should be noted that regarding the first section (downhill 

part) on the actual road and on the digitalised road this is very close to a straight route, hence 

drivers travelled at a higher speed than had there been bends in the road. Since their actual 

speed was used in the software, Carmaker generated the consumption correspondence to their 

speed (based on the powertrain information provided to the software). Regarding the simulation 

results, the following table shows the increase in fuel usage as the route setting changes from 

being a flat road to the actual real-world elevation profile.  
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Table 70. The effect of uphill driving on fuel usage based on Carmaker simulation results 

ID Percentage of fuel usage that is increased 

Driver 7 50% 

Driver 11 41% 

Driver 14 67% 

Simulator 49% 
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Figure 89. The Carmaker downhill and uphill fuel consumption simulation results based on the real-world speed data of the Vauxhall Corsa drivers 
and the simulator driver 
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This study confirms three important points: firstly, based on the virtual simulation, the road 

gradient can affect drivers’ fuel efficiency dramatically. Secondly, in the case of the simulator 

driver, when the software was set to maintain the speed limit, it was not representative of real-

world driving or the most efficient driving results, which confirms the need to have better 

representations of real-world driving in virtual driving simulator software. The final point is 

that Carmaker confirms that using drivers’ actual speed in the model can provide valuable 

insight into driver differences even when speed is the only parameter that varies.  

 

4.2.3.3  Summary of the modelling methods  

In this subsection, the results of two approaches to modelling driving data have been presented 

and discussed. The linear regression model in the first part, presented a metric for predicting 

drivers’ fuel consumption based on their vehicle speed, distance travelled and the total number 

of high engine speed incidents. The model can be used to predict fuel consumption with 

parameters other than direct measurement and this can then be used to compare across drivers 

or to predict the fleet fuel consumption amount.  

 

The second approach to modelling driving data has been to use the real world driving data to 

simulate virtual driving scenarios. The two presented scenarios (see 4.2.3.2.1 and 4.2.3.2.2) 

confirm the effectiveness and accuracy of the Carmaker driving simulation software, whereby 

it has shown that the simulation model has the ability to distinguish drivers’ differences only 

using their vehicle speed profiles. Regarding the first study, drivers’ efficiency was compared 

by using their actual speed profiles. The results show that in the event where every setting of 

the simulation remained constant, the efficient drivers could be determined by using just the 

variation in driving speed between drivers. The second scenario involved incorporating road 
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elevation into the simulation, which made it possible to uncover the effect that gradient has on 

fuel consumption. The results of the simulations confirm that with a 16% increase in the road 

gradient, on average, a 41% increase in fuel consumption can be observed. This conclusion is 

drawn based on the computer model that was constructed to replicate the exact conditions of 

driving (road conditions, vehicle specifications) and the computerised driver constructed based 

on drivers’ real-world speed using the manoeuvre settings in the IPGDriver module.   
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4.3 Result of the studies relating to drivers’ driving safety  

In this section, the findings of the studies conducted to examine the drivers’ perception of safe 

driving are presented. Similar to the studies on driver performance in section 4.2, this 

investigation was focused on drivers’ driving abilities in terms of their attitude to road safety 

based on their driving data. This included identifying unsafe behaviours and habits and 

classifying drivers in terms of whether they were driving safely or not. Since the safety of 

drivers is not determined by the make of vehicle, the driving data for all of the participant 

drivers was included in the following studies. To recall, the driving information was from those 

drivers who participated in the driving event on 9th February 2014. 

 

4.3.1 Results of identifying drivers’ safety perception by using vehicle engine 

data  

This subsection presents the results of four studies, each of which was aimed at determining 

aspects of the drivers’ perception towards road safety and risky driving behaviour. The 

following is the list of studies covered in this subsection: 

1. Study on drivers’ vehicle speeds prior to approaching to various road settings; 

2. Study on the total number of incidents and locations of hard acceleration/deceleration by 

the drivers; 

3. Study in identifying drivers with coasting downhill habits; 

4. Identifying collision-prone road segments on the testing route based on historical 

collision data. 
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4.3.1.1  Results identifying drivers with a tendency to drive over the speed 

limit in urban road settings  

The interest here was in the identification of the level of unsafe driving behaviour of all the 

drivers at locations where caution is required. The total number of driving trials was 46, and so 

the outcomes are reported in terms the percentage of the number of times that a particular 

behaviour was observed. Specifically, drivers approaching speed was examined when entering 

the main road, approaching the roundabout and finally, prior to the pedestrian crossing on 

Bathwick Hill. Table 71 below, shows these locations as distances from the starting point and 

the criteria, according which the drivers’ vehicle speeds were examined.  

 

Table 71. Locations, where drivers' safe driving was compared and each site’s testing criteria 

Location Distance Traffic setting  Algorithm criteria  

End of North Road 1.4 km Entering the main road 0 ≤ Speed ≤ 5mph 

Bathwick Hill  2.1 km The roundabout  
Speed ≤ 20 mph 

Speed > 30	mph 

39 Bathwick Hill 2.4 km The pedestrians crossing 
Speed ≤ 20	mph 

Speed > 30	mph 
 

Table 72. The percentage of times the drivers approached the focal locations with a safe driving 
speed 

Distance Traffic setting Algorithm criteria Percentage 

1.4 km Entering the main road 0 ≤ Speed ≤ 5mph 22% 

2.1 km The roundabout 
Speed ≤ 20 mph 22% 

Speed > 30	mph 10% 

2.4 km The pedestrians crossing 
Speed ≤ 20	mph 13% 
Speed > 30	mph 28% 

 

As presented in the table above, the percentage of times drivers made a full stop at the end of 

North Road, prior to entering the main road was 22%, which indicates that their perception 

about stopping at this location was poor. Similar analysis regarding the drivers reaching the 
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Bathwick Hill roundabout and the pedestrian crossing show that speeds of less than 20 mph 

occurred only 22% and 13% of the time, respectively. What is more alarming is that 10% of 

the time the roundabout was approached at more than 30 mph and in relation to the pedestrian 

crossing, this figure was much higher, standing at 28%. Overall, the reported results indicate 

that most of the participants had a poor attitude to safety, as judged by their speeds when 

approaching certain road settings.  

 

4.3.1.2  Study of the drivers’ hard acceleration and deceleration behaviours  

In this subsection, the results in respect of the drivers’ harsh acceleration and deceleration 

behaviour, in terms of the number of occurrences each lap at certain locations, are presented. 

This was addressed in two ways, firstly, the number of times and on which driving laps the 

drivers used the accelerator and brake pedals sharply. Secondly, this was achieved by making 

a comparison between the locations of these occasions and those with actual vehicle collisions 

in the past.   

 

4.3.1.2 .1 Results of the study on repetition of harsh acceleration and deceleration 

behaviour 

The incidents of using the accelerator and brake pedals harshly can be indicators of the drivers’ 

perceptions towards road safety. The total number of times such behaviours happened per lap 

was recorded and then put in graphical form, as shown in the graph below. As can be observed, 

there is an overall ascending trend in the total number of times the drivers performed sudden 

acceleration/deceleration. To visualise the overall trend of these two alarms, the logarithm lines 

were fitted to the samples. 
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Figure 90. The overall trend of total number of harsh acceleration and deceleration occurrences 
per lap (distance travelled) 

 

Since the total number of both sudden accelerations and decelerations was not significant, the 

following analysis is conducted by combining all the events from all the participants. As table 

below presents on the first lap there had been only one sudden acceleration and one sudden 

deceleration.  The exact reason behind these trends is difficult to explain, but it could be that 

the drivers’ fatigue or being bored of driving the same route five times contributed to their 

more aggressive usage of the acceleration pedal and engaging in harsh braking towards the end 

of the driving task. In the table below, it can be seen that the total number of sudden 

accelerations or decelerations started low for the first two laps rising to 19 for the fourth lap 

and falling back to 12 for the fifth.  

