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Abstract

In this thesis, new computer vision based techniques are proposed to detect

falls of an elderly person living alone. This is an important problem in

assisted living.

Different types of information extracted from video recordings are ex-

ploited for fall detection using both analytical and machine learning tech-

niques. Initially, a particle filter is used to extract a 2D cue, head velocity,

to determine a likely fall event. The human body region is then extracted

with a modern background subtraction algorithm. Ellipse fitting is used to

represent this shape and its orientation angle is employed for fall detection.

An analytical method is used by setting proper thresholds against which

the head velocity and orientation angle are compared for fall discrimination.

Movement amplitude is then integrated into the fall detector to reduce false

alarms.

Since 2D features can generate false alarms and are not invariant to

different directions, more robust 3D features are next extracted from a 3D

person representation formed from video measurements from multiple cali-

brated cameras. Instead of using thresholds, different data fitting methods

are applied to construct models corresponding to fall activities. These are

then used to distinguish falls and non-falls.

In the final works, two practical fall detection schemes which use only

one un-calibrated camera are tested in a real home environment. These

approaches are based on 2D features which describe human body posture.
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Abstract v

These extracted features are then applied to construct either a supervised

method for posture classification or an unsupervised method for abnormal

posture detection. Certain rules which are set according to the characteris-

tics of fall activities are lastly used to build robust fall detection methods.

Extensive evaluation studies are included to confirm the efficiency of the

schemes.
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Chapter 1

INTRODUCTION

1.1 The significance of fall detection

Due to the development of health care technology in modern society, human

life expectancy has grown and there continues to be a concomitant trend for

an increase in the population of old people. According to the US bureau of

statistics, as reported by the Guardian [2] newspaper in the UK, within 10

years old people will outnumber children for the first time. Over the next 30

years it is forecast that the number of over-65s across the world is expected

to almost double, from 506 million in 2008, to 1.3 billion, a leap from 7% of

the world’s population to 14%. Already, the number of people in the world

aged 65 and over, is increasing at an average of 870,000 each month. And

among old people, a large percent of them live alone at home according to

the research reported in [3]. So, caring for old people living alone is very

important and is a global challenge.

There are many issues related to the care of old people living alone, and

one of the most important is fall detection. According to [4], [5] and [6],

falls occur commonly in the old person community and can lead to serious

damage, such as broken bones, connective and soft tissue damage, even

death; as such the problem is responsible for considerable medical costs,

morbidity and mortality among the elderly population. As reported in [4],

in the United States, falls happen among the elderly with a median age of

79 and commonly result in fractures (primarily hip and femur), estimated

1
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at 155,000 to 200,000 each year. Cost estimates range from a present annual

amount of 750,000,000 to one billion US dollars, and a similar situation exists

in other developed countries. Unlike when monitoring young children, for

example in a nursery, it is unrealistic to assign nurses to take care of old

people in their home in a 24/7 manner. So, instead of human resources, new

technologies are required to detect falls, as part of the area of assisted living,

with the target of reducing the tremendous costs incurred by falls in a home

environment.

The governments in many developed countries have increased investment

to push development of fall detection technology. As it is reported in [7],

a conference held in Singapore, SiCEX 2008, promoted concepts, products

and technologies related to healthcare for elderly and patients, especially

fall detection. And in the USA, many research institutes, which include

interdisciplinary groups of faculty, staff, and students, are being built to in-

vestigate, develop, and evaluate technology to serve the needs of older adults

and others with physical and cognitive challenges. A representative one is

the center for eldercare and rehabilitation technology (CERT), Missouri,

where one important project is Passive Fall Detection and Gait Analysis for

Fall Risk Assessment, which investigates a non-intrusive method to detect

falls in a home environment [8].

1.2 The characteristic of fall activities

The definition of a fall and its characteristics is firstly summarized before

introducing different fall detection techniques. According to [9], a fall is

defined as “unintentionally coming to the ground or some lower level other

than as a consequence of sustaining a violent blow, loss of consciousness,

sudden onset of paralysis as in stroke”. Some other researchers have used a

broader definition to include those falls which occur as a result of dizziness
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and syncope as in [10]. Based on the particular definition, falls can be further

divided into different categories according to different criteria:

1) According to the orientation:

a) Frontal fall–a person falls towards his/her frontal direction, mostly

with his/her face impacting with the floor.

b) Backward fall–a person falls towards his/her backward direction, mostly

with the back of their head impacting with the floor.

c) Side fall–a person falls towards his/her side direction.

