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Large-scale, parallel clusters composed of commodity processors are increasingly available,
enabling the use of vast processing capabilities and distributed RAM to solve hard search
problems. We investigate Hash-Distributed A∗ (HDA∗), a simple approach to parallel best-
first search that asynchronously distributes and schedules work among processors based on
a hash function of the search state. We use this approach to parallelize the A∗ algorithm
in an optimal sequential version of the Fast Downward planner, as well as a 24-puzzle
solver. The scaling behavior of HDA∗ is evaluated experimentally on a shared memory,
multicore machine with 8 cores, a cluster of commodity machines using up to 64 cores,
and large-scale high-performance clusters, using up to 2400 processors. We show that
this approach scales well, allowing the effective utilization of large amounts of distributed
memory to optimally solve problems which require terabytes of RAM. We also compare
HDA∗ to Transposition-table Driven Scheduling (TDS), a hash-based parallelization of IDA∗,
and show that, in planning, HDA∗ significantly outperforms TDS. A simple hybrid which
combines HDA∗ and TDS to exploit strengths of both algorithms is proposed and evaluated.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Parallel search is an important research area for two reasons. First, many search problems, including planning instances,
continue to be difficult for sequential algorithms. Parallel search on state-of-the-art, parallel clusters has the potential to
provide both the memory and the CPU resources required to solve challenging problem instances. Second, while multi-
processors were previously expensive and rare, multicore machines are now ubiquitous. Future generations of hardware
are likely to continue to have an increasing number of processors, where the speed of each individual CPU core does not
increase as rapidly as in past decades. Thus, exploiting parallelism is necessary to extract significant speedups from the
hardware.

Our work is primarily motivated by domain-independent planning. In classical planning, many problem instances con-
tinue to pose a challenge for state-of-the-art planning systems. Both the memory and the CPU requirements are main causes
of performance bottlenecks. The problem is especially pressing in sequential optimal planning. Despite significant progress
in recent years in developing domain-independent admissible heuristics [1–3], scaling up optimal planning remains a chal-
lenge. Multi-processor, parallel planning2 has the potential to provide both the memory and the CPU resources required to
solve challenging problem instances.
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We introduce and evaluate Hash Distributed A∗ (HDA∗), a parallelization of A∗ [4]. HDA∗ runs A∗ on every processor,
where each processor has its own open and closed lists. A hash function assigns each state to a unique processor, so
that every state has an “owner”. Whenever a state is generated, its owner processor is computed according to this hash
function, and the state is sent to its owner. This simple mechanism simultaneously accomplishes load balancing as well
as duplicate pruning. While the key idea of hash-based assignment of states to processors was initially proposed as part
of the PRA∗ algorithm by Evett et al. [5], and later extended by Mahapatra and Dutt [6], the scalability and limitations of
hash-based work distribution and duplicate pruning have not been previously evaluated in depth. In addition, hash-based
work distribution has never been applied to domain-independent planning.

HDA∗ has two key attributes which make it worth examining in detail. First, it is inherently scalable on large-scale
parallel systems, because it is a distributed algorithm with no central bottlenecks. While there has been some recent work
in parallel search [7–9], these approaches are multi-threaded, and limited to a single, shared-memory machine. HDA∗, on
the other hand, scales naturally from a single, multicore desktop machine to a large scale, distributed memory cluster of
multicore machines. When implemented using the standard MPI message passing library [10], the exact same code can be
executed on a wide array of parallel environments, ranging from a standard desktop multicore to a massive cluster with
thousands of cores, effectively using all of the aggregate CPU and memory resources available on the system.

Second, HDA∗ is a very simple algorithm – conceptually, the only difference between HDA∗ and A∗ is that when a node
is generated, we compute its hash value, and send the node to the closed list of the processor that “owns” the hash value.
Everything runs asynchronously, and there is no tricky synchronization. This simplicity is extremely valuable in parallel
algorithms, as parallel programming is notoriously difficult. Thus, the goal of our work is to evaluate the performance and
the scalability of HDA∗.

HDA∗ is implemented as an extension of two state-of-the-art solvers. The first solver is the Fast Downward domain-
independent planner. We use the cost-optimal version with the explicit (merge-and-shrink) abstraction heuristic reported
by Helmert, Haslum, and Hoffman [3]. The second solver is an application-specific 24-puzzle solver, which uses the pattern
database heuristic code provided by Korf and Felner [11]. A key difference between these is the relative speed of processing
an individual state. The domain-specific 24-puzzle solver processes states significantly faster than the domain-independent
Fast Downward planner, expanding 2–5 times more states per second.3 The speed of processing a state can significantly
impact the efficiency of a parallel search algorithm, which is the speedup relative to a serial implementation divided by the
number of CPU cores. A larger processing cost per state tends to diminish the impact of parallel-specific overheads, such
as the communication and the synchronization overhead (introduced in Section 2). Therefore, using both types of solvers
allows us to assess the efficiency of HDA∗ across a range of application problems.

The scaling behavior of the algorithm is evaluated on a wide range of parallel machines. First, we show that on a stan-
dard, 8-core workstation, HDA∗ achieves speedups up to 6.6. We then evaluate the exact same HDA∗ code on a commodity
cluster with an Ethernet network, and two high-performance computing (HPC) clusters with up to 2400 processors and
10.5 TB of RAM. The scale of our experiments goes well beyond previous studies of hash-based work distribution. We show
that HDA∗ scales well, allowing effective utilization of a large amount of distributed memory to optimally solve problems
that require terabytes of RAM.

The experiments include a comparison with TDS [12,13], a successful parallelization of IDA∗ with a distributed transpo-
sition table. Using up to 64 processors on a commodity cluster, we show that HDA∗ is 2–65 times faster and solves more
instances than TDS. We propose a simple, hybrid approach that combines strengths of both HDA∗ and TDS: Run HDA∗ first,
and if HDA∗ succeeds, return the solution. Otherwise, start a TDS search where the initial threshold for the depth-first ex-
ploration is provided by the failed HDA∗ search. Clearly, when HDA∗ succeeds, this hybrid algorithm runs as fast as HDA∗.
We show that, when HDA∗ fails, the total runtime of the hybrid approach is comparable to the running time of TDS.

The rest of the paper is organized as follows. Section 2 presents background information. The HDA∗ algorithm is de-
scribed in Section 3. We then present an empirical evaluation and analysis of the scalability HDA∗ in Section 4. Tuning
the performance of HDA∗ is addressed in Section 5. Hash-based distribution is compared with a simpler, randomized work
distribution strategy in Section 6. In Section 7, we compare HDA∗ with TDS, and propose a hybrid strategy which combines
the strengths of both algorithms. We review other approaches to parallel search in Section 8. This is followed by a summary
and discussion of the results, and directions for future work.

2. Background

Efficient implementation of parallel search algorithms is challenging due to several types of overhead. Search overhead
occurs when a parallel implementation of a search algorithm expands (or generates) more states than a serial implemen-
tation. The main cause of search overhead is partitioning of the search space among processors, which has the side effect
that the access to non-local information is restricted. For example, sequential A∗ can terminate immediately after a solution
is found, because it is guaranteed to be optimal. In contrast, when a parallel A∗ algorithm finds a (first) solution at some
processor, it is not necessarily a globally optimal solution. Better solutions might exist in non-local portions of the search
space. A more detailed discussion of the search overhead is available in Section 4.2.2.

3 Korf and Felner’s code uses IDA∗ , which generates states much faster; we only incorporate their pattern database heuristic code in our parallel A∗
framework.
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Synchronization overhead is the idle time wasted at synchronization points, where some processors have to wait for the
others to reach the synchronization point. For example, in a shared-memory environment, the idle time can be caused
by mutual exclusion locks on shared data. Finally, communication overhead refers to the cost of inter-process information
exchange in a distributed-memory environment (i.e., the cost of sending a message from one processor to another over a
network).

The key to achieving a good speedup in parallel search is to minimize such overheads. This is often a difficult task, in
part because the overheads are interdependent. For example, reducing search overhead usually increases synchronization
and communication overhead.

There are several, broad approaches to parallelizing search algorithms. This paper focuses on parallelization by partition-
ing the search space, so this section reviews this approach. Other approaches, including parallelization of the computation
performed on each state, running a different search algorithm on each processor, and parallel window search, are reviewed
in Section 8. In addition, this paper focuses on parallel best-first search. The use of hash-based work distribution techniques
similar to HDA∗ for breadth-first search in model checking is reviewed in Section 8.

One general framework for partitioning the search space among parallel processes first starts with a root process which
initially generates some seed nodes using sequential search, and assigns these seed nodes among the available processors.
Then, at each processor, a search algorithm begins to explore the descendants of its seed node. These seed nodes become the
local root nodes for a local, sequential search algorithm. This basic strategy can be applied to depth-first search algorithms,
including simple depth-first search, branch-and-bound, and IDA∗, as well as breadth-first and best-first search algorithms
such as A∗.

Work stealing is a standard approach for partitioned, parallel search, and is used in many applications, particularly in
shared-memory environments. In work-stealing, each processor maintains a local work queue. When a processor P generates
new work (i.e., new states to be expanded) w , it places w in P ’s own local queue. When P has no work in its queue, it
“steals” work from the queue of a busy processor.

Two key considerations in a particular work-stealing strategy are how to decide which processor to steal work from,
as well as how to decide which and how much work to steal. Various work-stealing strategies for depth-first, linear-space
algorithms such as depth-first branch-and-bound IDA∗, and minimax search have been studied (e.g. [14–16]). While most
work on work-stealing has been on MIMD systems, parallelization of IDA∗ on SIMD machines using an alternating, two-
phase mechanism, with a search phase and a load balancing phase, has also been investigated [17,18].4

Another approach to search space partitioning (particularly in shared-memory search) is derived from a line of work on
addressing memory capacity limitations by using a large amount of slower, external memory (such as disks), to store states
in search [19–21] (external memory was also used specifically for planning [22]). An issue with using external memory is
the overhead of expensive I/O operations, so techniques for structuring the search to minimize these overheads have been
the focus of work in this area. Korf has implemented a multi-threaded, breadth-first search using a shared work queue which
uses external memory [7,20]. Interestingly, some approaches to reducing the I/O overhead in external memory search can be
adapted to handle the inter-process communication overhead in parallel search. Zhou and Hansen [8] introduce a parallel,
breadth-first search algorithm. Parallel structured duplicate detection seeks to reduce synchronization overhead. The original
state space is partitioned into collections of states called blocks. The duplicate detection scope of a state contains the blocks
that correspond to the successors of that state. States whose duplicate detection scopes are disjoint can be expanded with
no need for synchronization. Burns et al. [9] have investigated best-first search algorithms that include enhancements such
as structured duplicate detection and speculative search. These techniques were shown to be effective in a shared memory
machine with up to 8 cores.

We now review the line of work directly related to HDA∗. Algorithms such as breadth-first or best-first search (including
A∗) use an open list which stores the set of states that have been generated but not yet expanded. In an early study,
Kumar, Ramesh, and Rao [23] identified two broad approaches to parallelizing best-first search, based on how the usage and
maintenance of the open list was parallelized. In a centralized approach, a single open list is shared among all processes.
Each process expands one of the current best nodes from the globally shared open list, and generates and evaluates its
children. This centralized approach introduces very little or no search overhead, and no load balancing among processors is
necessary. Furthermore, this method is especially simple to implement in a shared-memory architecture by using a shared
data structure for the open list. However, concurrent access to the shared open list becomes a bottleneck and inherently
limits the scalability of the centralized approach, except in cases where the cost of processing each node (e.g., evaluating
the node with a heuristic function) is extremely expensive, in which case overheads associated with shared open list access
become insignificant.

In contrast, in a decentralized approach to parallel best-first search, each process has its own open list. Initially, the root
processor generates and distributes some search nodes among the available processes. Then, each process starts to locally
run best-first search using its local open list (as well as a closed list, in case of algorithms such as A∗). Decentralizing the
open list eliminates the concurrency overheads associated with a shared, centralized open list, but load balancing becomes
necessary.

4 In MIMD (Multiple-Instruction, Multiple-Data stream) systems, each processor executes code independently; in SIMD (Single-Instruction, Multiple-Data
stream) systems, all processors execute the same instruction (on different data).
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Kumar, Ramesh and Rao [23], as well as Karp and Zhang [24,25] proposed a random work allocation strategy, where
newly generated states were sent to random processors. In parallel architectures with non-uniform communication costs, a
straightforward variant of this randomized strategy is to send states to a random neighboring processor (with low commu-
nication cost) to avoid the cost of sending to an arbitrary processor (cf., [26]).

In addition to load balancing, another issue that a parallel search algorithm must address is duplicate detection. In many
search applications, including domain-independent planning, the search space is a graph rather than a tree, and there are
multiple paths to the same state. In sequential search, duplicates can be detected and pruned by using a closed list (e.g.,
hash table) or other duplicate detection techniques (e.g. [27,28]). Efficient duplicate detection is critical for performance,
both in serial and parallel search algorithms, and can potentially eliminate vast amounts of redundant work.

In parallel search, duplicate state detection incurs several overheads, depending on the algorithm and the machine en-
vironment. For instance, in a shared-memory environment, many approaches, including work-stealing, need to carefully
manage locks on the shared open and closed lists.

Parallel Retracting A∗ (PRA∗) [5] simultaneously addresses the problem of work distribution and duplicate state detection.
In PRA∗, each processor maintains its own open and closed lists. A hash function maps each state to exactly one processor
which “owns” the state. When generating a state, PRA∗ distributes it to the corresponding owner. If the hash keys are
distributed uniformly across the processors, load balancing is achieved. After receiving states, PRA∗ has the advantage that
duplicate detection can be performed efficiently and locally at the destination processor.