Table 73. The drivers total number of sudden accelerating and decelerating behaviours96  

 Lap number | Distance  1 | 4 km 2 | 8 km 3 | 12 km 4 | 16 km 5 | 20 km 

A
la

rm
s Sudden acceleration 1 1 6 13 9 

Sudden deceleration 1 1 0 6 3 

                                                
96 Table is organised based on driving lap and distance driven. 
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4.3.1.2.2 Results of the spatial interpolation of locations with a high number of 

dangerous behaviours and collision-prone history (pre-collision study) 

It was deemed appropriate to investigate the importance of these two behaviours, namely, 

sudden acceleration/deceleration, in more depth. This study involved investigating the 

correlation between the locations that drivers made sudden acceleration/deceleration and the 

total number of recorded accidents at those locations. To this end, the driving route was divided 

into 10 segments, each being 400 metres in length. The total number of collisions that happened 

between 2005 and 2013 for each segment was extracted from the Department for Transport 

published database (Graves et al., 2014). The total number of sharp accelerations and 

decelerations for each segment were also allocated to each section. The following two maps 

were created based on, first, the total number of times collisions happened for each segment of 

the road (Figure 91) and second, and the total number of times the drivers made harsh 

acceleration/deceleration in the same segments (Figure 92). Road segments are to scale, but the 

double arrow guides are not.  
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Figure 91. Total number of recorded collisions in each segments between 2005 and 2013 
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Figure 92. Total number of drivers' harsh acceleration or deceleration incidents based on their 
location 

 

Finally, the level of association between these two datasets, (places with previous collision 

histories and locations where drivers made harsh acceleration/deceleration) is investigated. The 

measure of correlation (correlation coefficient) was calculated using three methods, the 

Pearson, Spearman and Kendall methods. The results are presented below. As it has been 

emphasised in chapter 3, in this section the aim is to explore potential and meaningful 
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correlation between the two aforementioned datasets. Hence, for the exploratory data analysis 

(EDA) the decision was taken to compare all  the appropriate correlation analysis methods.  

 

Table 74. Results of correlation tests under the Pearson, Spearman, and Kendall correlation 
methods 

Method Correlation 
target 

Standard 
error Target P-Value T-Stat Critical 

value 
Pearson 97.0% 8.5% 75.0% 1.6% 2.58 2.31 

Spearman 91.3% 33.3% 75.0% 31.2% 0.49 1.96 

Kendall 81.9% 26.9% 75.0% 39.8% 0.26 1.96 

 

According to the Pearson method, a 75% target figure achieved a correlation of 97%, thus 

showing a fundamental association between the locations where drivers made harsh 

accelerations/decelerations and previous collision history. The two other methods (Spearman 

and Kendall) also reported close links between the two parameters, but not as strong as with 

the Pearson method. As these data sets are completely independent, the result that the 

simultaneous occurrence of the sudden changes in speed and collisions occurred 75% of the 

time most likely establishes the importance of the latter in identifying risky behaviour. This 

indicates that from only 46 trials and using the collision data for recorded accidents over an 

eight-year period an association between them can be found, which can lead to risky behaviour 

being identified. This outcome not only confirms that the drivers’ sudden 

acceleration/deceleration is a major factor regarding their safety level, for it also provides a 

new method of finding collision-prone locations in terms of their prioritisation for road 

improvements. 

 

4.3.1.3  Results of identifying drivers with a coasting downhill habit 

As has been explained in previous subsections, coasting downhill can be dangerous for drivers. 

Identifying those with a tendency to engage in such a behaviour can provide a new metric for 
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classifying drivers’ safety levels. Based on the route specific threshold rule developed for the 

participating vehicles, those drivers who exhibited hypothetical coasting downhill behaviour 

were detected. The results are provided in the following table.  

Table 75. Drivers’ total number of hypothetical coasting downhill incidents based on the 
algorithm 

V
au

xh
al

l C
or

sa
 ID Coasting downhill incidents 

7 3 

11 0 

14 1 

N
is

sa
n 

N
ot

e 9 1 

10 0 

12 0 

13 1 

(see subsection 3.4.7.3) 

The outcomes suggest that driver 7 coasted downhill the highest number of times and to ratify 

whether this behaviour actually took place, the speed – distance and engine speed – distance 

plot from a previous study (study 4.2.1) is presented again below (Figure 93). The actual 

coasting downhill occasions can be spotted by comparing the drivers’ speeds in conjunction 

with their vehicle speed and engine speed, whereby if a driver was coasting downhill, there are 

identifiable gaps between these two lines. These occasions are highlighted on the graph with 

the blue dashed lines. This would appear to be an effective method for identifying drivers with 

a coasting downhill habit and later, this method is used to improve the assessment of drivers’ 

safe driving scores. 
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Figure 93. Driver 7, speed - distance and engine speed - distance graph: the coasting downhill incidents can be spotted in the graph 

 

§ Dashed lines are occasions where the driver coasted downhill. 
 

 

 

  

0

1000

2000

3000

4000

5000

0
10
20
30
40
50
60
70

0.
01

0.
40

0.
94

1.
38

1.
80

2.
09

2.
58

3.
01

3.
58

3.
94

0.
52

1.
05

1.
44

1.
82

2.
28

2.
91

3.
47

3.
92

0.
28

0.
80

1.
36

1.
88

2.
39

2.
98

3.
40

3.
82

0.
05

0.
71

1.
30

1.
67

2.
08

2.
70

3.
13

3.
52

3.
88

0.
30

0.
97

1.
52

2.
03

2.
65

3.
24

3.
82

0.
07

0.
80

1.
38

1.
63

1.
77

2.
13

2.
72

3.
32

3.
73

Driver 7 - Trip 1 Driver 7 - Trip 2 Driver 7 - Trip 3 Driver 7 - Trip 4 Driver 7 - Trip 5 Driver 7 - Trip6

En
gi

ne
 sp

ee
d 

(r
pm

)

Sp
ee

d 
(k

m
/h

)

Trips number - Distance (Km) 

Speed (km/h) Speed (km/h) Engine speed (rpm) engine speed (rpm)



        Chapter 4 – Results 

 317 

4.3.1.4  Result of identifying collision-prone road segments on the testing 

route  

In order to determine collision-prone segments on the driving route (see 2.9 and 3.4.6.4), firstly, 

descriptive analysis was conducted on the historical data, which confirmed that the sample was, 

in fact, under-dispersed (sample-variance > sample mean). Moreover, as two of the segments 

(1, 2) have had no collisions reported, (zero observation), this, along with the under-dispersion 

would indicate that the results are biased. Hence, the identification of hotspots using the above 

method would not be without error. However, the aim here is not to predict where accidents 

will occur, but rather, to add parameters to the fleet driving score approach that will lead to its 

improvement and hence, these errors are not of great importance. As with the study in 4.3.1.2.2, 

the roads of the driving route were segmented into 10 sections of 400 metres in length and the 

total number of collisions in each between 2005 and 2013 was assigned to each section. Since 

the value of !" is less than 1.0, it is possible to investigate the collision-prone locations by 

using the statistical confidence intervals method (see 2.9 and 3.4.6.4) The results of the 

descriptive analysis and the statistical confidence intervals method are provided in Table 76 

below.  