2) According to the amplitude:

a) Fast fall–a person falls fast, the amplitude of the body movement is

large, the duration is short (1-2s).

b) Slow fall–a person falls slowly, the amplitude of the body movement

is comparatively small and the duration is comparatively long.

3) According to the transition of postures:

a) Fall from standing – a person falls from an initial standing posture,

this type of fall occurs when an old person walks or stands still due to slipping

or unconsciousness. Both the head and center of gravity move towards one

direction and their height reduces (normally to the plane of the ground).

Typically, this type of fall belongs to the category of fast fall with large

movement amplitude.

b) Fall from sitting – a man falls from an initial sitting posture, this

type of fall occurs when an old person slips from a chair due to his/her

unconsciousness. Similarly, the head and center of gravity move towards one

direction with a reduced height; however, compared with fall from standing,

this type of fall has a smaller movement amplitude.

c) Fall from lying – a person falls from an initial lying posture, this type

of falls means that an old person rolls to the floor from the bed during sleep.

Initially, the person lies on the bed, when the fall happens, the body reduces

its height from the bed to the floor plane, with the final body position being
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near the bed. This type of falls usually happens when an old person sleeps

and his/her body rolls out of the bed while the person remains unconscious.

d) Fall from other postures – a person falls from an initial bending/crouching

or other postures; this type of fall happens for example when an old per-

son ties his/her shoe lace or does other activities and suddenly becomes

unconscious.

Compared with non-fall activities, fall is an unconscious activity or an

activity happening beyond an old person’s control (such as he/she slips and

falls). And normally, fall activity ends with a lying posture on the floor, as

presented in Figure 1.1. After introducing the definition and characteristics

of falls, the complete scheme of a fall detection system is presented in the

next section.

Figure 1.1. An old person falls ending with a lying posture on the
floor.

1.3 Scheme of a fall detection system

A complete fall detection system is proposed in Figure 1.2. Initially, sig-

nals are acquired from different sensors (including wearable sensors such

as accelerometers, cameras) and the acquired signals are then processed and
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corresponding information is extracted, which is then fed into a fall detection

system to detect falls with the aid of certain algorithms (typically analytical

algorithms or machine learning algorithms). When the fall activity of an

elderly person is detected, an alarm signal is generated and this signal will

be either sent to his/her family members, or some care suppliers (including

a hospital, or monitoring center) by modern communication technique (such

as the wire or wireless communication network presented in Figure 1.2). Af-

ter receiving the alarm signal, the care staff will swiftly come to assist the

elderly person.

Figure 1.2. The diagrammatic representation of a complete fall de-
tection system.

Some examples of the sensors and extracted information used to de-

tect falls are presented in Figure 1.3, either non-computer vision based sen-

sors (wearable device or ambience device) or computer vision based sensors

(cameras) are applied to capture certain types of signals, and corresponding

information (posture information, motion information, body shape change

information and so on) is then extracted from the acquired signals for fall

detection purpose.

This thesis focuses on fall detection in a room environment by using

computer vision techniques, thereby effective computer vision methods are

proposed for detecting fall activities by using one or multiple video cameras.

This approach has the major advantage that it avoids the requirement for

wearing a sensor which becomes difficult for elderly people, particularly those
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Figure 1.3. Classification of fall detection devices.

suffering from conditions such as dementia.

1.4 Aims and objectives

The aims of this thesis are to:

• Exploit state-of-the-art computer vision methods in the development

of fall detection systems for potential application in assisted living.

• Use head tracking and feature extraction to characterize the position

and pose of a human target.

• Employ support vector machine-based single and multi-class classifiers

to perform robust fall detection.

• Introduce appropriate rules to minimize false alarms in the detection

of falls.

• Evaluate methods on extensive datasets measured in laboratory and

real room environments.

At the end of the study the objectives are to have:

• Demonstrated the feasibility of fall detection with the proposed systems

using datasets with volunteers who attempt to mimic the movements of an
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elderly person in a room environment.

• Published the research finding in the leading international conferences

and journals.

1.5 Organization of this thesis

This thesis is organized as follows:

Chapter 2, reviews some state-of-the-art fall detection methods by using

either non-computer vision techniques or computer vision based techniques,

which provide the background for the later work within the thesis.