While PRA∗ incorporated the idea of hash-based work distribution, PRA∗ differs significantly from a parallel A∗ in that
it is a parallel version of RA∗ [5], a limited memory search algorithm closely related to MA∗ [29] and SMA∗ [30]. When a
processor’s memory became full, Parallel Retracting A∗ retracts states from the search frontier, and their f -values are stored
in their parents, which frees up memory. Thus, unlike parallel A∗, PRA∗ does not store all expanded nodes in memory,
and will not terminate due to running out of memory in some process. On the other hand, the implementation of this
retraction mechanism in [5] incurs a significant synchronization overhead: when a processor P generates a new state s and
sends it to the destination processor Q , P blocks and waits for Q to confirm that s has successfully been received and
stored (or whether the send operation failed due to memory exhaustion at the target process). Unlike PRA∗, HDA∗ does not
incorporate a node retraction mechanism. Also, unlike the original implementation of PRA∗, HDA∗ is a fully asynchronous
algorithm, where all messages are sent/received asynchronously.

The idea of hash-based work distribution was investigated further by Mahapatra and Dutt [6], who studied parallel A∗ on
a Hypercube architecture, where CPUs are connected by a hypercube network, while in current standard architectures ma-
chines are connected by either a mesh or torus network. As a baseline, they implemented Global Hashing (GOHA), which is
similar to PRA∗, except that GOHA is a parallelization of SEQ_A∗, a variant of A∗ which performs partial expansion of states,
while HDA∗ is a parallelization of standard A∗. They proposed two alternatives to the simple hash-based work distribution
in PRA∗. The first approach by Mahapatra and Dutt, called Global Hashing of Nodes and Quality Equalizing (GOHA&QE), de-
couples load balancing and duplicate checking. States are assigned an owner (based on hash key) for duplicate checking, and
a newly generated state is first sent to its owner process for duplicate checking. If the state is in the open list of the owner
process, then it is a duplicate and discarded. Otherwise, it is added to the open list of the owner, and the state is possibly
reassigned to another process using Dutt and Mahapatra’s Quality Equalizing (QE) strategy [26]. In both PRA∗ and GOHA&QE,
the hash function is global – a state can be hashed to any of the processors in the system. In parallel architectures where
communication costs vary among pairs of processors, such a global hashing may be suboptimal. Therefore, Mahapatra and
Dutt also proposed Local Hashing of Nodes and QE (LOHA&QE), which incorporates a state space partitioning strategy and
allocates disjoint partitions to disjoint processor groups in order to minimize communication costs [6]. Mahapatra and Dutt
showed that GOHA&QA and LOHA&QE outperformed the simpler, global hash-based work distribution method used in PRA∗
on the Traveling Salesperson Problem (TSP).

Mahapatra and Dutt’s local hashing is based on a number of restrictive assumptions that do not allow applying this
strategy to planning. Specifically, local hashing works in problems with so-called levelized search graphs. In a levelized
graph, a given state will always have the same depth (distance from root node), regardless of the path that connects the
root and the state. The notion of the levelized graph can sometimes be extended to exploit local hashing if the search space
has some regularities on depths such as multiple sequence alignment [31]. However, planning and the sliding-tile puzzle
do not belong to this class of problems. The reason is that the same state could be reached via different-length paths. For
example, if two cities A and B are connected by two routes of different lengths, then driving a truck from A to B via each
route will result in the same state but the paths from the starting state will have different lengths.

Transposition-table driven work scheduling (TDS) [12,13] is a distributed memory, parallel IDA∗ algorithm. Similarly
to PRA∗, TDS distributes work using a state hash function. The transposition table is partitioned over processors to be
used for detecting and pruning duplicate states that arrive at the processor. Thus, TDS distributes a transposition table for
IDA∗ among the processing nodes, similarly to how PRA∗ distributes the open and the closed lists for A∗. This distributed
transposition table allows TDS to exhibit a very low (sometimes negative) search overhead, compared to a sequential IDA∗
that runs on a single computational node with limited RAM capacity. TDS achieved impressive speedups in applications
such as the 15-puzzle, the double-blank puzzle, and the Rubik’s cube, on a distributed-memory machine. The ideas behind
TDS have also been successfully integrated in adversarial two-player search [32–34].

Thus, the idea of hash-based distribution of work is not new, but there are several reasons to revisit the idea and
perform an in-depth evaluation at this point. First, the primary motivation for this work was to advance the state of the



226 A. Kishimoto et al. / Artificial Intelligence 195 (2013) 222–248
art of domain-independent planning by parallelizing search. While there has been some previous, smaller-scale work on
parallel planning, large-scale parallel planning has not been previously attempted, and hash-based work distribution is a
natural approach for scaling parallel planning to large-scale parallel clusters.

Second, parallel systems have become much more common today than when the earlier work by Evett et al. [5] and
Mahapatra and Dutt [6] was done, and the parallel systems which are prevalent today have very different architectures. The
most common parallel architectures today are commodity, multicore, shared memory machines, as well as distributed mem-
ory clusters which are composed of shared memory multicore nodes. Hash-based work distribution is a simple approach
that can potentially scale naturally from single, multicore nodes to large clusters of multicore nodes, and it is important
to evaluate its performance on current, standard parallel architectures. In addition, previous algorithms based on this idea,
such as PRA∗ and Mahapatra and Dutt’s method, make some assumptions that are specific to the hardware architecture in
use. In contrast, we aim at obtaining an algorithm as general as possible, avoiding hardware-specific assumptions. In fact,
as mentioned earlier, our MPI-based implementation can be run on a variety of platforms, including shared-memory and
distributed-memory systems.

Third, there are some important issues that were not fully explored in the earlier work. For example, factors which
can potentially limit the scaling of hash-based work distribution, such as search overhead and communication overhead,
have not been analyzed in detail. Also, the performance impact of asynchronous vs synchronous communication, as well as
the impact of using a hash function for work distribution, as opposed to a randomized strategy, have not been previously
investigated.

Fourth, while the work on TDS showed the utility of asynchronous, hash-based work distribution for IDA∗, this previ-
ous work was done on 15-puzzle variants and the Rubik’s cube, which are two domains where the overhead incurred by
re-exploration of states in IDA∗ is known to be relatively small. In some other domains, this overhead can be quite signifi-
cant, which can result in significant costs on a cluster environment. Thus, an investigation of the scalability of hash-based,
parallel A∗ and a comparison with TDS is worthwhile.

Thus, while previous work has considered global hash-based distribution either as a component of a more complex
algorithm [5] or as a straw man against which local hash-based distribution was considered [6], this is the first paper
which analyzes the scalability and limitations of global hashing in depth. An early version of this work has been previously
presented in a conference paper [35]. However, that initial work was limited to up to 128 CPU cores on an older system,
contained no results on the 24-puzzle, no comparison to TDS, and included a less detailed evaluation and analysis.

3. Hash distributed A∗

We now describe Hash Distributed A∗ (HDA∗), a simple parallelization of A∗ which uses the hash-based work distribution
strategy originally proposed in PRA∗ [5]. In HDA∗ the closed and open lists are implemented as a distributed data structure,
where each processor “owns” a partition of the entire search space. The local open and closed list for processor P is denoted
OpenP and ClosedP . The partitioning is done via a hash function on the state, as described later.

HDA∗ starts by expanding the initial state at the root processor. Then, each processor P executes the following loop until
an optimal solution is found:

1. First, P checks if one or more new states have been received in its message queue. If so, P checks for each new state s
in ClosedP , in order to determine whether s is a duplicate, or whether it should be inserted in OpenP .5

2. If the message queue is empty, then P selects a highest priority state from OpenP and expands it, resulting in newly
generated states. For each newly generated state s, a hash key K (s) is computed based on the state representation, and
s is sent to the processor which owns K (s). This send is asynchronous and non-blocking. P continues its computation
without waiting for a reply from the destination.

In a straightforward implementation of hash-based work distribution on a shared memory machine, each thread owns
a local open/closed list implemented in shared memory, and when a state s is assigned to some thread, the writer thread
obtains a lock on the target shared memory, writes s, then releases the lock. Note that whenever a thread P “sends” a state
s to a destination dest(s), then P must wait until the lock for shared open list (or message queue) for dest(s) is available
and not locked by any other thread. This results in significant synchronization overhead – for example, it was observed
in [9] that a straightforward implementation of PRA∗ exhibited extremely poor performance on the Grid search problem,
and multicore performance for up to 8 cores was consistently slower than sequential A∗. While it is possible to speed up
locking operations by using, for example, highly optimized lock operations implementations in inline assembly language,
the performance degradation due to synchronization remains a considerable problem.

In contrast, the open/closed lists in HDA∗ are not explicitly shared among the processors. Thus, even in a multicore
environment where it is possible to share memory, all communications are done between separate MPI processes using
non-blocking send/receive operations. Our program implements this by using MPI_Bsend and MPI_Iprobe, and relies on
highly optimized message buffers implemented in MPI.

5 Even if the heuristic function [3] is consistent, parallel A∗ search may sometimes have to re-open a state saved in the closed list. For example, P may
receive many identical states with various priorities from different processors and these states may reach P in any order.
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Table 1
Parallel machines used in experiments.

System name Node description # cores per node RAM per node Interconnection between nodes

Multicore 2.33 GHz 2x 4-core Xeon L5410 8 32 GB n/a
Commodity 2.33 GHz 2x 4-core Xeon L5410 8 16 GB 1 Gbps(x2) Ethernet
HPC1 2.4 GHz 8x 2-core AMD Opteron 16 32 GB 20 Gb Infiniband
HPC2 2.93 GHz 2x 6-core Xeon X5670 12 54 GB QDR Infinibandx2 (80 Gbps)

Every state must be sent from the processor where it is generated to its “owner” processor. In their work with
transposition-table driven scheduling for parallel IDA∗, Romein et al. [12] showed that this communication overhead could
be overcome by packing multiple states with the same destination into a single message. HDA∗ uses this state packing
strategy to reduce the number of messages. The relationship between performance and message sizes depends on several
factors such as network configurations, the number of CPU cores, and CPU speed. In our experiments, 100 states are packed
into each message on a commodity cluster using more than 16 CPU cores and a HPC cluster, while 10 states are packed on
the commodity cluster using less than 16 cores.

In a decentralized parallel A∗ (including HDA∗), when a solution is discovered, there is no guarantee at that time that the
solution is optimal [23]. When a processor discovers a locally optimal solution, the processor broadcasts its cost. The search
cannot terminate until all processors have proved that there is no solution with a better cost. In order to correctly terminate
a decentralized parallel A∗, it is not sufficient to check the local open list at every processor. We must also ensure that there
is no message en route to some processor that could lead to a better solution. Various algorithms to handle termination
exist. In our implementation of HDA∗, we used the time algorithm of Mattern [36], which was also used in TDS.

Mattern’s method is based on counting sent messages and received messages. If all processors were able to count si-
multaneously, it would be trivial to detect whether a message is still en route. However, in reality, different processors Pi
will report their sent and received counters, S(ti) and R(ti), at different times ti . To handle this, Mattern introduces a basic
method where the counters are reported in two different waves. Let R∗ = ∑

i R(ti) be the accumulated received counter
at the end of the first wave, and S ′ ∗ = ∑

i S(t′
i) be the accumulated sent counter at the end of the second wave. Mattern

proved that if S ′ ∗ = R∗ , then the termination condition holds (i.e., there are no messages en route that can lead to a better
solution).

Mattern’s time algorithm is a variation of this basic method which allows checking the termination condition in only one
wave. Each work message (i.e., containing search states to be processed) has a time stamp, which can be implemented as a
clock counter maintained locally by each processor. Every time a new termination check is started, the initiating processor
increments its clock counter and sends a control message to another processor, starting a chain of control messages that
will visit all processors and return to the first one. When receiving a control message, a processor updates its clock counter
C to max(C, T ), where T is the maximum clock value among processors visited so far. If a processor contains a received
message m with a time stamp tm � T , then the termination check fails. Obviously, if, at the end of the chain of messages,
the accumulated sent and received counters differ, then the termination check fails as well.

In hash based work distribution, the choice of the hash function is essential for achieving uniform distribution of the
keys, which results in effective load balancing. Our implementation of HDA∗ uses the Zobrist function [37] to map a SAS+
state representation [38] to a hash key. The Zobrist function is commonly used in the game tree search community to
detect duplicate states. The Zobrist hash value is computed by XOR’ing predefined random numbers associated with the
components of a state. When a new state is generated, the hash value of the new state can be computed incrementally
from the hash value of the parent state by incrementally XOR’ing the state components that differ. The Zobrist function was
previously used in domain-independent planning in MacroFF [39]. It is possible for two different states to have the same
hash key, although the probability of such a collision is extremely low with 64-bit keys. In MacroFF, as well as an earlier
version of HDA∗ [35], duplicate checking in the open/list was performed by checking if the hash key of a state was present
in the open/closed list, so there was a non-zero (albeit tiny) probability of a false positive duplicate check result. In this
paper, our HDA∗ implementations perform duplicate checks by comparing the actual states. Although this is slightly slower
than comparing only the hash key, duplicate checks are guaranteed to be correct.

4. Scalability of HDA∗

We experimentally evaluated HDA∗ on top of a domain-independent planner and an application-specific, 24-puzzle
solver. Our hardware environments, including a single, multicore machine (Multicore), a commodity cluster (Commodity),
and two high-performance clusters (HPC clusters) with up to 2400 processors (HPC1, HPC2), are shown in Table 1. In all of
our experiments, HDA∗ is implemented in C++, compiled with g++ and parallelized using the MPI message passing library.