Table 76. Descriptive analysis of the historical collision data and results of the crash-prone 
analysis  

Parameters Values Segment Number of actual 
collisions in the past Zone status 

Variance 17.16 1 0 - 

Average 4.80 2 0 - 

Standard deviation 4.37 3 9 Collision-prone 

Skew 0.67 4 9 Collision-prone 

Median 4.50 5 5 - 

Min 0.00 6 13 Collision-prone 

Max 13.00 7 4 - 
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Parameters Values Segment Number of actual 
collisions in the past Zone status 

Q 1 1.25 8 5 - 

Q 3 8.00 9 1 - 

!" 0.91 10 2 - 

 

The figure below shows the collision-prone zones on the route. The numbers represent the 

segment numbers, and the highlighted ones (segments 3, 4, and 6) are collision-prone zones, 

according to the statistical confidence intervals approach. The segments are marked with 

dimension guides that are not to scale. It is standard practice that road safety engineers, when 

identifying previously unknown hot spots, eliminate those they already know about when 

performing tests on suspected hazardous locations, which includes deleting junctions and 

roundabouts from the analysis. Segment number 6 covered the roundabout, i.e. a specific road 

feature and hence, was eliminated from the collision-prone zone in the subsequent modelling, 

whilst 3 and 4 just covered stretches of road, being thus retained. 
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Figure 94. The results from identifying the collision-prone locations of the driving route: 
numbers represent road segments 
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4.3.2 Results of classifying and scoring drivers’ safety differences from vehicle 

primary data  

In this subsection, drivers’ safety scores based on a standard scoring method are presented. 

This method is employed by usage-based insurers and fleet management service providers to 

score drivers in terms of safety. The second part of this subsection provides the results of a 

modified scoring model that includes drivers’ coasting downhill behaviour (4.3.1.3) and the 

locations where they made sudden acceleration or deceleration (4.3.1.4). It is contended that 

these changes make the standard scoring model one that is more sophisticated, in particular, 

because it is location sensitive.  

 

4.3.2.1  Results of drivers’ safety score according to the fleet management 

scoring system  

In order to score the safety aspects of drivers, first, the total number of times the drivers 

exhibited sudden acceleration/deceleration or exceeded the engine speed (above 4,500 rpm) 

were counted. Using these data, the safety scores were calculated, and the results are presented 

in the table below.  

Table 77. Total number of occurrences of dangerous behaviours, drivers’ safety ratings, and 
their alphabetic classification 

 Number of 
sudden 

accelerations 

Number of 
sudden 

decelerations 

Number of 
high engine 

speeds 

Drivers’ safety 
score under the 

fleet management 
system 

Alphabet
ic score 

D
riv

er
 ID

 

7 0 1 0 46 A 

8 14 3 1 0 D 

9 4 1 1 28 C 

10 1 1 0 43 B 

11 2 1 0 38 B 

12 6 0 0 25 C 
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 Number of 
sudden 

accelerations 

Number of 
sudden 

decelerations 

Number of 
high engine 

speeds 

Drivers’ safety 
score under the 

fleet management 
system 

Alphabet
ic score 

13 6 1 0 22 C 

14 14 5 0 0 D 

15 5 4 0 17 D 

 

According to this method, driver 7 was the safest driver, while driver 14 was the most unsafe. 

The only difference between this approach and the ranking model commonly used to score 

drivers’ eco performance is that the coefficients assigned to each of the alarms are different. 

Given the outcomes of some of the previous studies in this chapter that have proven there are 

driving conditions and situations that this scoring method fails to take into account, it is 

contended that it is inadequate for fulfilling this task effectively.  
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Figure 95. Vauxhall Corsa drivers’ safe driving score based on the fleet management method of profiling their safety 
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Figure 96. Nissan Note drivers’ safe driving score based on the fleet management method of profiling their safety 
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4.3.2.2  Results of modification of the fleet management drivers’ safety 

scoring method  

This subsection presents the results of two modifications aimed at improving the capacity of 

the fleet management scoring system so as to reflect real driving behaviour. As has been 

discussed previously, there are two aspects of driving behaviour, amongst others, that the 

existing scoring method does not address. The first matter is with regards to including the 

number of occasions when drivers were coasting downhill and based on the results of the study 

in 4.3.1.3, the negative effect of this was incorporated into the scoring system. The second 

modification to the existing scoring method draws on the fact that there is a high correlation 

between the locations of previous accidents and those where drivers made sudden 

accelerations/decelerations. Segments 3 and 4, as explained above in subsection 4.3.1.4, were 

taken as being stretches of road that represented hotspots in terms of collisions and hence, such 

behaviour by drivers at these locations was included in the scoring process. That is, whilst the 

total number of sudden acceleration and deceleration occasions of drivers was taken into 

account for all segments for all the Vauxhall Corsa and Nissan Note drivers, this was more 

severely penalised for hot spots. The drivers’ scores were updated by building in the negative 

effect that these two behaviours had on their driving scores, individually, as explained in 

subsection 3.4.7.2. The final action was to combine the impact of both of these behaviours to 

arrive at a new safe driving score. In sum, the proposed model presents a driver safe driving 

score that includes the negative impacts of coasting downhill and making sudden accelerations 

or decelerations at collision-prone locations.  
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Table 78. Drivers safe driving score based on the standard method and the new safe driving score based on the modifications made to the scoring method 

ID Unmodified Safe 
score 

Number of coasting 
downhill incidents 

Number of sudden accelerations 
or decelerations at collision-

prone locations 

Coasting 
downhill score 

Alarming behaviour at 
collision-prone locations 

score 

Modified safe 
score 

7 46 2 2 40 42 36 
9 28 2 2 26 24 22 

10 42 1 3 42 36 36 
11 38 0 1 38 36 36 
12 25 0 0 25 25 25 
13 22 1 3 20 16 14 
14 0 4 0 0 0 0 

 

Figure 97. Drivers’ safe driving score improvement from unmodified to modified safe driving scores 
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Chapter 5  

Discussion 

 

“Pick a flower on Earth and you move the fartherst star.” 

 – Paul Dirac 

 

 

5.1 Introduction 

This section is dedicated to providing further explanation of the analysis conducted in this 

study. The aim here is link the work that has been undertaken with the five questions posed in 

Chapter 1.  

 

1. What driving parameters (e.g. vehicle speed, acceleration, and engine speed, road 

geometry) can identify drivers’ driving differences? 

2. What is an effective way to classify, rank, and group drivers based on driver differences 

and similarities? 

3. Is it feasible to model variations of driving behaviour based on collected real driving 

data? 

4. What driving parameters (e.g. vehicle speed, acceleration, and engine speed, road 
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geometry) can identify drivers’ attitudes to driving safely? 

5. What is an effective way to classify, rank, and group drivers’ safe driving based on 

dangerous driving habits? 

5.2 The conducted analysis regarding the drivers’ driving behaviour  

This first set of analyses was aimed addressing the first research question as to whether distinct 

differences in drivers’ driving performance can be identified through their collected driving 

data. As has been demonstrated, several of the vehicle parameters as well as the drivers’ 

approach to driving can be used to gain insights into their behaviour. These include vehicle 

speed, engine speed and acceleration/deceleration, with the latter being an indicator of whether 

people drive calmly or aggressively. 

 

As has been demonstrated in the first part of this subsection, for similar driving conditions 

(same route, same vehicle) drivers’ driving data can substantially vary (see study 4.2.1.5.1 and 

4.2.1.5.2 outputs). However, as they become more familiar with the route and its traffic settings 

(traffic lights and roundabout locations), drivers with similar driving behaviour and 

temperament begin to follow similar driving patterns. Specifically, they tend to have similar 

vehicle speed as well as similar acceleration and deceleration patterns. From the comparison 

of the drivers’ vehicle speed data against their engine speed data, it has been demonstrated that 

at low speeds some drivers shifted gears more efficiently than others and were able to control 

the car in a more efficient manner.  