A simple and robust fall detection method by using three cues: head

velocity cue, shape cue and movement amplitude cue, which are extracted

from the recorded video information is proposed in Chapter 3. A particle fil-

tering technique is used for head tracking which exploits gradient and colour

information to obtain head velocity. The codebook background subtraction

method and moment-based ellipse fitting are applied to fit a human body

region to an ellipse; the change in the orientation angle and the ratio of the

two axes of an ellipse are used to reflect the variation of the human body

shape. Finally, the movement amplitude of a person estimated from MHI

is used for a further confirmation of a fall when both the head velocity and

shape change exceed certain threshold values. The experiments were done

in a simulated lab environment, six people were invited to attend the exper-

iment to simulate fall activities in different directions and a series of non-fall

activities, which were then used to test the proposed fall detection method.

In Chapter 4, a fall detection scheme is proposed based on 3D features

and a data fitting model scheme. Two cameras are initially calibrated by

the popular Tsai camera calibration method and a 3D person is then con-

structed from the obtained codebook background subtraction results from

two calibrated cameras. Some 3D features (including the 3D position, ve-
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locity and orientation information) corresponding to fall activities are ex-

tracted to build a model for distinguishing fall activities and non-fall activ-

ities. Three types of models–single Gaussian model, mixture of Gaussians

model and OCSVM model are compared in this chapter. The experiments

were performed in a simulated lab environment and eight people were in-

vited to participate in the experiment by simulating different fall activities

and non-fall activities, which were used to construct the training dataset for

model construction and testing dataset for performance evaluation by ROC

analysis.

Two effective fall detection methods for a real home environment are

presented in Chapter 5, which are respectively based on supervised and

unsupervised learning techniques. The codebook background subtraction

method is again used to extract the postures and certain post-processing

techniques are applied to reduce the background subtraction errors cased

by some environmental changes in a real home environment. Some features

(projection histogram and shape-structure features) which can describe pos-

tures in detail are extracted and used to construct the corresponding su-

pervised DAGSVM or unsupervised OCSVM classifiers. The classification

results for the DAGSVM or online OCSVM, together with some rules de-

termined from the fall characteristics, are used to distinguish fall activities

and non-fall activities. The experiments were done in a real-home environ-

ment, for the supervised learning based fall detection methods, 15 people

were invited to simulate different postures, which construct a dataset used

for training DAGSVM and a series of simulated fall and non-fall activities

by different people were recorded for testing purpose; for the unsupervised

learning based fall detection method, a man simulated the normal activities

like the elderly person, from which postures were extracted to build the cor-

responding OCSVM model to abnormal postures and normal postures, and

another set of activities (including both fall activities and non-fall activities)
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is simulated for evaluating the performance of the unsupervised learning

based method.

Chapter 6, concludes the thesis and includes suggestions for future work.



Chapter 2

LITERATURE REVIEW OF

FALL DETECTION

METHODS

2.1 Introduction

As mentioned in Chapter 1, efficient fall detection techniques are needed to

detect fall activities for an elderly person living alone at home and corre-

sponding alarm signals can be sent to the hospital or care monitoring centre

for attention. In this Chapter, different fall detection methods are summa-

rized in an organized way as shown in Figure 1.3. The fall detection methods

can be divided into two main divisions: non-computer vision based meth-

ods (ambience and wearable devices) and computer-vision based methods

(camera-based).

2.2 Non-computer vision based methods

There are many non-computer vision based methods for fall detection. For

these methods, different sensors (acceleration sensor, floor vibration sensor

and acoustic sensor) are used to capture the sound, vibration and human

body movement information to determine a fall.

In [11], Karantonis et al. proposed a simple real-time human movement

10
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classification system by using a single, waist-mounted triaxial accelerometer

unit, which is a small,wireless and low-power-consuming device. Accelera-

tion signals generated due to gravity and body motion were sampled and

processed by certain types of digital filters, such as median filter, third-

order elliptical low pass filter (LPF) and seventh-order elliptical high pass

filter (HPF). A hierarchical binary structure classifier was then applied on

the processed data for classifying different types of movements and detecting

falls based on a second-by-second scheme. The vast majority of operations

was performed online in an embedded low-power microcontroller, and when

a possible fall was detected, more data was sent to the receiver (local com-

puter in this paper) for further analysis. According to the experimental

results tested on six subjects, an accuracy of 95.6% was achieved for the de-

tection of possible falls. However, this system failed to distinguish falls with

fast sitting/lying due to the similar generated acceleration signals by these

activities. Instead of fixing the accelerometer at the waist position, Kangas

et al. [12] tested the performance of a triaxial accelerometer attached to the

subject’s body in different positions: head, waist and wrist to detect fall

activities. The acceleration information measured by the accelerometer in

different positions was compared with a proper threshold to determine a fall.