We first describe experimental results for domain-independent planning. We parallelized the sequential optimal version
of the Fast Downward planner, enhanced with the so-called LFPA heuristic, which is based on explicit (merge-and-shrink)
state abstraction [3]. All the reported results are obtained with the abstraction size set to 1000. Preliminary experiments
with the abstraction size set to 5000 did not change the results qualitatively. As benchmark problems, we use classical
planning instances from past planning competitions. We selected instances that are hard or unsolvable for the sequential
optimal version of Fast Downward.
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Table 2
Comparison of sequential A∗ , HDA∗ and PRA∗ (without node retraction) on 1, 4, and 8 cores on the Multicore machine. Runtimes (in seconds), speedup
(spd), efficiency (eff), abstraction heuristic initialization times (not included in runtimes in previous columns), and optimal plan length are shown.

1 core 4 cores 8 cores

A∗
time

HDA∗ PRA∗ HDA∗ PRA∗ Abst
time

Opt
lenspd eff spd eff spd eff spd eff

Average 971.72 2.71 0.68 2.56 0.64 4.98 0.62 4.45 0.56 2.76
Depot10 99.82 2.51 0.63 2.45 0.61 4.61 0.58 4.11 0.51 1.96 24
Depot13 1561.83 2.66 0.67 2.57 0.64 4.78 0.60 4.44 0.56 4.16 25
Driverlog8 102.55 2.59 0.65 2.14 0.54 4.90 0.61 3.87 0.48 0.14 22
Freecell5 137.01 2.99 0.75 2.99 0.75 5.87 0.73 5.83 0.73 7.75 30
Freecell7 2261.67 3.12 0.78 3.06 0.77 5.88 0.74 5.85 0.73 9.60 41
Rover12 923.23 2.73 0.68 2.46 0.61 5.03 0.63 4.43 0.55 0.10 19
Satellite6 104.83 2.25 0.56 2.06 0.51 4.30 0.54 3.61 0.45 0.09 20
ZenoTrav9 157.98 2.57 0.64 2.29 0.57 4.61 0.58 3.66 0.46 0.19 21
ZenoTrav11 424.68 2.42 0.60 2.10 0.52 4.40 0.55 3.60 0.45 0.22 14
PipesNoTk14 248.77 3.91 0.98 3.65 0.91 5.50 0.69 4.74 0.59 1.68 30
PipesNoTk24 1046.94 2.97 0.74 2.72 0.68 5.37 0.67 4.82 0.60 5.99 24
Pegsol27 178.71 2.97 0.74 2.89 0.72 5.87 0.73 5.09 0.64 1.11 28
Pegsol28 773.36 2.98 0.75 2.94 0.73 5.87 0.73 4.92 0.61 0.65 35
Airport17 322.21 3.54 0.89 3.52 0.88 6.62 0.83 6.77 0.85 13.09 88
Gripper8 304.82 2.57 0.64 2.29 0.57 4.41 0.55 3.63 0.45 0.28 53
Gripper9 1710.39 2.63 0.66 2.31 0.58 4.51 0.56 4.05 0.51 0.36 59
Mystery6 315.21 3.08 0.77 3.01 0.75 5.64 0.70 5.39 0.67 17.51 11
Truck5 365.38 2.17 0.54 2.32 0.58 4.23 0.53 4.00 0.50 0.26 25
Truck6 3597.24 2.41 0.60 2.23 0.56 4.53 0.57 4.11 0.51 0.30 30
Truck8 2194.38 2.39 0.60 2.23 0.56 4.35 0.54 3.82 0.48 0.22 25
Sokoban19 157.82 2.90 0.72 2.57 0.64 5.61 0.70 4.76 0.60 1.59 164
Sokoban22 428.91 3.07 0.77 3.03 0.76 5.99 0.75 5.27 0.66 1.53 172
Blocks10-2 327.03 2.83 0.71 2.39 0.60 5.51 0.69 4.24 0.53 1.04 34
Logist00-7-1 1235.26 2.40 0.60 2.16 0.54 4.43 0.55 3.75 0.47 0.07 44
Logist00-9-1 2082.76 2.46 0.61 2.45 0.61 4.44 0.55 4.32 0.54 0.13 30
Miconic12-2 2308.03 2.11 0.53 2.19 0.55 3.76 0.47 3.46 0.43 0.08 40
Miconic12-4 2463.13 2.15 0.54 2.18 0.54 3.87 0.48 3.55 0.44 0.08 41
Mprime30 1374.27 2.52 0.63 2.49 0.62 4.58 0.57 4.64 0.58 7.18 9

HDA∗, like other asynchronous parallel search algorithms, behaves nondeterministically, resulting in some differences
in search behavior between identical invocations of the algorithms. However, on the runs where we collected multiple
data points, we did not observe significant differences between runs of HDA∗. Therefore, due to the enormous resource
requirements of a large-scale experimental study,6 the results shown are for single runs.

4.1. Asynchronous vs synchronous communications: Experiments on a single, multicore machine

First, we evaluate HDA∗ on a single, multicore machine (presented in Table 1) in order to investigate the impact of
asynchronous vs synchronous communications in parallel A∗. We compare HDA∗ with sequential A∗ and a shared-memory
implementation of Parallel Retracting A∗ (PRA∗) [5] on a single, multicore machine. As described in Section 2, PRA∗ uses the
same hash-based work distribution strategy as HDA∗, but uses synchronous communications. As in Burns et al.’s experiments
[9], our PRA∗ implementation does not include the node retraction scheme because the main goal of our experiments is to
show the impact of eliminating synchronization overhead from PRA∗.

Our HDA∗ implementation is the same MPI-based implementation used in our larger-scale, distributed memory experi-
ments described below. It executes a separate OS process for each thread of execution, and we rely on the message passing
functions in MPI for asynchronous communications. While it may be possible to develop a more efficient implementation
of HDA∗ specifically for shared memory machines (e.g., using kernel threads and shared memory constructs), we wanted to
investigate the scalability of the same HDA∗ implementation on both shared and distributed memory machines.

Low level optimizations were implemented to make both the HDA∗ and PRA∗ as fast as possible. In addition to locks
available in the Boost C++ library, we also incorporated spin locks based on the “xchgl” assembly operation in order to speed
up PRA∗.

Each algorithm used the full 32 gigabytes of RAM available on the machine at hand. That is, n-core HDA∗ spawns n
processes, each using 32/n gigabytes of RAM, sequential A∗ used the full 32 GB available, and the multi-threaded PRA∗
algorithm shared 32 GB of RAM among all of the threads.

Table 2 shows the speedup of HDA∗ and PRA∗ for 4 cores and 8 cores. We show only instances that can be solved by
the serial planner with 32 GB RAM available. In addition to runtimes for the sequential A∗ algorithm, the speedup and the

6 In addition to usage charges for the clusters, there are issues of resource contention because the clusters are shared among hundreds of users.
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Table 3
Planning runtimes on the HPC2 cluster (see Table 1 for machine specs).

12 24 60 144 300 600 1200 2400 Abst Opt

Freecell7 175.87 95.27 38.31 18.11 10.69 10.96 18.11 68.40 4.73 41
Logistics00-7-1 115.71 56.41 23.88 10.78 6.50 6.80 18.76 48.34 0.09 44
Logistics00-9-1 175.72 91.48 38.43 17.13 9.34 7.73 18.64 61.43 0.13 30
Mprime30 123.85 71.82 32.07 14.92 8.11 6.55 8.03 28.38 4.10 9
Pegsol.p28 52.89 31.59 12.90 6.38 4.41 14.73 21.90 57.18 0.52 35
PipeNoTank24 89.33 49.88 19.99 9.05 5.55 5.69 19.42 65.30 3.07 24
Probfcell-4-1 112.07 60.52 25.64 11.82 6.75 5.90 9.18 31.57 1.62 19
Rover6 445.17 249.76 101.71 44.46 23.27 14.19 11.57 18.76 0.12 36
Rover12 42.42 26.36 10.67 5.10 3.61 4.14 8.07 26.03 0.12 19
Sokoban.p24 136.43 79.95 34.00 17.64 26.79 27.43 51.88 – 0.69 205
Sokoban.p28 171.97 93.00 39.95 19.47 25.13 25.75 49.70 – 0.62 135
ZenoTravel11 38.49 21.84 8.28 4.33 3.15 4.77 13.61 28.61 0.20 14
Freecell6 – 386.55 163.18 70.85 37.14 22.03 20.85 52.59 4.36 34
Pegsol.p29 – 146.08 61.49 27.78 15.08 11.18 14.11 52.84 6.45 37
PipesTank10 – 689.17 292.89 126.54 62.68 33.81 22.01 33.78 4.25 19
Satellite7 – 1339.41 415.04 147.22 63.39 33.40 24.50 37.55 0.19 21
Sokoban.p25 – 108.73 44.00 22.23 19.46 26.40 47.44 – 1.06 155
DriverLog13 – – 163.65 66.60 33.82 20.31 18.54 130.18 0.25 26
Logistics00-8-1 – – 222.63 95.03 91.91 26.18 27.19 46.58 0.09 44
Logistics00-9-0 – – 210.95 94.24 45.07 25.67 22.48 65.00 0.13 36
Mprime24 – – 60.60 33.53 16.97 10.72 10.78 23.86 25.31 8
Pegsol.p30 – – 168.18 75.79 39.51 22.39 20.54 47.44 1.30 48
PipeNoTank18 – – 131.98 58.09 29.46 18.77 15.93 141.66 2.28 30
PipesTank9 – – 418.51 180.63 89.31 47.85 29.22 34.26 5.43 18
Probfcell-5-3 – – 733.73 315.30 156.25 81.34 47.80 47.86 2.48 24
Sokoban.p26 – – 95.44 47.36 33.79 34.26 70.25 – 1.04 135
Sokoban.p27 – – 167.96 79.19 48.15 33.52 37.98 – 1.54 87
Depot16 – – – 461.64 226.00 116.86 64.08 58.78 3.97 25
Freecell11 – – – 304.71 151.55 81.74 54.63 99.66 6.10 56
Mprime15 – – – 128.58 61.32 32.74 21.52 26.42 21.04 6
PipeNoTank20 – – – 109.74 51.77 34.32 20.59 120.82 3.54 28
PipeNoTank32 – – – 121.60 61.85 32.90 22.81 92.47 3.68 30
PipesTank14 – – – 126.94 62.53 34.69 23.94 37.51 6.00 38
PipesTank22 – – – 183.47 90.66 50.08 31.02 50.57 8.30 30
Probfcell-5-1 – – – 659.28 323.29 165.22 89.94 62.69 3.10 24
Probfcell-5-2 – – – 375.00 185.41 95.11 56.24 89.90 2.80 23
Probfcell-5-4 – – – 352.93 174.56 90.15 51.50 46.54 3.76 23
Probfcell-5-5 – – – 546.76 268.79 137.54 76.12 59.21 2.36 25
ZenoTravel12 – – – 291.60 138.88 72.40 48.09 57.17 0.24 21
Freecell9 – – – – 334.06 172.59 96.56 93.50 6.49 43
PipeNoTank33 – – – – 185.34 97.02 54.70 55.72 5.04 32
PipeNoTank35 – – – – 205.55 105.50 58.83 53.94 7.63 22
Freecell12 – – – – – 268.28 148.74 117.21 5.32 47
PipeNoTank25 – – – – – 266.94 142.34 101.08 3.57 32
PipeNoTank27 – – – – – 319.07 170.78 103.62 5.14 26

parallel efficiency are shown for HDA∗ and PRA∗. Efficiency is defined as S/P , where S is the speedup over a serial run and
P is the number of cores. As shown in Table 2, HDA∗ clearly outperforms PRA∗. With 4 cores, the speedup of HDA∗ ranges
from 2.11 to 3.91, and the efficiency ranges from 0.53 to 0.98. With 8 cores, the speedup of HDA∗ ranges from 3.76 to 6.62,
and the efficiency ranges from 0.47 to 0.83. These results demonstrate the benefit of asynchronous message passing over a
synchronous implementation of hash-based work distribution.

4.2. Planning experiments on a HPC cluster

Next, we investigate the scaling behavior of HDA∗ on the HPC2 cluster (see machine specs in Table 1). We used 1–200
nodes in our experiments (i.e., 1–2400 cores).

As in Table 2, the times shown in Table 3 include the time for the search algorithm execution, and exclude the time
required to compute the abstraction table for the LFPA heuristic, since this phase of Fast Downward + LFPA has not been
parallelized yet and therefore requires the same amount of time to run regardless of the number of cores. For example, the
IPC-6 Pegsol-30 instance, which requires 168.18 sec with 60 cores, was solved in 20.54 sec with 1200 cores, plus 1.30 sec
for the abstraction table generation. A value of “–” for the runtimes in Table 3 indicates a failure, i.e., the planner terminated
because one of the nodes ran out of memory. For example, the Freecell-12 instance was first solved using 600 cores.

Let tk be the runtime to solve a problem using k processors. Standard metrics for evaluating parallel performance on
n processors include speedup and efficiency, defined as Sn = t1/tn , and En = Sn/n, respectively. These standard metrics
have limited applicability for parallel A∗ because sequential runtimes cannot be measured for hard problems. On hard
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Fig. 1. Planning relative efficiency on the HPC2 cluster (see Table 1 for machine specs).

problems that truly require large-scale parallel A∗, sequential A∗ exhausts RAM and terminates before finding a solution.
Since sequential runtime t1 cannot be measured, Sn and En cannot be computed. While we could use only benchmarks
which can be solved using a single processor (as we did for our multicore experiment in Section 4.1), this would restrict
the benchmark set to problems that can be solved by A∗ using only the RAM available on 1 processing node. Suppose there
is 4.5 GB RAM per core, as is the case with our HPC2 cluster. A single-threaded A∗ algorithm that generates 50,000 new
states per second, using 50 bytes per state, will exhaust 4.5 GB within 30 minutes. In fact, because the state size for difficult
planning instances is usually much larger than 50 bytes, serial A∗ exhausts 4.5 GB memory much more quickly. Problems
that require only a few minutes to solve using sequential search are poor benchmarks for large-scale parallel search, because
such problems can be solved in a few seconds using 1000 processors.