 

Considering driving parameters in conjunction with locations has provided significant further 

insight into the drivers’ driving behaviours. By including the route elevation, it has been 
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possible to discover the reason as to why some drivers used higher engine speed than others, 

which turned out to be because when they started going uphill, they put their foot down harder 

on the accelerator than other drivers. If this were hypothesised, it could not be verified without 

this topographical data. In the geo-analysis of vehicle speed and engine speed subsection 

(4.2.1.4.1), the route was split into downhill, urban, and uphill driving. The outcomes made it 

possible to consider the possibility of the coasting downhill habits of some of the drivers (see 

further study in 4.3.1.3). This analysis also identified those drivers who drove rather recklessly 

in the urban area, particularly in terms of their speed and sharp acceleration/deceleration. In 

the final subsection (4.2.1.4.3) of this identification subsection, the outcomes regarding the 

drivers’ differences in terms of their vehicle specific power values were analysed. Including 

the fixed parameters, such as the aerodynamic characteristics of car and road friction value as 

well as vehicle dynamics variables, such as speed and acceleration, made it possible to compare 

all the class B drivers’ (Vauxhall Corsa and Nissan Note cars) driving performances, according 

to their vehicle specific power values. It is clear that some drivers used higher vehicle specific 

power than others, which indicated that they were more aggressive in their driving in terms of 

their choice of speed and engaging in sharp acceleration/deceleration.  

 

The last work in this section involved determining the distribution of the vehicle speeds taken 

across the five laps of the event at 10-second intervals (see 4.2.1.5). This was necessary to 

complete the next phase of the research, i.e. the classification of drivers with similar behaviour. 

First, the range and consistency of speeds were analysed using box plots and cumulative 

frequency graphs to see whether there were clear differences between the drivers and it 

emerged that there were. Next, the descriptive statistics of the vehicle speeds were calculated 

and subsequently, subjected to distribution testing to determine whether they were normally 

distributed. It was concluded that the drivers’ driving data were not normally distributed even 
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with a JB normality test  and in order to compare any two drivers’ speed data a method had to 

be selected that did not require a normal distribution assumption, for example, a U-test.  

 

5.3 The conducted analysis on classifying drivers’ driving behaviour 

In a later set of analyses, the outcomes of three methods of classifying, ranking, and scoring 

drivers were presented. These studies were carried out to address the second research question, 

which pertains to whether it is possible to classify drivers according to their driving data. In 

the first part, the drivers’ degree of similarity in terms of vehicle speed profiles was visualised 

using network diagrams. Effective sample size analysis revealed that drivers 7, 9, 10, and 11 

had similar vehicle speed profiles, whilst the other drivers (drivers 8, 13, 14, and 15) could also 

be considered as driving mainly in the same manner and hence, they too were grouped together 

(see 4.2.2.1.2).  

 

The second part of this subsection provided the results of ranking the drivers based on two 

common metrics for reporting drivers and vehicles’ fuel efficiency. As discussed, these metrics 

are not effective when it comes to representing real driver behaviour, as they do not take into 

account parameters such as road gradient, vehicle speed, or acceleration/deceleration. As a 

result, a new metric was introduced to compare drivers’ efficacy, that of their vehicle specific 

power value in regard to their fuel usage. In the final part of this subsection, the scores for the 

drivers based on the total number of sudden accelerations, decelerations and incidents of high 

engine speed were reported. The threshold rule scoring method allowed numerical values to be 

assigned to each driver, but this falls short of representing real driving behaviour.  

 



Chapter 5 – Discussion 

 330 

The most significant findings in this subsection are, first, it emerged that drivers who exhibited 

similar vehicle speed profiles in terms of their effective sample sizes, also did so under the fleet 

management scoring system. For example, drivers 9, 10 and 11 had very similar speed profiles, 

and they all scored highly as well. Secondly, except for driver 14, the drivers’ VSP – FC values 

were consistent with their fleet management ratings. This is important, for it means that the 

VSP – FC values can be used to classify driver fuel efficiency and score their driving behaviour. 

The evidence of this conclusion is summarised in the table below.  

Table 79. Comparison between drivers’ average eco score and their VSP – FC values 

V
au

xh
al

l C
or

sa
 ID Average score VSP – FC 

7 47 2.36 

11 39 1.29 

14 0 0.48 

N
is

sa
n 

N
ot

e 

9 29 0.56 

10 43 0.60 

12 26 0.49 

13 23 0.30 
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5.4 The conducted analysis on the identification of the drivers’ safety 

attitudes 

This subsection’s studies have all been aimed at addressing the question of identifying risky 

drivers. Drivers’ driving data has been used to distinguish their different apparent attitudes 

about safety. Their vehicle speeds in conjunction with location were used to examine their 

approaching speeds at three points on the road, where the road setting required extra caution. 

Drivers were identified as exhibiting risky behaviours based on the recommendations in the 

UK Highway Code. The second part focused on drivers’ sudden acceleration and deceleration 

behaviour, investigating repetition of their occurrence and location. As has been shown above, 

the total number of sudden accelerations and decelerations increased as drivers completed more 

driving rounds. The geo-study elicited that there was a 75% correlation between such behaviour 

and the number of recorded accidents at the same location. In general, the findings of these two 

studies have established the fact that drivers’ sudden acceleration and deceleration behaviour 

has a major impact on their safety.  

 

The final study in this subsection pertained to identifying those drivers who engaged in 

downhill coasting. As has been pointed out previously, this is a risky behaviour that puts the 

driver, car passengers and other road users in danger, as the foremost can lose control of the 

vehicle when operating it in this way. The total number of coasting downhill incidents for both 

the Vauxhall Corsa and Nissan Note drivers was identified. In the next section, the locations 

where drivers performed sudden acceleration or deceleration and total number of times they 

coasted downhill behaviour were used to modify the standard driver safety score metric.  
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5.5 The conducted analysis on classifying drivers in terms of their 

attitudes to safety 

In this section, the research question in relation to an improved method for measuring drivers’ 

safe driving is addressed. Whilst assigning a numerical value to the safety aspects of an 

individual’s driving is not a true representation of their driving ability, nor can it predict their 

future involvement in road accidents, it can help insurers and fleet managers to have better 

understanding of the attitudes to driving of the drivers they are providing services to. As has 

been contended here, the scoring achieved by the standard model do not clearly identify unsafe 

drivers. In contrast, the two modification that are suggested for improving this method do allow 

for drivers to be categorised according their level of carelessness when driving. For instance, 

driver 7 scored 46 under the standard method, but because he coasted downhill twice and made 

a sudden acceleration/deceleration twice, his score fell by 10 points to 36. To conclude, by 

including drivers’ total number of times that they coasted downhill and the total number of 

times they undertook sudden acceleration or deceleration at collision-prone locations, their safe 

driving score measurement can be improved significantly and thus, become a more realistic 

representation of their attitude regarding their own and others’ safety. 
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5.6 Project achievement in the context of naturalistic driving 

behaviour 

To this end, it is important to revisit the V-model and explain its salience in providing a 

framework to conduct naturalistic driving behaviour. The first part of the framework provided 

a structure to design an experiment. The table below summarise how each part of the 

framework helped to address the design of the experimental part of this research.  

