153,950 research outputs found

    Computer vision based techniques for fall detection with application towards assisted living

    Get PDF
    In this thesis, new computer vision based techniques are proposed to detect falls of an elderly person living alone. This is an important problem in assisted living. Different types of information extracted from video recordings are exploited for fall detection using both analytical and machine learning techniques. Initially, a particle filter is used to extract a 2D cue, head velocity, to determine a likely fall event. The human body region is then extracted with a modern background subtraction algorithm. Ellipse fitting is used to represent this shape and its orientation angle is employed for fall detection. An analytical method is used by setting proper thresholds against which the head velocity and orientation angle are compared for fall discrimination. Movement amplitude is then integrated into the fall detector to reduce false alarms. Since 2D features can generate false alarms and are not invariant to different directions, more robust 3D features are next extracted from a 3D person representation formed from video measurements from multiple calibrated cameras. Instead of using thresholds, different data fitting methods are applied to construct models corresponding to fall activities. These are then used to distinguish falls and non-falls. In the final works, two practical fall detection schemes which use only one un-calibrated camera are tested in a real home environment. These approaches are based on 2D features which describe human body posture. These extracted features are then applied to construct either a supervised method for posture classification or an unsupervised method for abnormal posture detection. Certain rules which are set according to the characteristics of fall activities are lastly used to build robust fall detection methods. Extensive evaluation studies are included to confirm the efficiency of the schemes

    Fitting cornering speed models with one-class support vector machines

    Get PDF
    © 2019 IEEE. This paper investigates the modelling of cornering speed using road curvature as a predictive variable, which is of interest for advanced driver assistance system (ADAS) applications including eco-driving assistance and curve warning. Such models are common in the driver modelling and human factors literature, yet lack reliable parameter estimation methods, requiring an ad-hoc evaluation of the upper envelope of the data followed by linear regression to that envelope. Considering the space of possible combinations of lateral acceleration and cornering speed, we cast the modelling of cornering speed as an 'outlier detection' problem which may be solved using one-class Support Vector Machine (SVM) methods from machine learning. For an existing cornering model, we suggest a fitting method using a specific choice of kernel function in a one-class SVM. As the parameters of the cornering speed model may be recovered from the SVM solution, this provides a more robust and reproducible fitting method for this model of cornering speed than the existing envelope-based approaches. In addition, this gives comparable outlier detection performance to generic SVM methods based on Radial Basis Function (RBF) kernels while reducing training times by a factor of 10, indicating potential for use in adaptive eco-driving assistance systems that require retraining either online or between drives

    Learning to Find Eye Region Landmarks for Remote Gaze Estimation in Unconstrained Settings

    Full text link
    Conventional feature-based and model-based gaze estimation methods have proven to perform well in settings with controlled illumination and specialized cameras. In unconstrained real-world settings, however, such methods are surpassed by recent appearance-based methods due to difficulties in modeling factors such as illumination changes and other visual artifacts. We present a novel learning-based method for eye region landmark localization that enables conventional methods to be competitive to latest appearance-based methods. Despite having been trained exclusively on synthetic data, our method exceeds the state of the art for iris localization and eye shape registration on real-world imagery. We then use the detected landmarks as input to iterative model-fitting and lightweight learning-based gaze estimation methods. Our approach outperforms existing model-fitting and appearance-based methods in the context of person-independent and personalized gaze estimation
    • …
    corecore