Mahapatra and Dutt also noted that sequential runtimes were not available for their scalability experiments [6]. They
evaluated their algorithms by computing approximate speedups, defined as follows. Let pmin be the minimum number of
processors that solved the problem. They make the assumption that the speedup with pmin processors is pmin (i.e., they
assume that linear speedup can be obtained up to pmin processors). Based on this, they estimate that sequential runtime
is pmin × tpmin , and speedups for p > pmin processors can be computed by computing the ratio of parallel runtime to this
estimate of sequential runtime.

Mahapatra and Dutt argue that this is a conservative estimate of speedup because overheads increase as the number
of processors increases, so the assumption that S p = pmin is a lower bound on the actual speedup for p � pmin. However,
there are some issues with this approach: (1) such estimates of “speedup” are not actual speedup values, (2) pmin can
be different for different problem instances, and (3) when pmin is large, e.g., if a problem is first solved using 600 cores,
including these estimated speedups significantly biases computations of average speedup to seem artificially high – in other
words, assuming that linear speedups are obtainable up to pmin processors is unrealistic when pmin is large.

Thus, we take a different approach to measuring the scalability of parallel search, based on the performance of n pro-
cessors relative to the performance on pmin. Let pmin be the smallest number of cores that solves a problem, and tmin be
the wall-clock runtime for pmin cores. The relative speedup is defined as Sn = tmin/tn , and the relative efficiency is defined
as En = Sn/(n/pmin). Relative efficiency has been used by other researchers, cf., Niewiadomski et al. [40] (who called it
“speedup efficiency”).

A second issue related to measuring performance on a cluster of multicore machines is the baseline configuration of a
single processing node. As shown later in Section 4.2.5, the number of cores used per processing node has a significant
effect on performance. Our main goal is to investigate the scalability of HDA∗ while fully utilizing all available processors,
so in our scalability experiments, we use all cores on a processor, e.g., on the HPC2 cluster, we use the 12 cores per core,
allocating 4.5 GB RAM per core.

Table 3 shows the wall-clock runtimes of HDA∗ on a set of 45 IPC benchmark problems. The results are grouped according
to the smallest number of processors that solved the problem. As mentioned earlier, a “–” indicates a failure, i.e., the planner
terminated because one of the cores ran out of memory. For example, the Depot16 instance was first solved using 144 cores.
Sokoban.p24–Sokoban.p27 failed with 2400 cores, even though they could be solved with fewer cores.

Fig. 1 shows that the relative efficiency (see above) of HDA∗ on planning generally scales well for 2pmin and 4pmin
cores, even when pmin = 600 cores. Even for 8pmin cores, the relative efficiency is over 0.5 for pmin ∈ {12,24,60,144,300}.
However, as p/pmin increases, the relative efficiency degrades. For pmin = 12, when p = 1200 (p/pmin = 100), relative
efficiency is 9.25%, and for p = 2400 cores, the relative efficiency is a mere 2.2%.

In other words, HDA∗ scales reasonably efficiently for up to 4–8 times pmin, the minimum number of processors that
can solve the problem. However, as the number of processors is further increased, there is a point of diminishing returns,
and eventually, adding more processors can result in longer runtimes. An extreme case of this scaling limitation can be seen
on the Sokoban benchmark problems (Sokoban.p24–p.28), which were solvable with up to 1200 cores (with diminishing
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Fig. 2. Planning load balance on the HPC2 cluster.

returns), but terminated due to memory exhaustion at some processor on 2400 cores. On the other hand, it is important to
note that even for very large values of pmin (e.g., 600 cores), HDA∗ continues to scale very efficiently for 4pmin (2400) cores.

4.2.1. Load balance
A common metric for measuring how evenly the work is distributed among the cores is the load balance, defined as the

ratio of the maximal number of states expanded by a core and the average number of states expanded by each core. As
shown in Fig. 2, HDA∗ achieves good load balance when p/pmin � 8. While load balance tends to degrade as the number
of processors increases, it is important to note that load imbalance does not seem to be simply caused by using a large,
absolute number of processors. For instance, on all 6 problems where pmin � 600, the load balance for 2400 cores is less
than 1.10.

One possible reason for load imbalance may be “hotspots” – frequently generated duplicate nodes mapped to a small
number of cores by the hash function. This is caused by transpositions in the search space, which are states that can be
reached through different paths. In HDA∗, if a processor receives a state s which is already in the closed list but the g-
value of s is smaller than that in the closed list, s must be enqueued in the open list. However, the heuristic value of s is
not recomputed in saving s to the open list, because the value is already saved in the closed list. For example, in solving
PipesNoTk24 with 2400 cores, more than 70% of generated states are duplicates. A processor involved in a hotspot receives
about 377% more duplicate states than the processor receiving duplicate states least frequently, although we observe that
they receive similar amounts of work. As a result, the numbers of calls for the heuristic function are different (about
144%) between these processors. Thus, a processor which executes fewer heuristic evaluations (relative to other processors
receiving a comparable number of states) has a higher state expansion rate than the other processors, resulting in load
imbalance.

4.2.2. Search overhead
The search overhead, which indicates the extra states explored by parallel search, is defined as:

SO = 100 ×
(

number of states expanded by parallel search

number of states expanded by baseline search
− 1

)
.

This is the percentage of extra node expansions performed compared to a given baseline algorithm or hardware configura-
tion. For a direct measurement of the search overhead for some given instance our baseline algorithm (configuration) will
be HDA∗ on pmin ∈ {12,24,60,144,300,600,1200,2400} cores, the minimal number of cores that solves that instance. This
has the advantage that, by definition, the baseline configuration will always succeed, allowing a direct measurement of the
search overhead. As we show in this section, it is also possible to analyze the search overhead compared to serial A∗ even
in cases where serial A∗ fails. Such comparisons can show how effective HDA∗ is in terms of wasted search effort.

We start by identifying possible causes of the search overhead in the case when the baseline algorithm is serial A∗. Let
c∗ be the cost of an optimal solution. Serial A∗ with a consistent heuristic in use expands all states with f < c∗ , and some
of the states with f = c∗ . No states with f > c∗ get expanded. No state is expanded more than once. In contrast, parallel
variants of A∗, including HDA∗, can re-expand states with f � c∗ which are not re-expanded by A∗, can expand states
with f > c∗ , and can expand a different number of states with f = c∗ than serial A∗. Possible causes include incomplete
local knowledge of open lists at other processors, and nondeterministic travel time and arrival order of messages containing
states.

Parallel A∗ usually expands more nodes than serial A∗. If we consider only nodes with f < c∗ or f > c∗ , the best that
parallel A∗ can possibly achieve is matching the number of expansions performed by serial A∗ with a consistent heuristic.
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Fig. 3. Average values for R< , R= and R> , on the HPC2 cluster.

Fig. 4. Ratio of node re-expansions Rr , in planning, on the HPC2 cluster. Left: average values computed across all instances with the same pmin. Right:
maximum values.

Thus, while it is possible, in principle, for parallel A∗ to expand fewer nodes than serial A∗ with a consistent heuristic, this
is only possible if parallel A∗ expands fewer nodes with f = c∗ than serial A∗.

Define R< as the fraction of expanded nodes with f < c∗ . R= and R> are defined similarly. Let Rr be the ratio of node
re-expansions, which is the total number of re-expansions divided by the total number of expansions. Fig. 3 summarizes
R< , R= and R> for domain-independent planning, according to pmin. Rr , the ratio of re-expansions, is shown in Fig. 4.
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Fig. 5. Search overhead relative to pmin cores, on the HPC2 cluster. We plot data averaged over all instances with the same pmin.

When serial A∗ fails to solve an instance, a direct measurement of the search overhead relative to serial A∗ cannot be
performed. Fortunately, in such cases, our “R∗ metrics” (R< , R= , R> and Rr ) can allow us to make inferences about the
search overhead. The key observation is that serial A∗ expands all nodes with f < c∗ . Therefore, if HDA∗ exhibits low values
for R= , R> and Rr , on some run, we can conclude that the search overhead is low in that run. In other words, in such cases,
there is little wasted search effort introduced by distributing the search. This appears to be the case for almost all instances, when
using pmin cores. A noticeable exception is Mprime15 (pmin = 144), where R< = 6% and R= = 94%.7 As p, the number of
cores in use for a given instance, grows increasingly larger than pmin, the R∗ metrics maintain very good values for a while.
Then a degradation can eventually be observed, for those instances where pmin � 144 (Fig. 3).

To explain the good R> values of HDA∗ run on pmin cores and other core configurations as well (cf. Fig. 3), we start
by recalling that serial A∗ with a consistent heuristic will expand all nodes with f = v before expanding any node with
f > v . Such a strict monotonicity cannot be guaranteed for HDA∗. However, we believe that HDA∗ can expand states almost
monotonically, especially when the number of nodes with f < c∗ is large enough to make the instance challenging to a
pmin-core configuration. More specifically, consider an instance where the number of nodes with f < c∗ is large, and the
number of nodes with f = c∗ that end up being expanded by serial A∗ is very small in comparison. Serial A∗ will expand
all nodes with f < c∗ , after which it will start expanding nodes with f = c∗ . Likewise, we hypothesize that HDA∗ could
expand a majority of the nodes with f < c∗ , before starting expanding nodes with f � c∗ . If an optimal solution is found
soon after starting expanding nodes with f � c∗ , the extra work caused by expanding nodes with f > c∗ would be a small
fraction of the total search effort of HDA∗. This informal explanation is consistent with the cases of low R> values observed
among our data.

All benchmark problems in this paper have unit costs for all transitions between states. We believe that this contributes
to the good (low) re-expansion rate Rr , when using pmin cores and p > pmin cores as well, unless p gets much larger
than pmin (see Fig. 4). Kobayashi et al. [31] have observed that the re-expansion rate increases in domains with non-unit
transition costs.

Next we focus on the search overhead when the baseline algorithm is HDA∗ using pmin cores (as defined above, pmin
depends on the instance). Fig. 5 summarizes search overhead data for domain-independent planning, showing average values
over all instances with the same pmin.

Once again, as a general tendency, as we go further away from the baseline pmin, the search overhead stays stable for a
while, after which it grows (Fig. 5). Thus, some of the largest search overheads are seen when the difference p vs pmin is the
largest (2400 vs 12). However, search overhead does not appear to be simply caused by using a large number of processors.
For example, on 13 out of 45 problems, the search overhead on 2400 cores is less than 10%. This is despite the fact that
pmin is in these cases significantly lower than 2400, varying from 24 cores (PipesTank10) to 600 cores (PipeNoTank25,
PipeNoTank27).

There seem to be some problem domains which are highly prone to search overhead. Very large search overheads com-
pared to other domains are seen in Sokoban problems (Sokoban.p24, Sokoban.p25, Sokoban.p26, Sokoban.p27, Sokoban.p28).
The R∗ data available indicates that re-expansions are a major cause of this behavior. In addition, on 1200 cores, the R<

metric also degrades for a few Sokoban instances. As the number of processors increased from 600 to 1200, the search
overhead on Sokoban.p24, Sokoban.p26, and Sokoban.p27, more than doubles. The growth in search overhead appears to
be accelerating as p/pmin increases. This large, rapidly growing search overhead explains the failure to solve the Sokoban
problems with 2400 cores. As we increase from 1200 to 2400 cores, the amount of search overhead added is greater than
the additional aggregate RAM capacity, so HDA∗ fails because some processor runs out of RAM.

Note that there are some instances where search overhead is negative relative to pmin. For example, Mprime30 has a
negative overhead for p ∈ {60,144,300}, relative to pmin = 12. This suggests some wasted search effort in the baseline
configuration, which then gets corrected for a larger p. Indeed, the R< value is 62.2% for Mprime30 solved on pmin = 12
cores, whereas most other instances, in all considered domains, have much better R< values (i.e., close to 100%) on their

7 This is because the optimal solution cost for Mprime15 is only 6 and there are many states with tied f values.
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Fig. 6. Node expansion rate relative to the pmin cores baseline, on the HPC2 cluster.

corresponding pmin configuration. Since Mprime has much shorter solutions than the other instances, HDA∗ tends to expand
many more states with the f -value identical to the optimal length.

In summary, our analysis shows that HDA∗ is scalable, in the sense that it can use a large number of CPUs to solve
difficult instances (which fail on a small number of CPU cores) quite efficiently, with a reasonably low search overhead.
At the same time, for easy instances that can be solved with fewer CPUs, the tendency is the following: As the number
of processors increases from pmin, the search overhead stays low for a while, after which a degradation is observed. One
possible approach to alleviate this is using a solving strategy able to dynamically change the hardware resources (e.g.,
number of CPUs) [41]. Mechanisms for keeping the search overhead low when using many more processors than pmin is an
interesting topic for future work.

4.2.3. Node expansion rate
The node expansion rate helps evaluate other parallel overhead, besides the search overhead. As the number of pro-

cessors increases, the communication overhead can reduce node expansion rate. Part of the communication overhead is
alleviated by the fact that searching and traveling overlap to a great extent. Said in simple words, some states are being
expanded while some other states are traveling to their owner processor.