Table 80. Summary of the design of the study 

Listing research questions 

• Understanding and characterising the 
impact of real world driving on fuel 
economy 

• Establishing the contributing factors of 
drivers’ driving behaviour to road safety 

• Investing potential analytics approaches to 
rank drivers and the effect of drivers’ 
driving behaviour differences 

Defining monitoring devices • OBD II and an GPS sensor with a sim card 

Defining the test procedure and data 
collection approach 

• 4 km long route 
• Cars that were built after 2001 (to be 

compatible with OBD II device) 
• Drivers from similar demographic 

Address what data has to be collected, 
anonymised and stored 

• No personal data has been collected or 
stored 

• Drivers’ identity was anonymised from the 
start and driver ID in terms of number 
rather than name was linked to a car and 
monitoring device 

 

The second and the third stage helped in conducting a series of analysis to provide potential 

answers to the research questions. In Chapter 3, list of the analytical approaches was introduced 
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and their relevance to addressing the research questions was explained. In chapter 4, the results 

of each analysis were presented and explained. The following table summarises the methods, 

the findings and the reasoning behind these analyses. 
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Table 81. Summary of the methods, the findings, and the analyses  

  List of studies Analysis approach and the reasoning 

Eco 

Driving 

Studies 

 

Identifying driver 
differences 

Study of vehicle speed – distance and engine 

speed – distance analysis 

 

Study of the relationship between drivers’ road 

speed and engine speed 

 
Study identifying drivers’ aggression by 

comparing their speed vs. acceleration 

 

Geo-analysis of vehicle parameters in 

conjunction with the route elevation profile 

Descriptive analysis of vehicles’ speed profiles 

Exploratory data analysis of driving data by comparing drivers’ vehicle 

speed, engine speed, acceleration, deceleration, and gear changing 

strategies 
The underling relationship between the drivers’ aggressiveness with the 

scatter distribution of their speed and acceleration 

Spatial analysis of driving parameters with the route elevation to 

investigate drivers’ differences including their differences when facing 

uphill and downhill sections of the road as well as the use of excessive 

vehicle power to overcome a slope 
Establishing the idea that individual speeds are rarely normally 

distributed, while the speed distribution on a given segment of a road is 

normally distributed around the actual average speed of the segment, if 

enough driving data has been collected 

Classifying and 

scoring drivers 

Evaluating the similarity of drivers’ speed 
profiles 

Classifying drivers based on their fuel usage and 

proposing the Vehicle Specific Power – Fuel 

Consumption metric (VSP-FC) 

Eco driving classification according to the fleet 

management scoring system 

Introducing the concept of the similarity of two individuals’ driving 

performance through the similarity of their speed distribution. That is, two 

drivers’ driving speeds can be compared according to the value of 
statistical effective sample size, with those having a high score, having 

similar driving behaviour 

 

Proposing the concept of VSP-FC metric as a worthy metric to compare 

drivers driving and Eco driving performance since the VSP (vehicle 

specific power) formula has information about the key characteristics of 
the road, namely, gradient and the car drag coefficient, which makes a 

comparison of fuel usage closer to the real-world consumption. 
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Eco 

Driving 
Studies 

Modelling and 

simulating different 
driving behaviour 

Study of the factors affecting fuel consumption 
and constructing a fuel consumption forecasting 

model 

Modelling different driving styles and road 

condition effects on fuel usage and car 

emissions by using IPG Carmaker 

Using a linear regression model to examine the most influential factors on 

total fuel usage. 

 
Feasibility study of using real-world driving parameters, such as driving 

speed, to build a visual computer model 

Safe 
Driving 

Studies 

 

Identifying driver 

differences 

Study of drivers’ safe speed perception when 

approaching road settings 

Study of drivers’ hard acceleration and 
deceleration habits 

Study for identifying drivers with coasting 

downhill habits 

Identifying collision-prone zones 

Investigating drivers’ driving differences by comparing their driving 

speed while approaching a roundabout and pedestrian crossing 

 

Examining driving approach towards making harsh accelerating and 
deceleration, which led to investigating the correlation between their 

locations with those of historical crashes 

 

Developing a metric for identifying the dangerous behaviour of coasting 

downhill, which subsequently was added to the scoring equation 

Classifying and 

scoring drivers 

Safe driving classification according to the fleet 

management scoring system 

Two modifications to the fleet management 

scoring system 

Investigating a linear method for aggregating driving events, which have 

been evaluated as being dangerous, including driving above the speed 

limit, making harsh acceleration and/or deceleration and excessive usage 

of engine power above certain thresholds. The modification to the initial 

equation was based on adding the coasting downhill habits and making 

acceleration and deceleration on locations with historical crash records 



 

 

Chapter 6  

Conclusion 

 

“Science is a way of thinking much more than it is a body of knowledge.” 

 – Carl Sagan 

 

 

6.1 Introduction  

As has been discussed, studying differences between drivers’ driving behaviour is an important 

topic. By understanding the impact of drivers on vehicle fuel consumption and emissions, it is 

possible to estimate the amount of the transport sector’s greenhouse gas contribution and then 

implement plans to reduce GHGs, thus improving air quality. Moreover, such studies can help 

identify drivers who do not operate vehicles in a safe manner, which increases the probability 

of them being involved in road accidents. Having reviewed the existing published studies on 

understanding the impacts of driving behaviour, it can be concluded that it is important to study 

drivers driving behaviours in conjunction with fuel-efficient driving and safe driving. 

Understanding drivers’ differences can be completed in three stages: first, by identifying 

abnormal and outlier driving habits (in this research in relation to high engine power, high VSP 

values as well as sudden acceleration/deceleration), and secondly, by classifying drivers with 

similar driving styles, that is, by scoring them for ranking purposes or finding patterns of 

similar behaviour that allows for them to be grouped together. Finally, based on these outcomes 

it becomes possible to model driving behaviour differences. Modelling variations of driving 
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style in a virtual environment allows for the conducting of many tests at very little cost. For 

this project, the three stages mentioned for both eco-driving and safe driving were followed. 

This chapter concludes by considering the findings for each stage. 

 

6.2 Summary of the studies and findings 

Identifying drivers’ driving differences using naturalistic driving parameters  

§ Drivers’ driving patterns can be compared using the speed – distance and engine speed – 

distance plots. At this level of observation, drivers with significant differences are 

identifiable (i.e.. those regularly exceeding the speed limit or driving with a much higher 

engine speed than other drivers) (see 4.2.1.1).  

 
§ Observing gear shifting strategy is a robust indicator for identifying drivers with inefficient 

gear shifting habits. There are two types of drivers in this regard: first, there are those with 

the habit of remaining in a low gear for longer than is necessary (causing high engine power 

at a low speed). Secondly, there are those that tend to go to a higher gear at a low speed 

(causing inefficient engine performance) (see 4.2.1.2). 

 
§ A comparison was made between drivers’ acceleration behaviour by using speed vs. 

acceleration scatter plots. It was observed that there was a distinct separation between 

drivers who accelerated and decelerated sharply and those who did so smoothly. That is, 

the observation of the scatter plots of acceleration vs. speed showed that aggressive drivers 

had a wide distribution of data points, while those of calm drivers were concentrated near 

to each other (see 4.2.1.3).  
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§ Spatial analysis of the vehicle parameters provided valuable insights into driver differences 

when approaching different parts of the route. A driver’s vehicle speed, engine speed, 

acceleration and VSP values were plotted against distance travelled and elevation. The 

outcomes indicated that while a driver’s vehicle speed vs. route elevation did not provide 

new information, his or her engine speed and VSP values vs. route gradient profile provided 

valuable insights into differences among drivers’ driving approaches. For example, a driver 

who was identified as someone with a habit of exceeding the speed limit and making sharp 

accelerations and decelerations frequently had the tendency to use more VSP than was 

required to overcome an uphill road gradient (see 4.2.1.4). 

