5,130 research outputs found

    Development of real-time cellular impedance analysis system

    Get PDF
    The cell impedance analysis technique is a label-free, non-invasive method, which simplifies sample preparation and allows applications requiring unmodified cell retrieval. However, traditional impedance measurement methods suffer from various problems (speed, bandwidth, accuracy) for extracting the cellular impedance information. This thesis proposes an improved system for extracting precise cellular impedance in real-time, with a wide bandwidth and satisfactory accuracy. The system hardware consists of five main parts: a microelectrode array (MEA), a stimulation circuit, a sensing circuit, a multi-function card and a computer. The development of system hardware is explored. Accordingly, a novel bioimpedance measurement method coined digital auto balancing bridge method, which is improved from the traditional analogue auto balancing bridge circuitry, is realized for real-time cellular impedance measurement. Two different digital bridge balancing algorithms are proposed and realized, which are based on least mean squares (LMS) algorithm and fast block LMS (FBLMS) algorithm for single- and multi-frequency measurements respectively. Details on their implementation in FPGA are discussed. The test results prove that the LMS-based algorithm is suitable for accelerating the measurement speed in single-frequency situation, whilst the FBLMS-based algorithm has advantages in stable convergence in multi-frequency applications. A novel algorithm, called the All Phase Fast Fourier Transform (APFFT), is applied for post-processing of bioimpedance measurement results. Compared with the classical FFT algorithm, the APFFT significantly reduces spectral leakage caused by truncation error. Compared to the traditional FFT and Digital Quadrature Demodulation (DQD) methods, the APFFT shows excellent performance for extracting accurate phase and amplitude in the frequency spectrum. Additionally, testing and evaluation of the realized system has been performed. The results show that our system achieved a satisfactory accuracy within a wide bandwidth, a fast measurement speed and a good repeatability. Furthermore, our system is compared with a commercial impedance analyzer (Agilent 4294A) in biological experiments. The results reveal that our system achieved a comparable accuracy to the commercial instrument in the biological experiments. Finally, conclusions are given and the future work is proposed

    Aptamer-based field-effect biosensor for tenofovir detection

    Get PDF
    During medical treatment it is critical to maintain the circulatory concentration of drugs within their therapeutic range. A novel biosensor is presented in this work to address the lack of a reliable point-of-care drug monitoring system in the market. The biosensor incorporates high selectivity and sensitivity by integrating aptamers as the recognition element and field-effect transistors as the signal transducer. The drug tenofovir was used as a model small molecule. The biointerface of the sensor is a binary self-assembled monolayer of specific thiolated aptamer and 6-mercapto-1-hexanol (MCH), whose ratio was optimized by electrochemical impedance spectroscopy measurements to enhance the sensitivity towards the specific target. Surface plasmon resonance, performed under different buffer conditions, shows optimum specific and little non-specific binding in phosphate buffered saline. The dose-response behavior of the field-effect biosensor presents a linear range between 1 nM and 100 nM of tenofovir and a limit of detection of 1.2 nM. Two non-specific drugs and one non-specific aptamer, tested as stringent control candidates, caused negligible responses. The applications were successfully extended to the detection of the drug in human serum. As demonstrated by impedance measurements, the aptamer-based sensors can be used for real-time drug monitoring

    Design and Analysis of Impedance Pumps Utilizing Electromagnetic Actuation

    Get PDF
    This study designs and analyzes an impedance pump utilizing an electromagnetic actuator. The pump is designed to have three major components, namely a lower glass substrate patterned with a copper micro-coil, a microchannel, and an upper glass cover plate attached a magnetic PDMS diaphragm. When a current is passed through the micro-coil, an electromagnetic force is established between the coil and the magnetic diaphragm. The resulting deflection of the PDMS diaphragm creates an acoustic impedance mismatch within the microchannel, which results in a net flow. In performing the analysis, simulated models of the magnetic field, the diaphragm displacement and the flow rate are developed using Ansoft/Maxwell3D, ANSYS FEA and FLUENT 6.3 CFD software, respectively. Overall, the simulated results reveal that a net flow rate of 52.8 μL/min can be obtained using a diaphragm displacement of 31.5 μm induced by a micro-coil input current of 0.5 A. The impedance pump proposed in this study provides a valuable contribution to the ongoing development of Lab-on-Chips (LoCs) systems

    Establishing the Imperial Oilfield Case Study: Part 1 - Reservoir Appraisal and Characterisation

    Get PDF
    Imperial Users onl

    Microfluidics for simultaneous quantification of platelet adhesion and blood viscosity