Since each core sends generated successors to their home processors in HDA∗, the total number of messages exchanged
among processors increases with a larger number of cores. This is exacerbated by the fact that more cores can end up gen-
erating more states (search overhead). Therefore, another cause of slower node expansion rates may be message processing
overhead – even with asynchronous communications, HDA∗ must deal with a larger number of messages as the number of
cores increases.

Fig. 6 plots the expansion rate, measured for planning instances on the HPC2 cluster. Each data point in the figure
is computed as follows. Let Nι

p be the total number of expansions for an instance ι solved on p cores. Let T ι
p , the total

search time to solve instance ι, be the (parallel) wall-clock time multiplied by p. Then, the node expansion rate is Nι
p/T ι

p .
Let A(p, pmin) be the expansion rate, when using p cores, averaged over all instances ι with a given pmin value. Finally,
R(p, pmin) = A(p, pmin)/A(pmin, pmin) normalizes these average values relatively to the baseline configuration with pmin
cores. Fig. 6 plots R(p, pmin). If R(p, pmin) is close to 1, this indicates that the communication overhead is low. Values
smaller than 1 indicate a degradation of the expansion rate, typically resulting in a degradation of the parallel search
efficiency, unless the increase in time spent per node is compensated by a corresponding reduction in the total number of
node expansions.

Fig. 6 shows that the expansion rate remains almost constant relative to pmin cores, unless the difference p − pmin grows
too large. Note that due to the logarithmic scale of the X-axis (# of cores), the expansion rate is more stable than it might
initially appear in Fig. 6. Despite the degradation of node expansion rate at each processor, the aggregate node expansion
rate across all processors continues to increase as the number of processors increases. For example, when p = 2400 and
pmin = 12, the expansion rate degrades by a factor of about 22, according to Fig. 6. On the other hand, the number of
available CPUs increases by a factor or 2400/12 = 200, so the net gain in aggregate node expansion rate is 200/22 = 9.1
times. Similarly, there are substantial overall gains in the aggregate expansion rate, for all p and pmin values considered.

4.2.4. Termination detection
Termination detection is not a performance bottleneck, as it succeeds quickly after proving solution optimality. When an

optimal (but not proven optimal yet) solution is found, its cost c∗ is broadcast, such that nodes with f � c∗ will not be
expanded from now on. Thus, the only nodes expanded after the broadcast (if any) are nodes with f < c∗ , which must be
expanded anyway to prove optimality (serial A∗ expands them as well). Therefore, by the time c∗ has been broadcast and
all nodes with f < c∗ have been expanded, state expansion and generation will stop, messages with states will not be sent
around any longer, and the termination test will succeed.
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Table 4
64-core scaling results with no dummy (upper half) and with dummy processes (bottom half). Time and plan length are shown. Notice the increase in the
average time caused by adding dummy processes. Experiments were performed on the HPC1 cluster.

64 cores 64 cores 64 cores 64 cores 64 cores Opt
4 nodes 8 nodes 16 nodes 32 nodes 64 nodes Len

Normal execution of HDA∗
Avg time 117.56 110.88 93.31 92.28 87.70
Freecell7 66.85 68.61 64.29 59.24 59.39 41
Satellite7 502.51 468.07 370.43 375.86 351.69 21
ZenoTrav11 16.58 15.64 15.29 14.71 14.41 14
PipesNoTk24 40.34 39.85 38.08 35.34 34.53 24
Pegsol28 21.77 21.31 20.75 20.47 19.64 35
Sokoban24 57.29 51.82 50.99 48.08 46.51 205

HDA∗ , with dummy processes on cores not used by HDA∗
Avg time 117.56 113.87 n/a 111.31 113.88
Freecell7 66.85 70.59 72.13 77.49 76.15 41
Satellite7 502.51 466.16 535.86 445.64 462.22 21
ZenoTrav11 16.58 21.17 20.15 19.89 20.54 14
PipesNoTk24 40.34 44.99 45.26 43.79 43.80 24
Pegsol28 21.77 22.88 n/a 23.23 23.44 35
Sokoban24 57.29 57.45 56.07 57.92 57.16 205

4.2.5. Scaling behavior and the number of nodes (machines) on a HPC cluster
So far, we have considered the scaling of HDA∗ as the number of cores was increased. However, the scaling behavior

of HDA∗ on a cluster is affected by factors other than the number of cores. Another factor is the cost of communication
between nodes. Communications between cores in the same node are done via a shared memory bus, while communications
between cores residing on different nodes are performed over a local area network (e.g., Infiniband or Ethernet).

To evaluate the impact of the communication delay, we ran the planner on the HPC1 cluster, whose specs are shown in
Table 1. We used 64 cores, where the cores were distributed evenly on 4–64 nodes (i.e., 1–16 cores per node). The results
are shown in the upper half of Table 4. If the communication delay was a significant factor, we would expect that, as the
number of nodes increased, the runtime would increase. Interestingly, Table 4 (upper half) shows that runtimes decreased
on almost all of the problem instances as the number of nodes increased.

The explanation for this counterintuitive result is memory contention within each single node. The limited bandwidth
of the memory bus is saturated when many cores in the node simultaneously access memory. We further investigated
this hypothesis as follows. First, cache contention was ruled out as a possible explanation because the processors in the
cluster are based on the AMD Opteron architecture, where each core has a private L1 and L2 cache. Then, we performed an
experiment where, again, we used 4–64 nodes, but this time, on each node, on each core that was not used by HDA∗, we
executed a dummy process, which makes no direct contribution towards solving the instance at hand. Each dummy process
is an invocation of HDA∗ which is forced to run sequentially on the instance, and therefore behaves similarly to the “real”
HDA∗ process with respect to memory access patterns (and therefore contends for memory with the “real” HDA∗ process).

Table 4 indicates that the overhead of local memory access congestion within a node is much larger than the overhead
due to communication between nodes. In the normal configurations without dummy processes (Table 4, upper half), using
fewer cores per node results in less local memory contention and more inter-node communication. Overall, the performance
improves as the 64 cores are distributed among an increasing number of nodes. On the other hand, in the configurations
with dummy processes (Table 4, bottom half), local memory access within a node becomes equally congested regardless of
the number of nodes, so there is no benefit to distributing the cores. Once the local memory access overhead is equalized
for all configurations (4–64 nodes), variations in performance (if any present) among configurations could be explained by
the overhead of inter-node communication. We notice, however, that the differences are small in row “Avg time” in the
bottom half of Table 4. Even on a per-instance basis, the performance degradation as the number of nodes increases from
4 to 64 is within 20%. This shows that communications among nodes is not a critical bottleneck for HDA∗ on the HPC1
cluster.

4.3. Results on the 24-puzzle on a HPC cluster

We evaluated HDA∗ on the 24-puzzle, using an application-specific solver based on IDA∗ code provided by Rich Korf,
which uses a disjoint pattern database heuristic [11]. We replaced the IDA∗ search strategy with A∗ and HDA∗. In the
original code, each state has two redundant halves, trading memory for a faster state processing. While this makes sense
for IDA∗, it is not the best trade-off for HDA∗. Thus, we reduce the state size to one half and compute the missing half on
demand with a loop of 25 iterations per state. Other parts of the program, including the disjoint pattern database heuristic,
were unchanged. As benchmark instances, we used the 50-instance set of 24-puzzles reported in [11, Table 2]. We excluded
the time required to read pattern databases from the hard disk.

First, we investigated the scalability of HDA∗ by running it on the fifty 24-puzzle instances, using 1–1200 cores on 1–100
processing nodes. As with domain-independent planning, we computed the efficiencies relative to the smallest number of
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Fig. 7. 24-puzzle relative efficiency on the HPC2 cluster.

cores pmin ∈ {12,24,60,144,300,600,1200} which solved the problem. These average relative efficiencies for each pmin are
shown in Fig. 7. Compared to domain-independent planning (Fig. 1), the relative efficiency of HDA∗ degrades much more
rapidly on the 24-puzzle. As previously mentioned in Section 1, a key difference between domain-independent planning and
the 24-puzzle is that individual states are processed much faster in the application specific 24-puzzle solver, and therefore
parallel overheads have a greater weight in the total running time.

Table 5 provides summary data obtained on the HPC2 cluster (see Table 1 for machine specs). Instances are partitioned
according to pmin. For each partition, we report the runtime, the speedup, the load balance, the search overhead relative to
pmin cores, and the R∗ metrics (i.e., R< , R= , R> , Rr ) related to the search overhead, introduced in Section 4.2.2. All shown
values are averages over instances with the same pmin. The load balance is quite good, and is no worse than 1.17 (300 and
600 cores for pmin = 12). For pmin processors, the search overhead is small. Rr and R> are within 4%, even for pmin = 1200.
R= varies from 8% (pmin ∈ {144,300}) to 24% (pmin = 24). As with our planning results, search overhead increases, as more
processors are used and the difference between p and pmin increases. Not surprisingly, the largest increase is seen when
pmin = 12 and p = 1200 cores. When an instance is easy enough to be solved with 12 cores, 1200 cores will do much
redundant work, resulting in R> as high as 90%. The search overhead has a significant impact on the overall speedup
reported in Table 5. As p grows larger and larger than pmin, the speedup increases for a while, after which the search
overhead dominates and the speedup degrades.

The trends in search overhead for the 24-puzzle are similar to those observed for domain-independent planning. On
difficult instances (large pmin), HDA∗ can make an effective use of a large number of cores, solving such instances with a
reasonably low search overhead. For instances that are sufficiently easy to be solved with relatively few cores (small pmin),
the performance (e.g., speedup) increases for a while, after which a degradation is observed. A remarkable difference from
the planning data is that the search overhead is significantly higher in the 24-puzzle, and it has a sharper degradation rate
as well.

4.4. Scaling behavior on planning on a commodity cluster

While the previous set of large-scale experiments were performed on a campus high-performance computing cluster,
we also evaluated the scalability of HDA∗ on the Commodity cluster (see Table 1 for machine specs). Table 6 shows the
relative efficiency of 16, 32, and 64 cores compared to a baseline of 8 cores (1 processing node). The results are organized
according to pmin ∈ {8,16,32}, the minimum number of tested cores that solved the instance. For each pmin, the average
relative efficiency and relative speedups are shown. Several trends can be seen. First, when pmin = 8, and the number of
cores used is increased to 16, the relative efficiency (0.55) and speedup (1.10) are very poor. On the other hand, after this
initial threshold (the jump from 1 processing node to 2 processing nodes) is crossed, the relative efficiency and relative
speedups are near-linear, with low search overheads, similar to our results above on the HPC1 and HPC2 clusters when
the number of cores used is within a factor of 8 of pmin. Inter-node communication plays a role in this behavior. Moving
from one processing node to 2 nodes introduces inter-node communication, which is relatively slow in a commodity cluster.
From two to more nodes the relative performance grows more steadily, since inter-node communication is present in all
multi-node configurations.

In addition, as shown below in Section 7, HDA∗ significantly outperforms TDS, the previous state of the art algorithm,
when the two are compared on this commodity cluster.
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Table 5
24-puzzle scaling summary on the HPC2 cluster.

p = 12 24 60 144 300 600 1200

pmin = 12 Runtime 22.65 14.17 5.60 3.86 10.68 15.71 26.64
Speedup 1.00 1.71 3.72 5.31 2.84 1.40 0.81
Load balance 1.05 1.11 1.07 1.06 1.17 1.17 1.14
Search overhead % 0.00 13.66 32.38 257.81 1955.27 5099.60 16977.93
R< 0.87 0.78 0.75 0.55 0.19 0.05 0.02
R= 0.13 0.22 0.24 0.34 0.47 0.25 0.08
R> 0.00 0.00 0.01 0.12 0.34 0.70 0.90
Rr 0.01 0.01 0.01 0.02 0.04 0.08 0.07

pmin = 24 Runtime – 48.33 17.12 8.87 9.28 16.97 27.36
Speedup – 1.00 2.84 5.46 5.48 2.85 1.76
Load balance – 1.14 1.09 1.07 1.12 1.15 1.12
Search overhead % – 0.00 −16.63 −7.97 47.75 438.86 1599.57
R< – 0.76 0.91 0.83 0.54 0.16 0.05
R= – 0.24 0.09 0.16 0.40 0.64 0.26
R> – 0.00 0.00 0.01 0.06 0.20 0.69
Rr – 0.01 0.01 0.02 0.03 0.07 0.06

pmin = 60 Runtime – – 50.09 22.98 16.21 17.01 33.09
Speedup – – 1.00 2.13 3.02 2.89 1.50
Load balance – – 1.09 1.07 1.13 1.14 1.16
Search overhead % – – 0.00 4.33 52.52 221.04 965.01
R< – – 0.90 0.88 0.68 0.36 0.11
R= – – 0.10 0.12 0.26 0.51 0.53
R> – – 0.00 0.00 0.05 0.13 0.36
Rr – – 0.01 0.01 0.03 0.06 0.06

pmin = 144 Runtime – – – 53.51 34.61 23.46 35.50
Speedup – – – 1.00 1.56 2.27 1.52
Load balance – – – 1.07 1.09 1.13 1.13
Search overhead % – – – 0.00 14.55 52.61 338.69
R< – – – 0.92 0.82 0.65 0.24
R= – – – 0.08 0.16 0.31 0.66
R> – – – 0.00 0.01 0.05 0.09
Rr – – – 0.01 0.03 0.05 0.05

pmin = 300 Runtime – – – – 63.84 44.41 36.17
Speedup – – – – 1.00 1.44 1.76
Load balance – – – – 1.08 1.10 1.13
Search overhead % – – – – 0.00 24.81 81.79
R< – – – – 0.92 0.76 0.55
R= – – – – 0.08 0.22 0.39
R> – – – – 0.00 0.02 0.06
Rr – – – – 0.02 0.03 0.05

pmin = 600 Runtime – – – – – 61.58 41.16
Speedup – – – – – 1.00 1.52
Load balance – – – – – 1.09 1.11
Search overhead % – – – – – 0.00 29.16
R< – – – – – 0.88 0.70
R= – – – – – 0.11 0.24
R> – – – – – 0.01 0.05
Rr – – – – – 0.03 0.05

pmin = 1200 Runtime – – – – – – 58.38
Speedup – – – – – – 1.00
Load balance – – – – – – 1.09
Search overhead % – – – – – – 0.00
R< – – – – – – 0.83
R= – – – – – – 0.14
R> – – – – – – 0.03
Rr – – – – – – 0.04

5. Tuning HDA∗ performance

The previous section investigated the scaling behavior of HDA∗ on various parallel environments as the amount of avail-
able resources varied. In this section, we consider how the behavior of HDA∗ can be tuned by adjusting two parameters:
the number of cores to utilize per processor node, and the number of states to pack in each message between processes.
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Table 6
Planning results on the Commodity cluster: runtime, relative speedup (between brackets), average efficiencies, and average search overhead, by pmin.