 
§ As has been demonstrated in previous studies, a driver's vehicle speed is very much 

indicative of driving behaviour. Accordingly, further studies were conducted on driver 

vehicle speed profiles. Firstly, it was shown that, as was expected, the vehicle speeds were 

not normally distributed. Secondly, drivers speed consistency was illustrated in cumulative 

speed graphs as these are excellent indicators of drivers’ driving behaviours. In this study, 

drivers’ driving differences and outliers in terms of vehicle speed were identified using 

cumulative graphs, stack bar charts and box plots (see 4.2.1.5).  

 

Classifying drivers’ driving differences using naturalistic driving parameters 

Three methods of classification were introduced for consideration. 

§ The first involved comparing speed distribution profiles. For this particular study, the 

matrix of similarity was calculated based on the vehicle speeds for all pair arrangements of 

the drivers. The results were visualised by using a node and link network diagram and as 

such, provided a simple method for classifying similar drivers (see 4.2.2.1).  
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§ The second method of classifying drivers was based on their fuel usage. As only their total 

fuel consumption data were available, three fuel economy metrics (/100km, km/l, and kg⁄h) 

were compared based on these values. However, it emerged none of these metrics was 

capable of providing a meaningful comparison between the focal drivers and as a result, 

the VSP – Specific Fuel ratio was introduced. This metric contains information about driver 

speed, acceleration and road gradient and hence, is more meaningful when comparing 

driver behaviour using total fuel consumption (see 2.2.2). 

 
§ The third driving classification was based on the method currently used by fleet 

management service providers and motor insurers. The threshold rule based method scores 

drivers according to the total number of times they use a high engine speed or exhibit sharp 

acceleration/deceleration. The cross comparison of this score with the VSP – SF ratio, 

showed that the aforementioned ratio has the credentials to be employed by the relevant 

industries as a method to score drivers’ fuel efficiency as well as driving behaviour (see 

4.2.2.3).  

 

Developing a fuel consumption forecasting model and modelling drivers’ differences by 

virtual simulation 

§ A linear regression model was developed based on the available driving parameters, with 

the final model being developed based on the average vehicle speed (km/h), average 

distance travelled (km), and number of times using a high engine speed (rpm). The model 

provides an estimation of the fuel consumption of drivers when the aforementioned 

parameter measurements are used as inputs (see 4.2.3.1). 
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§ The modelling of three driving classes was performed using the IPG Carmaker virtual 

driving simulation software under two scenarios. The aim was to establish the feasibility 

of using real-world driving data to represent variations in drivers’ behaviour in simulations 

using this software and a driver’s vehicle speed was used as the only input to the simulator. 

The first simulation scenario showed that drivers with a good driving score from using the 

fleet management method (4.2.2.3) were not necessarily the most fuel efficient.  Hence, 

this has elicited that more effective ways are required to score and compare drivers’ eco 

performances (see 4.2.3.2.1). 

 
§  The second scenario pertained to investigating the effect of road slope on fuel usage by 

simulating two versions of the same route (with gradient and without gradient). It was 

observed that inputting a road gradient of 16% increased. on average, the fuel usage by up 

to 41% for drivers in the simulation environment (see 4.2.3.2.2). 

 

Identifying drivers’ safety attitude using naturalistic driving parameters  

§ Drivers’ driving speed was compared at three locations: (1) entering a main road from a 

minor one, (2) approaching a roundabout, and (3) coming towards a pedestrian crossing. 

It was observed that only 22% of the time did the drivers stop at the junction. Moreover, 

they were over the speed limit at the roundabout and the pedestrian crossing for 22% and 

28% of the time, respectively (see 4.3.1.1) 

 
§ The total number of sharp accelerations and decelerations made by the drivers were 

calibrated for each lap and the occurrences of both increased per lap as the route 

progressed (see 4.3.1.2.1). For the second part of this study, locations at which drivers 

made sharp accelerations/decelerations were compared with those of previous recorded 
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collisions. Pearson correlation analysis indicated that locations where drivers made harsh 

acceleration/braking were highly correlated (75%) with segments that had records of 

prior accidents (see 4.3.1.2.2). 

 
§ Drivers’ habit of coasting downhill was selected as one of the unsafe behaviours that has 

been given little attention by other researchers. Accordingly, in the study in 4.3.1.3, those 

drivers who exhibited this sort of behaviour were identified. The results show that 4 out 

of 7 drivers coasted downhill at least once (see 4.3.1.3).  

 
§ The final part of this subsection investigated the collision-prone locations on the route 

on which the driving test was conducted. The route hotspots were identified using the 

statistical confidence intervals method and two out of 10 segments emerged as being so 

(see 4.3.1.4). 

 

Classifying drivers’ safety differences using naturalistic driving parameters  

§ Drivers’ safe driving was scored using the method that is widely used by fleet management 

providers and usage-based motor insurance providers. As the results show (see 4.3.2.1), the 

scoring method’s ability to distinguish drivers' differences is very limited and therefore, 

two modifications were made to the model to make it more realistic. That is, a driver’s total 

number of times coasting downhill and total number of occasions making sharp 

accelerations/decelerations at collision-prone locations were added to the scoring model. 

These modifications introduced greater accuracy to measuring drivers’ actual behaviour 

(see 4.3.2.2).  
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6.3 Limitations  

This project, like every field study, by its nature, had a number of limitations, which manifested 

themselves at three levels. Firstly, there are avoidable limitations, which are possible to address 

in future studies. In this study, the OBD dongle was set to record five driving parameters (in 

order to have sufficient internet credit to complete driving laps) every 10 seconds, which 

generated a substantial amount of data. It is possible to use an advanced dongle to record data 

second by second for 18 parameters, but this would have brought the data processing to an 

unmanageable scale for a project of this size. Pedal position and instantaneous fuel 

consumption were two parameters that may be should have been included for comparing and 

classify drivers’ driving behaviour differences, and it is important for future studies to consider 

them. The second level of limitation is the semi-avoidable constraints. These are limitations 

that are partly avoidable by detailed consideration at the design of the experiment stage of the 

project. For instance, this could be a driver’s demographics and vehicles types used. In this 

study, special care was taken to have a homogeneous demographic of drivers with similar 

vehicle types. The final level of limitation comprises those that are unavoidable. As is self-

explanatory, parameters such as traffic flow conditions, weather (temperature, humidity), and 

to some extent the psychological status of a driver are parameters that are not controllable and 

hence, the impacts of them on the study (if any) are unavoidable and unquantifiable.  
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6.4 Contributions and their applications  

This project was aimed at contributing effective methods for identifying and classifying drivers 

in terms of efficient eco-driving and safe driving. As has been outlined in the previous chapters, 

identifying abnormal driving styles and classifying drivers with similar driving behaviour 

attributes is of high importance, in particular, because it can benefit fleet management service 

providers and usage-based insurance companies. Of all the studies that were conducted for this 

project, the following findings were selected as the major contributions to this field of study.  

 

1 Identifying a metric for ranking drivers’ fuel consumption: The Vehicle Specific 

Power (VSP) – Specific Fuel (SF) ratio has been proposed as a method to rank drivers. 

Since the VSP value is calculated based on drivers’ vehicle speed, acceleration, road 

gradient, and car drag coefficient, it provides common ground for comparing driver 

performances. The ratio that is calculated by dividing the fuel consumption ratio (g/s) 

to the VSP value is a very robust metric for comparing and ranking drivers based on 

their fuel usage and driving behaviour (driving and vehicle conditions). The suggested 

method is useful for telematics providers, and fleet management service providers since 

the VSP – SF ratio affords an opportunity for them to compare fuel efficient drivers 

with simple parameters that are available to them (vehicle speed, amount of fuel usage 

and location information). 

