54,394 research outputs found

    Evaluation of a Simple, Scalable, Parallel Best-First Search Strategy

    Get PDF
    Large-scale, parallel clusters composed of commodity processors are increasingly available, enabling the use of vast processing capabilities and distributed RAM to solve hard search problems. We investigate Hash-Distributed A* (HDA*), a simple approach to parallel best-first search that asynchronously distributes and schedules work among processors based on a hash function of the search state. We use this approach to parallelize the A* algorithm in an optimal sequential version of the Fast Downward planner, as well as a 24-puzzle solver. The scaling behavior of HDA* is evaluated experimentally on a shared memory, multicore machine with 8 cores, a cluster of commodity machines using up to 64 cores, and large-scale high-performance clusters, using up to 2400 processors. We show that this approach scales well, allowing the effective utilization of large amounts of distributed memory to optimally solve problems which require terabytes of RAM. We also compare HDA* to Transposition-table Driven Scheduling (TDS), a hash-based parallelization of IDA*, and show that, in planning, HDA* significantly outperforms TDS. A simple hybrid which combines HDA* and TDS to exploit strengths of both algorithms is proposed and evaluated.Comment: in press, to appear in Artificial Intelligenc

    Distributed Correlation-Based Feature Selection in Spark

    Get PDF
    CFS (Correlation-Based Feature Selection) is an FS algorithm that has been successfully applied to classification problems in many domains. We describe Distributed CFS (DiCFS) as a completely redesigned, scalable, parallel and distributed version of the CFS algorithm, capable of dealing with the large volumes of data typical of big data applications. Two versions of the algorithm were implemented and compared using the Apache Spark cluster computing model, currently gaining popularity due to its much faster processing times than Hadoop's MapReduce model. We tested our algorithms on four publicly available datasets, each consisting of a large number of instances and two also consisting of a large number of features. The results show that our algorithms were superior in terms of both time-efficiency and scalability. In leveraging a computer cluster, they were able to handle larger datasets than the non-distributed WEKA version while maintaining the quality of the results, i.e., exactly the same features were returned by our algorithms when compared to the original algorithm available in WEKA.Comment: 25 pages, 5 figure

    Parallel Graph Partitioning for Complex Networks

    Full text link
    Processing large complex networks like social networks or web graphs has recently attracted considerable interest. In order to do this in parallel, we need to partition them into pieces of about equal size. Unfortunately, previous parallel graph partitioners originally developed for more regular mesh-like networks do not work well for these networks. This paper addresses this problem by parallelizing and adapting the label propagation technique originally developed for graph clustering. By introducing size constraints, label propagation becomes applicable for both the coarsening and the refinement phase of multilevel graph partitioning. We obtain very high quality by applying a highly parallel evolutionary algorithm to the coarsened graph. The resulting system is both more scalable and achieves higher quality than state-of-the-art systems like ParMetis or PT-Scotch. For large complex networks the performance differences are very big. For example, our algorithm can partition a web graph with 3.3 billion edges in less than sixteen seconds using 512 cores of a high performance cluster while producing a high quality partition -- none of the competing systems can handle this graph on our system.Comment: Review article. Parallelization of our previous approach arXiv:1402.328

    Asynchronous Training of Word Embeddings for Large Text Corpora

    Full text link
    Word embeddings are a powerful approach for analyzing language and have been widely popular in numerous tasks in information retrieval and text mining. Training embeddings over huge corpora is computationally expensive because the input is typically sequentially processed and parameters are synchronously updated. Distributed architectures for asynchronous training that have been proposed either focus on scaling vocabulary sizes and dimensionality or suffer from expensive synchronization latencies. In this paper, we propose a scalable approach to train word embeddings by partitioning the input space instead in order to scale to massive text corpora while not sacrificing the performance of the embeddings. Our training procedure does not involve any parameter synchronization except a final sub-model merge phase that typically executes in a few minutes. Our distributed training scales seamlessly to large corpus sizes and we get comparable and sometimes even up to 45% performance improvement in a variety of NLP benchmarks using models trained by our distributed procedure which requires 1/101/10 of the time taken by the baseline approach. Finally we also show that we are robust to missing words in sub-models and are able to effectively reconstruct word representations.Comment: This paper contains 9 pages and has been accepted in the WSDM201

    Porting Decision Tree Algorithms to Multicore using FastFlow

    Full text link
    The whole computer hardware industry embraced multicores. For these machines, the extreme optimisation of sequential algorithms is no longer sufficient to squeeze the real machine power, which can be only exploited via thread-level parallelism. Decision tree algorithms exhibit natural concurrency that makes them suitable to be parallelised. This paper presents an approach for easy-yet-efficient porting of an implementation of the C4.5 algorithm on multicores. The parallel porting requires minimal changes to the original sequential code, and it is able to exploit up to 7X speedup on an Intel dual-quad core machine.Comment: 18 pages + cove
    • …
    corecore