Instance HDA∗ 8 cores HDA∗ 16 cores HDA∗ 32 cores HDA∗ 64 cores

Depot10 17.98 (1.0) 16.97 (1.06) 8.09 (2.22) 5.60 (3.21)

Driverlog8 17.65 (1.0) 18.22 (0.97) 7.29 (2.42) 4.41 (4.00)

Freecell5 20.82 (1.0) 16.27 (1.28) 8.41 (2.48) 5.99 (3.48)

Satellite6 20.00 (1.0) 24.64 (0.81) 19.86 (1.01) 7.34 (2.72)

ZenoTrav9 27.97 (1.0) 29.87 (0.94) 11.65 (2.40) 7.26 (3.85)

ZenoTrav11 79.43 (1.0) 81.43 (0.98) 32.36 (2.45) 19.33 (4.11)

PipesNoTk14 39.86 (1.0) 34.26 (1.16) 12.03 (3.31) 7.86 (5.07)

Pegsol27 26.97 (1.0) 22.06 (1.22) 11.08 (2.43) 7.43 (3.63)

Airport17 48.84 (1.0) 33.96 (1.44) 23.78 (2.05) 15.99 (3.05)

Gripper8 56.91 (1.0) 53.95 (1.05) 22.51 (2.53) 14.97 (3.80)

Mystery6 48.58 (1.0) 39.17 (1.24) 20.13 (2.41) 11.91 (4.08)

Truck5 69.40 (1.0) 73.72 (0.94) 68.71 (1.01) 22.46 (3.09)

Sokoban19 24.73 (1.0) 21.10 (1.17) 11.30 (2.19) 9.72 (2.54)

Sokoban22 63.65 (1.0) 49.18 (1.29) 25.20 (2.53) 19.57 (3.25)

Blocks10-2 50.83 (1.0) 47.35 (1.07) 20.69 (2.46) 12.64 (4.02)

Logistics00-7-1 231.01 (1.0) 230.97 (1.00) 91.09 (2.54) 53.37(4.33)

Avg. rel. speedup 1.0 1.10 2.27 3.48
Avg. rel. efficiency 1.0 0.55 0.57 0.87
Avg. search overhead 0 0.20% 3.71% 4.05%
Depot13 – (–) 254.41 (1.0) 115.85 (2.20) 75.09 (3.39)

Freecell7 – (–) 265.00 (1.0) 128.74 (2.06) 75.27 (3.52)

Rover12 – (–) 126.11 (1.0) 57.66 (2.19) 40.27 (3.13)

PipesNoTk24 – (–) 145.49 (1.0) 63.31 (2.30) 38.67 (3.76)

Pegsol28 – (–) 93.55 (1.0) 45.40 (2.06) 29.45 (3.18)

Gripper9 – (–) 273.47 (1.0) 118.38 (2.31) 76.39 (3.58)

Truck6 – (–) 675.71 (1.0) 337.01 (2.01) 168.39 (4.01)

Truck8 – (–) 489.57 (1.0) 284.01 (1.72) 116.22 (4.21)

Logistics00-9-1 – (–) 361.88 (1.0) 154.09 (2.35) 86.91 (4.16)

Miconic12-2 – (–) 564.09 (1.0) 259.01 (2.18) 159.48 (3.54)

Miconic12-4 – (–) 600.22 (1.0) 266.08 (2.26) 169.49 (3.54)

Mprime30 – (–) 247.19 (1.0) 100.27 (2.47) 68.28 (3.62)

Avg. rel. speedup – 1.0 2.18 3.63
Avg. rel. efficiency – 1.0 1.09 0.91
Avg. search overhead – 0 0.61% 0.91%

Rover6 – (–) – (–) 268.59 (1.0) 162.82 (1.65)

Solved only on 64 cores: Freecell6 (302.50 sec), Satellite7 (633.26)
Sokoban26 (205.80), Blocks11-1 (194.57) and Logistics00-8-1 (491.02).

5.1. Adjusting the number of cores to utilize per processing node

Next, we investigate the effect of scaling the number of processing nodes (machines) for the 24-puzzle. We ran the
solver on a set of 100 nodes, which have 1200 cores in total, and varied the number of cores used per node between 1–12,
so that 100–1200 cores were used. The runtimes are shown in Table 7. IDA∗ solves all 50 instances [11] whereas with our
HDA∗ using 12 cores only 10 instances can be solved with 54 GB of memory.

As shown in Table 7, using 1200 cores (4.5 GB/core), 40 out of the 50 problems were solved. With 600 cores (9 GB/core),
41 problems were solved. With 300 cores (18 GB/core), 44 problems were solved, and with 100 cores (54 GB/core), 45
problems were solved. That is, reducing the number of processes down to one process per node increases the number of solved
instances.

A closer look at the trade-offs involved explains this behavior. First there is the reduction in execution time when
performing a given amount of work with more cores. Indeed, Table 7 indicates that, if an instance is solved by a larger
number of cores, the time tends to decrease as more cores were used. The notable exception is the configuration with 1200
cores where the large search overhead actually degrades the time performance. Other exceptions are instances that are easy
for 100 cores, such as p22, p25, p28, p38, p40 and p44, which were solved in a few seconds and left little room for further
improvement in runtime, resulting in consistently increasing runtimes as the number of cores increased. On the other hand,
using more cores per processing node can lead to solving fewer instances. Suppose that k unique states need to be stored
in open/closed in order to solve a problem. A sequential search with enough memory capacity to hold k states can solve
this problem. If HDA∗ allocated work perfectly equally among the processors, and there was no search overhead, then the
partitioning of memory among n cores would have no negative impact. In practice, load balancing is imperfect, and search
overhead is non-zero, so increasing the number of cores (for a fixed amount of aggregate RAM) increases the chance of
failure on a hard problem.

When analyzing the relative impact of search overhead vs RAM partitioning, we found that the former plays a signifi-
cantly greater role in the reduction of the number of solved instances. Table 5 shows that the search overhead eventually
increases significantly as the number of cores increases, meaning that more nodes must be stored in the open/closed lists.
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Table 7
Runtimes in seconds for the 24-puzzle on 100 nodes of the HPC2 cluster. Average runtime only includes instances solved by all configurations. Instances
which were not solved by any configuration are excluded.

100 cores 300 cores 600 cores 1200 cores

Average time 209.43 68.61 35.00 35.93
Nr. solved 45 44 41 40

p1 6.35 4.72 15.94 35.25
p2 356.53 116.86 75.21 45.99
p3 31.61 12.37 15.04 30.12
p4 33.68 14.12 14.04 28.38
p5 11.78 7.43 13.23 30.07
p6 75.98 28.15 24.06 36.46
p7 211.34 75.58 48.84 42.21
p8 190.51 74.45 51.32 34.68
p9 1038.60 365.60 – –
p12 618.90 200.37 119.41 –
p13 12.62 6.46 14.22 32.34
p15 446.57 167.86 99.71 57.72
p16 10.77 5.71 11.20 26.67
p18 1032.34 367.38 – –
p19 162.77 58.76 40.16 37.02
p20 188.30 69.20 47.09 33.40
p21 925.68 333.59 – –
p22 4.12 4.60 12.75 24.58
p23 410.70 156.23 96.00 61.63
p24 277.98 92.09 58.31 52.59
p25 1.37 3.44 10.19 19.30
p26 34.32 13.88 18.86 47.11
p27 68.71 24.33 23.68 35.20
p28 2.55 5.33 13.33 26.13
p29 8.23 5.61 11.80 24.51
p30 4.54 4.38 11.91 25.22
p31 52.41 20.46 19.12 34.28
p32 2.36 4.78 10.85 29.31
p33 1104.11 – – –
p34 412.80 154.47 91.31 57.49
p35 183.70 65.78 50.36 33.55
p36 4.70 4.70 12.24 31.58
p37 10.17 6.36 14.28 30.20
p38 1.57 5.36 13.48 28.11
p39 280.13 94.78 57.25 44.66
p40 1.01 3.44 10.21 22.02
p41 41.20 17.07 16.88 37.99
p42 282.17 98.58 56.30 42.23
p43 52.75 20.57 20.61 37.44
p44 1.48 4.06 11.88 24.89
p45 132.27 43.76 32.06 34.47
p46 163.49 59.35 42.30 37.01
p47 32.70 13.52 16.29 36.97
p48 412.32 152.31 90.36 56.71
p49 86.03 30.95 22.88 31.61

The rate of increase accelerates as the number of cores increases further beyond the minimal number of cores needed to
solve the problem. On the other hand, our use of static RAM partitioning (as opposed to a more flexible, dynamic parti-
tioning) is not a significant bottleneck. We measured the size of the open and closed lists for all processors, and observed
that when the first processor runs out of memory, most other processors have almost exhausted their memory as well. This
means that there is little opportunity for improvements to be made by using a more flexible, dynamic memory partitioning
method.

In Section 4.2.5, we observed slowdowns in domain-independent planning as the ratio of utilized cores per node in-
creased, and ascribed the slowdown to local memory bus contention. In the 24-puzzle, the node expansion rate decreases
by 35% as the number of cores per processing node increased from 1 to 12. We attribute this increase to both local memory
bus contention, and factors discussed in Section 4.2.3.

5.2. The effect of the number of states packed into each message

In HDA∗, each state generation necessitates sending the state from processor where a state is generated to the processor
which “owns” the state. Sending a message from processor P to Q each time a state owned by Q is generated at P may
result in excessive communication overhead, as well as overhead for creating/manipulating MPI message structures.
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Table 8
HDA∗ vs random work distribution (“Random”). Execution time, nodes expanded, and load balance on 16 cores (on 16 processing nodes), using 32 GB per
core. Experiments were performed on the HPC1 cluster.

Execution time Nodes expanded ×106 Load balance

Random HDA∗ Random HDA∗ Random HDA∗

Driverlog13 n/a 1056.24 n/a 618 n/a 1.05
Freecell6 n/a 990.19 n/a 341 n/a 1.04
Freecell7 3170.81 234.37 1,202 97 1.01 1.02
Satellite7 n/a 1493.33 n/a 219 n/a 1.005
ZenoTrav11 1022.57 54.93 221 14 1.0002 1.13
ZenoTrav12 n/a 4393.80 n/a 1152 n/a 1.03
PipesNoTk24 2094.81 130.13 1065 72 1.0001 1.005
Pegsol28 1040.28 74.04 1,364 112 1.01 1.005
Pegsol29 n/a 364.39 n/a 481 n/a 1.01
Pegsol30 n/a 978.11 n/a 1379 n/a 1.01
Sokoban24 2748.71 171.28 3,254 244 1.01 1.01
Sokoban26 n/a 488.15 n/a 659 n/a 1.01
Sokoban27 n/a 942.57 n/a 1162 n/a 1.03

In order to amortize these overheads, Romein et al. [12], in their work on TDS, proposed packing multiple states with
the same destination.

On the other hand, packing too many states into a message from processor P to Q might result in degraded performance
for two reasons. First, the destination Q might be starved for work and be idle. Second, too much packing can result in
search overhead, as follows. Consider a state S on an optimal path, which is “delayed” from being sent to its owner because
the processor which generated S is waiting to pack more states into the message containing S . In the meantime, the owner
of S is expanding states which are worse than S and possibly sending those successors to fill up the open list of their owner
processors, and so on.

We compared packing 10, 100, and 1000 states per message on the Commodity cluster using 64 cores, using the same
benchmark instances in Table 6, except that the Airport17 instance was excluded because it could not be solved using 10
states per message. Using 10 states per message, the average runtime was 31.6% slower than when using 100 states per
message, and 1.0% fewer nodes were expanded. Using 1000 states per message, the average runtime was 37.4% slower than
when using 100 states per message, and 11.6% more nodes were expanded. Thus, while packing fewer states per message
reduces search overhead, packing more states per message reduces communication overhead, and in this case, packing 100
states per message performs well by striking a balance between these two factors.

6. Hash-based work distribution vs random work distribution on a HPC cluster

Kumar et al. [23] and Karp and Zhang [24] proposed a simple, random work distribution strategy for best-first search
where generated nodes are sent to a random processor. While this is similar to HDA∗ in that a randomization mechanism is
used to distribute work, the difference is that duplicate states are not necessarily sent to the same processor, since a state
has no “owner”. Although duplicates are pruned locally at each processor, there is no global duplicate detection, so in the
worst case, a state can be in the local open/closed lists of every single processor.