 

2 Classifying drivers based on their speed similarity: Power analysis (effective sample 

size analysis) method has been used in this project in a new way in that it has been 

shown that drivers’ speed profiles can be compared so as to demonstrate their similarity 

or difference. By calculating the effective sample size required based on every pair of 
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drivers, it has been shown that drivers can be classified purely based on their speed 

similarity. The method is a very useful tool for industries that want to classify driver 

similarity without the usage of complex pattern classification methods.  

 

3 Scoring drivers: Based on the method that is frequently used by industries, such as 

motor insurance providers and fleet management service providers, two additional 

adjustments were added to the model in order to make the method realistic and accurate. 

The two modifications that were added were the following: firstly, the drivers received 

negative points when they coasted downhill; and secondly, if they made harsh 

accelerations or decelerations at locations that were identified as route hotspots, they 

would receive twice the number of negative points, as when they had performed in this 

manner in non-hotspot locations. The direct application of these two modifications can 

benefit those industries that need to rank drivers, such as those developing usage-based 

vehicle insurance policies.  

 

 
4 Establishing the level of association between the locations where drivers made 

harsh accelerations/decelerations at the event and those with previous collision 

records. First, places where drivers exhibited either harsh acceleration or sudden 

braking were identified, according to 10 road segments. Next, the historical records of 

collisions were extracted from published records between 2005 and 2013 for these 

segments. Finally, the Pearson correlation measures of these two datasets for each 

segment were calculated. It emerged that 75% of the time that drivers made harsh 

acceleration and deceleration occurred in the two segments that had the highest number 

of recorded accidents.  
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5 Using Carmaker virtual driving simulator to compare drivers’ driving: Based on 

the two scenarios designed in this research, it has been shown that IPG Carmaker is 

capable of generating distinguishable driving results when a driver’s vehicle speed is 

the only parameter that is changed. According to the findings of first study, it is possible 

to estimate driver efficiency based on driving data generated by Carmaker using only 

drivers’ real-world speed as the software input value. Regarding the second study using 

this software, it has been shown that a driver’s fuel usage is highly influenced by the 

nature of the road he / she is driving on. In the case of this study, the simulation based 

on real-world conditions has shown that a 16% increase in road gradient will result in 

around a 41% increase in fuel consumption  
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6.5 Recommendations  

This work is aligned with other ongoing naturalistic driving behaviour studies in the EU, for 

instance, the UDRIVE and the EcoDriver. It has been established by this work and other 

scholars that field studies are a reliable and valuable method of studying driver driving 

behaviour differences and hence, they provide a better understanding of the impact of real-

world driving conditions on fuel consumption and driver safety. It is recommended that further 

projects be conducted with the aims and objectives of naturalistic driving behaviour studies 

and frameworks, as has been proposed in the PROLOGUE documentation (Van Schangen et 

al., 2011).  

 

Developing a driving behaviour database  

It is logical to consider constructing a universal driving behaviour database, which can then be 

shared by academics and industry. Such a platform would provide the opportunity to 

understand drivers’ driving behaviours on a worldwide basis. In this thesis, the fundamentals 

of creating such a database have been briefly discussed. However, a collaborative effort is 

required to create such an open access platform. Consequently, it is logical to argue that there 

should be a database compiled of different driver behaviours and accordingly, efforts are now 

being made to this end in both the UK and other countries in Europe, with the aim being to 

collect such data for 5,000 drivers.   

 

The VSP – FC metric   

It has been demonstrated that the VSP-FC metric has the capacity to be used as a method to 

rank drivers’ driving behaviour as well as their eco-driving performances. However, this 
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conclusion has been drawn based on this study only. It is recommended that further projects 

evaluate and validate the effectiveness of this metric, by comparing the VSP-FC metric values 

of the driving data of drivers who do not drive on the same routes.  

 

Driving behaviour scoring  

In this thesis, various methods and metrics for comparing and ranking drivers’ driving 

performances have been utilised. It has also been demonstrated that some of the existing models 

for scoring drivers are not capable of doing so fairly or realistically. Moreover, if the aim of 

the scoring is in relation to usage-based insurance, it is important to ensure the homogeneity of 

the risk model in that sector, if it is to work effectively. In this work, driver similarity in terms 

of driving speed has been proved as being an insightful metric. Moreover, the outcomes from 

two modifications to the existing fleet scoring model, namely, coasting behaviour and 

speeding/braking at accident hotspots, have indicated that the calculations from this model 

could more closely reflect real-world driving through further improvement of the methods used 

in this thesis. Regarding future research on this topic, consideration of advanced pattern 

classifications and predictive analytics is recommended, so as to develop a more advanced 

approach to classifying and scoring driving behaviours.  

 

Using vehicle simulation software: IPG Automotive Carmaker software   

Using the Carmaker software provided an opportunity to model and compare drivers’ driving 

performance in a virtual environment. The package is capable of modelling and simulating 

complex driving conditions in great detail. It is contended that using the package is a very cost 

effective method for testing a vehicle under various driving conditions and in identifying 

differences in drivers’ driving behaviours. It is proposed here that future research would benefit 
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from using this software, such as by conducting virtual driving tests in order to develop realistic 

driver models. Moreover, since the software is open source, it is possible to integrate the 

package with in-house driver driving models and existing hardware in loop chassis 

dynamometer testing. 
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Appendix A: Eco Safe Driving Challenge Final Report 

This report was published in December 2014.  

Background  

The idea of gathering driving enthusiasts and giving them an opportunity to drive is not 

particularly remarkable. However, providing insights about their performance as well as 

advising them how to be safer or how to be eco-friendly drivers, we believe would attract a 

wider audience than simply ardent car lovers. That is, from motorsport enthusiasts to parents 

worrying about their novice driver offspring among many others, knowing about car 

performance as well as level of driving skills is valuable information. Moreover, given the rise 

in fuel costs in recent times, and increasingly expensive car insurance, there is economic 

incentive to improve car performance, more importantly, greater fuel efficiency, will help 

towards achieving the ultimate goal of pollution free air, something we have a duty to try to 

pass on to future generations. Including motorists’ carbon footprints in every report produced 

by the Department of Transport and Department for Environment highlights awareness that 

individual road users can have a marked impact on the environment, by reducing their carbon 

emissions. The Eco Safe Driving Challenge (ESDC) event has provided understandable 

information to the general public and driving enthusiasts about how their driving behaviour 

affects fuel usage, vehicle performance and road safety. From the other side, the research team 

in the department of Mechanical Engineering at the University Bath wanted to collect reliable 

data on the effects of driver behaviour on fuel usage in a real world setting.  

Aims  

The ESDC aim is to deliver the core message: "your driving habits, will determine your 

motoring future". More specifically, it is a given fact that improving driving behaviour can 
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lower fuel costs, reduce annual vehicle insurance and lead to better road safety. Moreover, 

deaths and injuries from driving accidents are not only tragedies for those close to the victims, 

but also take millions of pounds out of the future economy from lost potential earnings and 

taxation as well as unnecessarily wasting precious NHS funds. The ESDC has tasked itself with 

raising awareness among students, driving enthusiasts and the general public about their 

driving habits and the ways in which they could improve their fuel consumption, improve car 

performance and drive with more care. To this end, the team has the intention of using 

affordable, user-friendly and modern technologies to inform drivers about their driving as well 

as to give advice on how they can improve it to their own benefit.  

Project milestones  

The project started on February 2013 based on a research proposal to investigate driving 

behaviours, which was supported by the University of Bath’s research-led innovation team. 

