65,035 research outputs found

    Log-Euclidean Bag of Words for Human Action Recognition

    Full text link
    Representing videos by densely extracted local space-time features has recently become a popular approach for analysing actions. In this paper, we tackle the problem of categorising human actions by devising Bag of Words (BoW) models based on covariance matrices of spatio-temporal features, with the features formed from histograms of optical flow. Since covariance matrices form a special type of Riemannian manifold, the space of Symmetric Positive Definite (SPD) matrices, non-Euclidean geometry should be taken into account while discriminating between covariance matrices. To this end, we propose to embed SPD manifolds to Euclidean spaces via a diffeomorphism and extend the BoW approach to its Riemannian version. The proposed BoW approach takes into account the manifold geometry of SPD matrices during the generation of the codebook and histograms. Experiments on challenging human action datasets show that the proposed method obtains notable improvements in discrimination accuracy, in comparison to several state-of-the-art methods

    SAVASA project @ TRECVID 2012: interactive surveillance event detection

    Get PDF
    In this paper we describe our participation in the interactive surveillance event detection task at TRECVid 2012. The system we developed was comprised of individual classifiers brought together behind a simple video search interface that enabled users to select relevant segments based on down~sampled animated gifs. Two types of user -- `experts' and `end users' -- performed the evaluations. Due to time constraints we focussed on three events -- ObjectPut, PersonRuns and Pointing -- and two of the five available cameras (1 and 3). Results from the interactive runs as well as discussion of the performance of the underlying retrospective classifiers are presented

    Innovative in silico approaches to address avian flu using grid technology

    Get PDF
    The recent years have seen the emergence of diseases which have spread very quickly all around the world either through human travels like SARS or animal migration like avian flu. Among the biggest challenges raised by infectious emerging diseases, one is related to the constant mutation of the viruses which turns them into continuously moving targets for drug and vaccine discovery. Another challenge is related to the early detection and surveillance of the diseases as new cases can appear just anywhere due to the globalization of exchanges and the circulation of people and animals around the earth, as recently demonstrated by the avian flu epidemics. For 3 years now, a collaboration of teams in Europe and Asia has been exploring some innovative in silico approaches to better tackle avian flu taking advantage of the very large computing resources available on international grid infrastructures. Grids were used to study the impact of mutations on the effectiveness of existing drugs against H5N1 and to find potentially new leads active on mutated strains. Grids allow also the integration of distributed data in a completely secured way. The paper presents how we are currently exploring how to integrate the existing data sources towards a global surveillance network for molecular epidemiology.Comment: 7 pages, submitted to Infectious Disorders - Drug Target
    • 

    corecore