We evaluated this “Random” work distribution strategy on our Fast-Downward based domain-independent planner on
the HPC1 cluster. First, we attempted to compare HDA∗ and Random using 16 cores, 2 GB per core. However, the Random
strategy failed to solve any of the test problems in this configuration – all of the runs failed due to memory exhaustion. This
indicated that, due to the lack of (global) duplicate detection, the random work distribution strategy requires much more
RAM to solve our benchmarks. Hence we performed a comparison using 16 cores, 32 GB per core (as with the experiments
in Section 4.2.5, this configuration left 15 of the 16 cores on each processing node idle, in order to maximize memory
available per core). The results are shown in Table 8. The execution time and number of nodes expanded by HDA∗ is more
than an order of magnitude less than those of the random work distribution strategy. In fact, the random work distribution
strategy is slower than the sequential A∗ algorithm because of large search overhead. The load balance is similar for both
HDA∗ and random work distribution, indicating that hash-based work distribution is successfully distributing the work as
evenly as a pure, randomized strategy. These results clearly demonstrate the benefit of using hash-based work distribution
in order to perform global duplicate detection as well as load balancing.

7. Comparison of HDA∗ vs TDS on a commodity cluster

Transposition-Driven Scheduling (TDS) is a parallelization of IDA∗ with a distributed transposition table, where hash-
based work distribution is used to map states to processors for both scheduling and transposition table checks [13]. TDS has
been applied successfully to sliding tiles puzzles and Rubik’s Cube [13], and has also been adapted for adversarial search
[32,33]. While TDS has not been applied to planning, recent work has shown that IDA∗ with a transposition table (IDA∗ +TT)
is a successful search strategy for optimal, domain-independent planning [42] – on problems which can be solved by A∗, the
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runtime of IDA∗ + TT is usually within a factor of 4 of A∗, and IDA∗ + TT can eventually solve problems where A∗ exhausts
memory. Therefore, we compared HDA∗ and TDS [13] for planning.

The experiments were performed on the Commodity cluster (see Table 1 for machine specs) using 64 cores, with a
20 minute time limit per instance. Both HDA∗ and TDS were run on 35 planning instances (the same instances as for the
experiments in Section 4.4, Table 6).

Our implementation of TDS uses a transposition table implementation based on [42], where the table entry replacement
policy is a batch replacement policy which sorts entries according to access frequency and periodically frees 30% of the
entries (preferring to keep most frequently accessed entries).8 We incorporated techniques to overcome higher latency in a
lower-bandwidth network described in [13], such as their modification to the termination detection algorithm.

Out of 35 instances, HDA∗ failed to solve one case (Blocks12-1) and TDS failed to solve 8 cases (Logistics00-8-1,
Sokoban22, Sokoban26, Truck6, Gripper9, Freecell6, Rover6, Satellite7). Fig. 8 directly compares HDA∗ and TDS on 26 in-
stances solved by both algorithms, for which it is possible to compute the ratios of performance measures such as time,
expanded states and evaluated states.9 HDA∗ is consistently faster, with a maximum speedup of about 65.

There are several differences between HDA∗ and TDS that could cause this significant performance difference. Below, we
first enumerate these differences, and then consider how they apply to our results.

First, TDS is an iterative deepening strategy, so TDS will incur state re-expansion overhead, since many states will be
re-expanded as the iteration f -bound increases.

Second, HDA∗ opens states in a (processor-local) best-first order, while TDS opens states in a last-in-first-out order in its
local stack, subject to an iteration bound for the f -value. This difference in state expansion policy results in different search
overheads for the two algorithms.

Third, each processor in TDS needs memory not only for a transposition table and the merge-and-shrink abstraction (for
planning), but also for a work stack. In the tested configuration, each processor is allocated 2 GB of memory. 1.2 GB is
allocated to the transposition table and the abstraction. The remaining memory is reserved for the work stack.10 Therefore,
there may be cases where there is sufficient aggregate memory in HDA∗ to solve an instance, but TDS (on the same system)
exhausts the space allocated for its distributed transposition table. In such a situation, TDS applies a replacement policy to
replace some of its transposition table entries with newly expanded states. While this seeks to maintain the most useful
working set of states, it is possible that valuable entries (states) in the table are replaced, resulting in wasted work later
when these states are revisited.

Fourth, TDS incurs synchronization overhead while all processors wait for the current iteration to end.
Standard IDA∗ often generates states faster than A∗, because successor generation can be implemented as an in-place

incremental update of a data structure representing the current state. Thus, sequential IDA∗ can outperform A∗ even if IDA∗
searches less efficiently than A∗. When a transposition table is added to IDA∗, state generation incurs a significant overhead
because the hash value of each generated state must be computed, and if there is a transposition table miss, some hashed
representation of the state must be stored in the table. Furthermore, in TDS, every distributed transposition table access
requires a hashed representation of the state to be generated and sent to the owner process. Thus, parallel IDA∗ no longer
has an inherently faster state generation rate than parallel A∗.

We now consider the contribution of each of the above differences. In Fig. 8, the ratio of expanded states closely follows
the runtime ratio.11 On the other hand, the ratio of evaluated states is close to 1 in most cases. This suggests that both
algorithms explore a similar number of unique states. Furthermore, the similarity in the number of evaluated states shows
that the transposition table used by TDS is large enough to fit most (unique) states generated during search, so the size of
the transposition table did not limit the performance of TDS.

The difference in performance is mostly due to the re-expansion overhead incurred by TDS during iterative deepening.
This conclusion is supported by the close correspondence between the runtime ratio and the state expansion ratio. Also,
it is consistent with the behavior of sequential A∗ and IDA∗. For example, on the Airport17 instance, both A∗ and IDA∗
evaluate 10,397,245 states. While A∗ expands only 7,126,967 states, IDA∗ expands 239,705,187 states, indicating that most
of the states are re-expanded.12

Clearly, the number of re-expansions depends on the number of iterations performed by TDS. The exact number of
iterations is unavailable when TDS runs out of time. An upper bound can be computed as u = c∗ − h(s0) + 1, where c∗ is
the optimal cost (available due to HDA∗), and h(s0) is the heuristic evaluation of the initial state. We observed that this
was exactly the number of iterations in the cases where TDS succeeded within the time limit. More generally, in all cases

8 Although replacement based on subtree size performed best in sequential search [42], we did not implement this policy because subtree size compu-
tation would require extensive message passing in parallel search.

9 Evaluated states are states which were not found in the Open/Closed set (in the case of HDA∗), or not found in the transposition table (in the case of
TDS).
10 While Romein et al.’s stack does not exceed 1 MB in their applications [13], our stack often used hundreds of megabytes of memory. Due to the much

larger branching factors of our planning domains, compared to their domains (15-puzzle, Rubik’s cube), TDS sends away more states when generating
successors, causing a larger work queue. A possible future improvement is to combine Dutt and Mahapatra’s technique in SEQ_A∗ [6] with TDS and restrict
initiating parallelism.
11 The ratio of generated states, not shown to reduce clutter, is almost identical to the ratio of expanded states.
12 Extending TDS to backpropagate search results might reduce the very high re-expansion overhead in planning, which did not occur in Romein et al.’s

applications.
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Fig. 8. Ratios TDS/HDA∗ on 64 cores, on the Commodity cluster (see Table 1 for machine specs).

Fig. 9. Estimated number of TDS iterations.

that we observed, the cost threshold increase from one iteration to the next was 1. Thus, we hypothesize that the upper
bound u is in fact quite an accurate estimate of the actual number of iterations. On the 35 instances considered in this
experiment, the (estimated) number of iterations varies from 4 to 159, with an average value of 32.48. Data for all instances
are available in Fig. 9.

The synchronization overhead in TDS between iterations, as all processors wait for the iteration to end, does not appear
to be significant in most cases, which is consistent with Romein et al.’s results (otherwise, the runtime ratio would be
consistently higher than the state expansion ratio).

Next we consider the speedups obtained by HDA∗ and TDS over their sequential counterparts, A∗ and IDA∗ with transpo-
sition table (IDA∗ + TT). The speedup of TDS vs IDA∗ + TT depends greatly on the amount of RAM memory available for the
transposition table. The larger the (aggregate) transposition table, the faster TDS and IDA∗ are. While it is possible to achieve
drastically large (sometimes super linear) speedup over IDA∗ [12,13], the speedup diminishes as IDA∗ has access to larger
and larger transposition tables. Fig. 10 shows that, depending on the amount of RAM available to IDA∗ + TT, the speedup
of TDS vs IDA∗ + TT can be either smaller or larger than speedup of HDA∗ vs A∗. In this experiment, serial IDA∗ + TT was
tested using 1.5 GB of RAM and 26 GB of RAM. TDS uses 1.2 GB × 64 cores, or 76.8 GB of aggregate RAM. The time limit of
serial IDA∗ + TT was set to 1280 minutes (i.e., about 21.3 hours) per instance.

7.1. A simple, hybrid strategy combining HDA∗ and TDS

The results above indicate that, for planning, HDA∗ significantly outperforms TDS on instances that can be solved within
the memory available to HDA∗. However, while HDA∗ will terminate and fail when memory is exhausted at any processor,
TDS will not terminate if the local transposition table at any processor becomes full. Mechanisms which allow A∗-based
search to continue after memory is exhausted have been proposed. For example, PRA∗ [5], has a state retraction mechanism
which frees memory by retracting some states at the search frontier (however, as explained in Section 2, the PRA∗ retraction
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Fig. 10. Speedup over sequential search. A missing data point indicates that the sequential algorithm or both the sequential and the parallel algorithm failed
to find a solution. Experiments were performed on the Commodity cluster.

policy results in synchronization overhead). Determining an effective state retraction policy is a non-trivial extension to
HDA∗ and an interesting direction for future work.

Consider instances which are solvable by TDS (within a reasonable amount of time) but not by HDA∗. Such problems
are not very common. Given that HDA∗ and TDS explore a very similar set of unique states (as shown above), if a problem
cannot be solved by HDA∗, it indicates that the instance is quite difficult, and it is likely that TDS cannot solve the problem
either within a reasonable time limit.

The instances that HDA∗ failed to solve, as well as the amount of time HDA∗ executed before exhausting RAM, are listed
below for 16, 32, and 64 cores (all with 2 GB per core):

• Failed with 16 cores: Freecell6 (269 sec), Rover6 (453 sec), Satellite7 (573 sec), Sokoban26 (176 sec), Blocks11-1
(165 sec), Blocks12-1 (148 sec), Logistics00-8-1 (416 sec);

• Failed with 32 cores: Freecell6 (303 sec), Satellite7 (722 sec), Sokoban26 (190 sec), Blocks11-1 (190 sec), Blocks12-1
(156 sec), Logistics00-8-1 (399 sec);

• Failed with 64 cores: Blocks12-1 (189 sec).

Next, we attempted to solve these instances using TDS with 16, 32, and 64 cores (all with 2 GB/core), with an extended
time limit of 1.5 hours for 32 and 64 cores and 3 hours for 16 cores per instance. The runtimes on the instances which were
solved by TDS, but not by HDA∗ are as follows (TDS failed to find a solution within the time limit on the other instances):

• 16 cores: Blocks11-1 (2928 sec), Blocks12-1 (4139 sec);
• 32 cores: Freecell6 (4350 sec), Blocks11-1 (974 sec), Blocks12-1 (1874 sec);
• 64 cores: Blocks12-1 (838 sec).

Thus, even with a 1.5 or 3 hours per instance, many instances that cannot be solved by HDA∗ cannot be solved by TDS. In
addition, on the instances where HDA∗ fails and TDS succeeds, HDA∗ fails relatively quickly compared to the time required
by TDS to solve the problem. For example, with 32 cores HDA∗ exhausts memory in 156 sec in solving Blocks12-1, and
although TDS can solve this problem with 32 cores, it required 1874 sec.

This suggests a very simple, hybrid approach which combines the speed of HDA∗ and the ability of TDS to eventually
solve difficult problems without running out of memory. First, a slightly modified version of HDA∗ is applied, which keeps
track of the lowest f -cost in the OPEN list is recorded at every processor. If HDA∗ finds a solution, then it is returned.
However, if HDA∗ exhausts memory at any processor, then it terminates with failure, and also returns the minimum frontier
value among all of the processors, fmin. Then, we apply TDS, except that instead of setting the initial iteration bound to the
heuristic value at the initial state, we start with fmin as the lower bound.

According to the data above, if the HDA∗ phase succeeds, this hybrid procedure will succeed significantly faster than TDS
would, and if it fails, it will fail relatively quickly. Upon failure, the hybrid starts TDS with an iteration bound fmin (skipping
some wasteful iterations).

On instances solvable by HDA∗, the hybrid runtime will be the same as for HDA∗. On instances where HDA∗ fails but
TDS would eventually succeed, the hybrid runtime would be similar to the runtime of TDS. The time spent in the failed run
of HDA∗ should only be a small fraction of the time required to eventually solve the instance; furthermore, using the fmin
initial bound for TDS is expected to offset some of the time spent in the failed HDA∗ run by eliminating some of wasted
expansions in TDS.

Table 9 shows the results of applying this hybrid to the instances listed above which caused HDA∗ to fail. In most cases,
the runtimes for the hybrid are comparable to the runtimes for TDS. This shows that the hybrid successfully combines the
strengths of both HDA∗ and TDS while avoiding their disadvantages, and does so while avoiding excessive hybridization
overhead.
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Table 9
Time in seconds for TDS and Hybrid HDA∗ + TDS (these are instances which could not be
solved by HDA∗ by itself). Experiments were performed on the Commodity cluster.

