2 research outputs found

    Analysing oscillatory trends of discrete-state stochastic processes through HASL statistical model checking

    Get PDF
    The application of formal methods to the analysis of stochastic oscillators has been at the focus of several research works in recent times. In this paper we provide insights on the application of an expressive temporal logic formalism, namely the Hybrid Automata Stochastic Logic (HASL), to that issue. We show how one can take advantage of the expressive power of the HASL logic to define and assess relevant characteristics of (stochastic) oscillators

    Evaluation of sustained stochastic oscillations by means of a system of differential equations

    No full text
    Several approaches exist to model the evolution of dynamical systems with large populations. These approaches can be roughly divided into microscopic ones, which are usually stochastic and discrete, and macroscopic ones, which are obtained as the limit behaviour when the populations tend to infinity and are usually deterministic and continuous. We study the dynamics obtained by both approaches in systems with one deterministic equilibrium. We show that such dynamics can exhibit rather different behaviour around the deterministic equilibrium, in particular, the limit behaviour can tend to an equilibrium while the stochastic discrete dynamics oscillates indefinitely. To evaluate such stochastic oscillations quantitatively, we propose a system of differential equations on polar coordinates. The solution of this system provides several measures of interest related to the stochastic oscillations, such as average amplitude and frequency
    corecore