Since its inception, it has steadily made progress in achieving its objectives and gathering a 

wide audience of those interested in its outcomes, including students, driving aficionados and 

the general public. It has been a challenging project, not least because everything had to be 

started from scratch and consequently, it evolved during the process. Since the official launch 

of the ESDC, a community has been steadily built around its cause, with its message having 

reached out to drivers across the South West region. 250 miles has been safely driven by driver 

participants during three events and hopefully they now drive more safely than before. Most 

significantly, an 8% reduction in fuel usage was recorded during the last event. In February 

this year, we conducted our largest driving event, with two different car categories, in the 

University of Bath West Car Park. We used similar cars for our volunteer drivers and the EE 

mobile network provider kindly supported us with their service that enabled us to monitor them 

live while driving. More than 45 circuits were driven at the event, which resulted in our biggest 

reliable data set being gathered to date. Since then we have been analysing this data and have 
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been able to identify particular driving behaviours that cause motorists to use more fuel and 

occasionally act unsafely. We are aiming to publish our very interesting findings in both 

academic journals and for the general public by the end of this summer. 

Public engagement  

The team has been engaged with the public both through social media as well as the 

aforementioned driving events. Several families came and competed as teams in these events, 

with strong friendship bonds being forged amongst all the participants. Through the social 

media channels, we were able convince potential event participants that their engagement 

would make a tremendous contribution to this academic research about driving behaviour and 

its consequent effects on society as a whole. We replayed for them their driving activity after 

each round through the provided online platform, with the aim of encouraging them to take 

charge their driving outcome by modifying their behaviour in subsequent trips. Regarding 

which, they showed a keen interest to drive differently when they saw their results, for these 

acted as a positive incentive to improve between rounds in terms of driving more safely and in 

a more eco-friendly way.  

Knowledge exchange  

By providing information to drivers and participants about the outcomes of their driving and 

their contribution to the study, they themselves not only learnt about the effect of the former 

on fuel consumption and the environment, but also, started sharing their experience and 

understanding about the topic. They told us about good/bad driving experiences, previous 

incidents/accidents and their points of view about the types of driving challenges we had set 

them. Consequently, a substantial amount of knowledge was exchanged by both parties 

throughout the events. In particular, the more experienced drivers passed on driving tips that 

provided useful awareness and insight for our research. 
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We had an excellent opportunity to discuss and share our ideas about the research with the 

UK’s leading transport research team: Transport Research Laboratory or TRL. Moreover, their 

presentation at our awards ceremony about their cutting-edge approach to transport challenges 

further motivated us in our research endeavours. In particular, their constructive feedback and 

encouragement helped us to expand our industrial network, thereby increasing the potential for 

exploiting collaborative opportunities in transport studies that will enhance the University of 

Bath’s reputation in this field.  
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Appendix B: Driver’s eligibility criteria 

§ All drivers must be aged over 18 years old on the day of a driving event (Sunday 9th 

February). In case you want to have your co-driver with you, your co-driver must be over 

18 and be able to give you a running commentary about a route and road conditions ahead. 

§ In respect of your driving experiences, you must have a full UK driving licence with no 

points or endorsements. 

§ All UK road-legal petrol or diesel vehicles built after 2001 are able to participate, proof of 

MOT and road tax may be required. 
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Appendix C: Weather conditions report on 09/02/2014 

The 9th February 2014 was the main driving event date. As part of the project, the weather 

conditions were recorded and are provided in the table below.  

 Actual Average Record 

Temperature 

Mean Temperature 4 °C - - 

Max Temperature 6 °C 7 °C 13 °C (2008) 

Min Temperature 2 °C 2 °C -4 °C (2004) 

Degree Days Heating Degree Days 26 - - 

Moisture 

Dew Point 2 °C - - 

Average Humidity 86 - - 

Maximum Humidity 93 - - 

Minimum Humidity 75 - - 

Precipitation 0.0 m - - 

Sea Level Pressure 983.54hPa (29.04) - - 

Wind 

Wind Speed 30 km/h - - 

Max Wind Speed 50 km/h - - 

Max Gust Speed 70 km/h - - 

Visibility 8.7 km - - 

Condition Rain - - 

Source: Weather Underground at https://www.wunderground.com/  
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Appendix D: Example of acceleration vs. speed 

 

 

 

 

 

 

 

 

 

 

 

Figure 98. (a) Passive driver, (b) Aggressive driver, (c) ECE combined driving cycle, and (d) Spring Laboratory combined driving cycle (Felstead, McDonald and 
Fowkes, 2009) 
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Appendix E: Individual histograms for all nine drivers overall speed distribution  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 99. The Vauxhall Corsa drivers’ speed profiles distribution histograms: Driver 7 (top left), Driver 11 (top right), Driver 14 (bottom left)  
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Figure 100. The Nissan Note drivers’ speed profiles distribution histograms: Driver 9 (top left), Driver 10 (top right), Driver 12 (bottom left), and Driver 13 (bottom 
right) 
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Figure 101. The Class C drivers’ speed profiles distribution histograms: Fiat 500L - Driver 8 (left), Nissan Juke - Driver 15 (right) 
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Appendix F: Drivers’ full speed parameters of the-box-

and-whisker plot  
 Driver ID 

Parameters 7 8 9 10 11 12 13 14 15 

Min 0 0 0 0 0 0 0 0 0 

Q1 28.4 28.2 28.5 27.42 26.92 22.27 29.9 31.2 32.9 

Median 38.3 39.3 37.3 37.8 37.2 33.2 42.1 40.5 43.8 

Q3 43.7 48.3 45.4 42.27 42.82 39.57 50.8 48 50 

Max 56.3 79.6 63.1 49.3 58.9 49.2 67.6 73.2 61.8 

IQR97 15.3 20.0 16.9 14.85 15.9 17.3 20.9 16.8 17.1 

Lower Outliers 17 0 27 25 13 0 0 12 12 

Q2-Q1 9.8 11.1 8.8 10.37 10.27 10.92 12.2 9.3 10.9 

Q3-Q2 5.4 8.92 8.1 4.47 5.625 6.37 8.7 7.5 6.2 

Q3+1.5*IQR 66.8 78.38 70.75 64.55 66.67 65.52 82.15 73.2 75.65 

Q1-1.5*IQR 5.4 -1.91 3.15 5.15 3.075 -3.67 -1.45 6 7.25 

Upper Whisker 56.3 78.38 63.1 49.3 58.9 49.2 67.6 73.2 61.8 

Lower Whisker 5.4 0 3.15 5.15 3.075 0 0 6 7.25 

Wupper-Q3 12.5 30.11 17.7 7.025 16.07 9.625 16.8 25.2 11.8 

Q1-Wlower 23 28.2 25.35 22.27 23.85 22.27 29.9 25.2 25.65 

  

                                                
97 Interquartile range IQR= Q3− Q1. 
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Appendix J: Calculating the value of the total 

consumption for downhill and uphill driving 
The following lines of codes in the table below summarise the logic and syntax used to calculate 

the absolute consumption values. IPG post processing procedure in matlab. 

Matlab code Discerption 

cd('C:\CM_Projects\initial_test\src_cm4sl'); Define and change the current folder to the IPG 
folder 

cmenv Initialising Carmaker in Matlab 

a=cmread('C:\CM_Projects\initial_test\SimOut
put\***\***'); 

Importing driver 7’s without elevation simulation 
result and call it (a) 

Dista=a.Vhcl_sRoad.data; 
Consmpa=a.PT_Engine_Consump_Abs.data; 

Defining the distance and consumption values of 
(a) 

[i1a,j1a]=find(Dist<=1800); 
[i2a,j2a]=find(Dist<=2200); 

Selecting the sections of the route that involve 
downhill and uphill driving 

C_DHa=Consmpa(j1a(end))-Consmpa(1) 
C_UHa=Consmpa(end)-Consmpa(j2a(end) 

Calculating the value of the total consumption for 
downhill and uphill driving 
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