Hybrid

Instance HDA∗ TDS Total TDS

16 cores
Blocks11-1 165 2517 2682 2928
Blocks12-1 148 4192 4340 4139

32 cores
Freecell6 303 3781 4084 4350
Blocks11-1 190 865 1055 974
Blocks12-1 156 1876 2032 1874

64 cores
Blocks12-1 189 566 755 838

8. Related work

We have discussed the related work that parallelizes search by partitioning the search space in Section 2. In this section,
we review related work on parallel search in model checking. In the second half, we also review other approaches to
parallelizing search algorithms.

While this paper focuses on standard AI search domains including domain-independent planning and the sliding tile
puzzle, distributed search, including hash-based work distribution, has also been studied extensively by the parallel model
checking community. Parallel Murϕ [43,44] addresses verification tasks that involve exhaustively enumerating all reachable
states in a state space. Similarly to HDA∗ and other work described in Section 2 [5,6], Parallel Murϕ implements a hash-
based work distribution schema where each state is assigned to a unique owner processor. Kumar and Mercer [45] present
a load balancing technique as an alternative to the hash-based work distribution implemented in Murϕ . The Eddy Murphi
model checker [46] specializes processors’ tasks, defining two threads for each processing node. The worker thread performs
state processing (e.g., state expansion), whereas the other thread handles communication (e.g., sending and receiving states).

Lerda and Sisto parallelized the SPIN model checker to increase the availability of memory resources [47]. Similar to
hash-based distribution, states are assigned to an owner processing node, and get expanded at their owner node. However,
instead of using a hash function to determine the owner processor, only one state variable is taken into account. This is
done to increase the likelihood that the processor where a state is generated is identical to the owner processor. Holzmann
and Boŝnaĉki [48] introduce an extension to SPIN to multicore, shared memory machines. Garavel et al. [49] use hash-based
work distribution to convert an implicitly defined model-checking state space into an explicit file representation. Symbolic
parallel model checking has been addressed in [50].

Thus, hash-based work distribution and related techniques for distributed search have been widely studied for parallel
model checking. There are several important differences between previous work in model checking and this paper. First, this
paper focuses on parallel A∗. In model checking, there is usually no heuristic evaluation function, so depth-first search and
breadth-first search is used instead of best-first strategies such as A∗.

Second, reachability analysis in model checking (e.g., [43,44,47,49]), which involves visiting all reachable states, does
not necessarily require optimality. Search overhead is not an issue because both serial and parallel solvers will expand
all reachable states exactly once. In contrast, we specifically address the problem of finding an optimal path, a significant
constraint which introduces the issue of search efficiency because distributed A∗ (including HDA∗) searches many nodes
with the f -cost greater than or equal to the optimal cost, as detailed in Section 4.2.2; furthermore, node re-expansions in
parallel A∗ can introduce search overhead. This is the first paper to analyze search overhead.

Finally, while previous work in model checking has used up to 256 processors [51], our work presents the largest scale
experiments with hash-based work distribution to date, showing that hash-based work distribution can scale efficiently
relative to pmin even for up to 2400 processors.

Kobayashi et al. [31] have applied HDA∗ to multiple sequence alignment (MSA). The non-unit transition costs lead to a
higher rate of re-expansions, increasing the search overhead. To address this, the authors introduced a work distribution
strategy that exploits the structure that MSA and potentially other problems exhibit, replacing the Zobrist-based, global
hashing scheme. In contrast, in this work, our focus is to analyze HDA∗ at length, hoping to establish HDA∗ as a simple and
scalable baseline algorithm for parallel optimal search.

One alternative to partitioning the search space among processors is to parallelize the computation done during the pro-
cessing of a single search node (cf., [52,53]). The Operator Distribution Method for parallel Planning (ODMP) [54] parallelizes
the computation at each node. In ODMP, there is a single, controlling thread, and several planning threads. The controlling
thread is responsible for initializing and maintaining the current search state. At each step of the controlling thread main
loop, it generates the applicable operators, inserts them in an operator pool, and activates the planning threads. Each plan-
ning thread independently takes an operator from this shared operator pool, computes the grounded actions, generates the
resulting states, evaluates the states with the heuristic function, and stores the new state and its heuristic value in a global
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agenda data structure. After the operator pool is empty, the controlling thread extracts the best new state from the global
agenda, assigning it to the new, current state.

Another approach is to run a set of different search algorithms in parallel. Each process executes mostly independently,
with periodic communication of information between processors. This approach, which is a parallel version of an algorithm
portfolio [55], seeks to exploit the long-tailed runtime distribution behavior encountered in search algorithms [56] by using
different versions of search algorithms to search different (potentially overlapping) portions of the search space. An example
of this is the ManySAT solver [57], which executes a different version of a DPLL-based backtracking SAT solver on each
processor and periodically shares lemmas among the processes.

A third approach is parallel-window search for IDA∗ [58], where each processor searches from the same root node, but is
assigned a different bound – that is, each processor is assigned a different, independent iteration of IDA∗. When a processor
finishes an iteration, it is assigned the next highest bound which has not yet been assigned to a processor.

Vidal et al. [59] propose a multicore version of the KBFS algorithm [60]. In this approach, each thread expands one
node from the Open list at a time. As each expansion step requires operations on the Open and Closed list, synchronization
is needed to ensure that only one thread at a time can perform such operations. Experiments are reported for satisficing
planning, as opposed to our work, which is focused on optimal planning.

The best parallelization strategy for a search algorithm depends on properties of the search space, as well as the parallel
architecture on which the search algorithm is executed. The EUREKA system [61] used machine learning to automatically
configure parallel IDA∗ for various problems (including nonlinear planning) and machine architectures.

Niewiadomski et al. [40] propose PFA∗-DDD, a parallel version of Frontier A∗ with Delayed Duplicate Detection. While
achieving very good speed-up efficiency (often superlinear), PFA∗-DDD is limited to returning only the cost of a path from
start to target, not an actual path. While divide-and-conquer (DC) can be used to reconstruct a path (as in sequential frontier
search), parallel DC poses non-trivial design issues that need to be addressed in future work. See the original paper for a
discussion.

9. Discussion and conclusion

This paper investigated the use of hash-based work distribution to parallelize A∗ for hard graph search problems such
as domain-independent planning. We implemented Hash-Distributed A∗, a simple, scalable parallelization of A∗. The key
idea, first used in Parallel Retracting A∗ [5], is to distribute work according to the hash value for generated states. HDA∗ is
a simple implementation of this idea, which, to our knowledge, has not been previously evaluated in depth. Unlike PRA∗,
which was a synchronous algorithm due to its retraction mechanism, HDA∗ operates completely asynchronously. Also, unlike
previous work such as PRA∗ and GOHA [6], which implemented hash-based work distribution on variants of A∗, HDA∗ is
a straightforward implementation of hash-based work distribution for standard A∗. We evaluated HDA∗ as a replacement
for the sequential A∗ search engine for a state-of-the-art, optimal sequential planner, Fast Downward [3]. We also evaluated
HDA∗ on the 24-puzzle domain by implementing a parallel solver with a disjoint pattern database heuristic [11].

Our experimental evaluation shows that HDA∗ scales well in several parallel hardware configurations, including a single
shared memory machine, high-performance computing clusters using Infiniband interconnects, and a local cluster with
1 Gb(x2) Ethernet network.

While HDA∗ is naturally suited for distributed memory parallel search on a distributed memory cluster of machines,
we have shown that HDA∗ also achieves reasonable speedup on a single, shared memory machine with up to 8 cores,
yielding speedups of 3.8–6.6 on 8 cores. Burns et al. have recently proposed PBNF, a shared memory, parallel best-first
search algorithm, and showed that PBNF outperforms HDA∗ on planning in shared memory environments [62]. On the other
hand, while HDA∗ is not necessarily the fastest algorithm on a shared memory environment, HDA∗ is simpler than PBNF
(which is based on structured duplicate detection techniques). Furthermore, HDA∗ is suited for larger, distributed memory
clusters, while PBNF is designed for shared memory machines.

Evaluation of HDA∗ on a large high-performance cluster using up to 2400 cores showed that HDA∗ scales well relative
to pmin, the minimum number of processors (+memory) that can solve the problem. In our benchmarks pmin ranged up to
600 cores. When up to 8 times pmin processors are used, HDA∗ scales up relatively efficiently. However, as additional pro-
cessors are used, the search overhead (wasteful node expansions) increases, resulting in degraded efficiency as the number
of processors used greatly exceeds pmin. Comparison with a randomized work distribution strategy which performs load
balancing but no duplicate detection [23,24] showed the simple hash-based duplicate detection mechanism is essential to
the performance of HDA∗. The scaling behavior of HDA∗ on a small commodity cluster with 1 Gb(x2) Ethernet shows similar
trends as on the HPC cluster, except that going from 8 cores (1 processor node) to 16 cores (2 processor nodes) is inefficient.
Increasing the number of processing nodes beyond 2 scaled smoothly. Qualitatively similar scaling results were obtained for
the 24-puzzle. However, because of the faster node processing time for the 24-puzzle compared to domain-independent
planning, scaling degraded faster for the 24-puzzle.

Much of the previous literature on parallel search has focused on maximizing the usage of all available CPU cores. Our
results indicate that this approach can be suboptimal. In fact, the best performance can be obtained by keeping many of the
available processors idle. This is a result of the prevalent architecture in current clusters, which are composed of commodity,
multicore shared-memory processors connected via a high-speed network. There are two distinct factors which can lead to
suboptimal performance when CPU core usage is maximized. First, as we showed in Section 4.2.5, contention for local
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memory on each machine becomes a bottleneck, so using all of the available cores on a machine results in performance
degradation. Automatically determining the optimal number of cores to use per processing node in order to obtain the best
trade-off between computation and memory bandwidth is an area for future work. Second, in parallel best-first search, there
is a trade-off between the number of cores used per machine, and the fragmentation of the local open list. Fragmentation
of the open list results in search overhead, because the local open lists are not aware of the current global best f -values.
Developing mechanisms which seek to reduce this search overhead is an area for future work.

Our comparison of HDA∗ with TDS showed that when HDA∗ had sufficient memory to solve a problem, it significantly
outperformed TDS on our benchmark planning instances. We showed that this performance gap was due to the re-expansion
of states by TDS. We observed that on problem instances where HDA∗ fails due to memory exhaustion, TDS either fails due
to exceeding the time limit, or TDS eventually solves the instance but requires a long time. Thus, we investigated a simple,
hybrid strategy which first executes HDA∗ until either the problem is solved or until memory is exhausted. If HDA∗ fails,
execute TDS starting with a more informed initial threshold, provided by the failed HDA∗ run. We showed that this hybrid
strategy effectively combines the advantages of both HDA∗ and TDS.

One particularly attractive feature of HDA∗ is its simplicity. Work distribution and duplicate detection is done by a sim-
ple hash function, and there is no complex load balancing mechanism. All communications are asynchronous. As far as we
know, HDA∗ is the simplest parallelization for A∗ which achieves both load balancing and duplicate detection. Simplicity is
very important for parallel algorithms, particularly for an algorithm that runs on multiple machines, as debugging a multi-
machine, multicore algorithm is extremely challenging. In some preliminary efforts to implement a distributed memory,
work-stealing algorithm, we have found that it is significantly more difficult to implement it correctly and efficiently com-
pared to HDA∗. Furthermore, using the standard MPI message passing library, the same HDA∗ code can be recompiled and
executed on a wide range of shared memory and distributed clusters, making it simple to port HDA∗. This is in contrast to
more complex algorithms which depend on specific architectural features such as shared memory.

While our investigation of HDA∗ scaling reveals that there is clearly room for improvement when the amount of par-
allel resources used greatly exceeds the minimal required resources (i.e., p > 8 × pmin), we have shown that HDA∗ scales
reasonably well across a wide range of parallel platforms, including a single multicore machine, a commodity cluster, and
two high-performance computing clusters. Combined with its simplicity and portability, this suggests that HDA∗ should be
considered a default, baseline algorithm for parallel best-first search.

This paper focused on the search phase of problem solving. Parallelization of the heuristic construction phase (e.g.,
computation of the abstraction heuristic table [3] and pattern database generation [11]) is another area for future work.
A related avenue for future work is a more effective use of memory for heuristic tables. Our current implementation of HDA∗
uses a single process per core. When executed on one or more (shared memory) multicore machines, our implementation of
HDA∗ executes as a set of independent processes without sharing any memory resources among cores that are on the same
machine. This means that the memory used for an abstraction heuristic in planning or for a pattern database in 24-puzzle is
unnecessarily replicated n times on an n-core machine. We are currently investigating a hybrid, distributed/shared memory
implementation of HDA∗ which eliminates this inefficiency. One possible approach is to distribute work among machines
using hash-based distribution, but within a single machine incorporate techniques such as speculative expansion that have
been shown to scale well on a shared memory environment [9].

Finally, although efficiency (with respect to runtime) is an important characteristic for parallel search, the ability to solve
difficult problems that cannot be solved using fewer resources (because A∗ exhausts RAM, and other methods such as IDA∗
on a single machine take too long) may be the most compelling reason to consider large-scale parallel search on distributed
memory clusters. Using up to 2400 cores and 10.5 terabytes of aggregate RAM, HDA∗ was able to compute optimal solutions
to larger planning benchmark problems than was previously possible on a single machine. The increasing pervasiveness of
massive “utility computing” resources (such as cloud computing services) means that further work is needed to develop
and evaluate algorithms that can scale even further, to tens of thousands of cores and petabytes of RAM. Furthermore, a
focus on solving problems using utility computing services which incur monetary usage costs requires the development of
cost-effective utilization of resources. We have recently analyzed an iterative resource allocation policy to address this [41].
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