    Get PDF
    Platelet functions, including adhesion, activation, and aggregation have an influence on thrombosis and the progression of atherosclerosis. In the present study, a new microfluidic-based method is proposed to estimate platelet adhesion and blood viscosity simultaneously. Blood sample flows into an H-shaped microfluidic device with a peristaltic pump. Since platelet aggregation may be initiated by the compression of rotors inside the peristaltic pump, platelet aggregates may adhere to the H-shaped channel. Through correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (A(Platelet)) can be estimated without labeling platelets. The platelet function is estimated by determining the representative index I-A.T based on A(Platelet) and contact time. Blood viscosity is measured by monitoring the flow conditions in the one side channel of the H-shaped device. Based on the relation between interfacial width (W) and pressure ratio of sample flows to the reference, blood sample viscosity (mu) can be estimated by measuring W. Biophysical parameters (IA.T, mu) are compared for normal and diabetic rats using an ex vivo extracorporeal model. This microfluidic-based method can be used for evaluating variations in the platelet adhesion and blood viscosity of animal models with cardiovascular diseases under ex vivo conditions.119Ysciescopu

    Microfluidic platform for multiple parameters readouts in a point-of-care

    Get PDF
    The research is motivated by real applications, such as pasteurization plant, water networks and autonomous system, which each of them require a specific control system to provide proper management able to take into account their particular features and operating limits in presence of uncertainties related to their operation and failures from component breakdowns. According to that most of the real systems have nonlinear behaviors, it can be approximated them by polytopic linear uncertain models such as Linear Parameter Varying (LPV) and Takagi-Sugeno (TS) models. Therefore, a new economic Model Predictive Control (MPC) approach based on LPV/TS models is proposed and the stability of the proposed approach is certified by using a region constraint on the terminal state. Besides, the MPC-LPV strategy is extended based on the system with varying delays affecting states and inputs. The control approach allows the controller to accommodate the scheduling parameters and delay change. By computing the prediction of the state variables and delay along a prediction time horizon, the system model can be modified according to the evaluation of the estimated state and delay at each time instant. To increase the system reliability, anticipate the appearance of faults and reduce the operational costs, actuator health monitoring should be considered. Regarding several types of system failures, different strategies are studied for obtaining system failures. First, the damage is assessed with the rainflow-counting algorithm that allows estimating the component’s fatigue and control objective is modified by adding an extra criterion that takes into account the accumulated damage. Besides, two different health-aware economic predictive control strategies that aim to minimize the damage of components are presented. Then, economic health-aware MPC controller is developed to compute the components and system reliability in the MPC model using an LPV modeling approach and maximizes the availability of the system by estimating system reliability. Additionally, another improvement considers chance-constraint programming to compute an optimal list replenishment policy based on a desired risk acceptability level, managing to dynamically designate safety stocks in flow-based networks to satisfy non-stationary flow demands. Finally, an innovative health-aware control approach for autonomous racing vehicles to simultaneously control it to the driving limits and to follow the desired path based on maximization of the battery RUL. The proposed approach is formulated as an optimal on-line robust LMI based MPC driven from Lyapunov stability and controller gain synthesis solved by LPV-LQR problem in LMI formulation with integral action for tracking the trajectory

    IN-SITU APPROACH FOR CHARACTERIZATION AND MODELING OF TRANSPONDER PACKAGING TECHNIQUES IN RADIO FREQUENCY INDENTIFICATION SYSTEMS

    Get PDF
    In a typical Radio Frequency Identification system, the tag-reader communication is the most important characteristic of success or failure. In this system, the tag represents the weakest link in the equation and must be selected with great care. It is also important to recognize that a passive RFID tag derives its power from the RF energy generated by the reader. In turn, it communicates to the reader by modulation of the incident RF energy to create a backscatter signal, where any power loss between the antenna and the integrated circuit chip limits the maximum distance from which the tag can be read. Because the typical assembly flow of the RFID labels requires multiple steps, different assembly methodologies are being used to lower the final cost of the RFID label. Packaged parasitic components can significantly degrade the performance of the RFID tags. Today, the most insidious problem is the loss of energy due to the mismatch between the antenna and the IC chip. The final cost and fabrication requirements for the RFID tag impose a set of criteria on the assembly of the tag, where the typical methods for extracting and characterizing parasitic components of the packaging are not feasible. This research develops the theoretical mechanism for measuring and modeling the packaging parasitic components of the passive Ultra High Frequency RFID tags. The research is based on proven antenna theory and antenna measurement methods, which in turn will provide a benchmark for the current and future assembly methods for manufacturing of the RFID labels
    corecore