The results showed that fall detection using a triaxial accelerometer worn at

the waist or head is efficient, with a sensitivity of 97 − 98% and specificity

of 100% by using the simple threshold-based algorithm.

An acceleration sensor can be used with other devices to achieve a com-

prehensive fall detection system. As presented in [13], an acceleration sensor

was used as one important component for a multidevice personal intelligent

platform for fall detection. A multilayer process architecture was proposed in

this paper; the first layer is an intelligent accelerometer unit (IAU), which is

composed of several acceleration sensors and captures the acceleration data.

The second layer is a personal intelligent platform (PIP), which is in charge
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of managing the communications with peripherals (such as multi-person in-

telligent platform (MIP), which is an access point to the telehealthcare cen-

ter) and performing the fall detection algorithm based on the acceleration

data obtained from the first layer. The proposed fall detection algorithm is

based on the comparisons of the vertical angle variation and the linear AR-

Burg spectrum estimate calculated from the segmented acceleration data

with proper thresholds, which is a double-threshold analysis as mentioned

in the paper. Two examples of magnitude threshold and angle threshold were

presented to illustrate the fall detection algorithm; however, no detailed sta-

tistical analysis was presented in this work and some problems (such as the

choice of threshold) need to be solved for improving the performance of this

system. An extension of this work was proposed in [14], improvements have

been made in both hardware and algorithm aspects: a new small-sized and

low-power waterproof biocompatible accelerometer smart sensor (ACSS) was

applied and an additional user interface module was integrated in the second

layer (denoted as personal server (PSE) in this paper) to allow the elderly

person to access some of the most important data being processed; from

the algorithm aspect, an additional time analysis was used by convoluting

the obtained acceleration data segment with certain defined waveforms, to

detect some problematic fall events such as a knee fall. 332 samples of fall

and non-fall activities simulated by 31 young and healthy males and females

were tested, 100% sensitivity and 95.68% specificity were obtained and a

further reduction of false positives can be obtained by manually canceling

the fall alarm through the user interface. In [15], a fall detection system with

a distributed processing architecture that explicitly integrated capabilities

for continuous adaptation to the medium, the context and the user, was

presented. The accelerometer based smart sensor, referred to as the Sensor

of Movements (SoM), performed the first energy or impact event detection.

When an impact was detected, 4s of accelerometer data around the impact
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instant was transmitted as an activity pattern to an analysis and decision

module (ADM) for fall detection by using the double-threshold analysis pro-

posed in [13] and [14]. The most important contribution in this work, an

optimization module (OM), was designed to find the optimum operation pa-

rameters for the impact detection with the SoM and the fall detection with

the ADM. Personalization and adaptation can be achieved with the OM us-

ing the new obtained activity patterns for operation parameters updating or

updating the firmware implemented in the processing modules of the SoM.

A set of experiments developed by a cohort of young volunteers has demon-

strated the feasibility of the proposed fall detection system: with a 100%

success for impact detection (under the optimal parameter set obtained by

the OM), 100% sensitivity and 95.68% specificity rates for fall detection.

Besides the accelerometer, some other sensors such as acoustic and vibra-

tion sensors were also applied for the non-computer vision based methods.

Li et al. [16] developed an acoustic fall detection system, which automati-

cally detected a fall and reported it to the care giver. The study used an

8-microphone circular array which provided a better 3-D estimation of the

sound location by using the steered response power with phase transform

(SRP-PHAT) algorithm [17], and the sound signal was then enhanced by

a beamforming technique by the aid of the obtained location information.

Mel frequency cepstral coefficient (MFCC) features were extracted from the

enhanced sound signal and the k-th nearest neighbor method was applied to

discriminate a fall from a non-fall activity. A pilot experiment on a dataset

containing 30 fall activities and 120 non-fall activities was performed, all the

falls were detected and only 6 non-fall activities were taken as fall activi-

ties. An improvement of [16] was proposed in [18] by introducing the sound

source’s height information; if the sound source’s height is larger than a par-

ticular threshold, then it is unlikely to be a fall. In this way, the false alarms

due to background noise were reduced to a large extent. A larger dataset
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which contained 120 simulated fall sounds and 120 simulated non-fall sounds

by three stunt actors was used for evaluation. A good performance was ob-

tained with 100% fall detection rate and 3% false detection rate. In order

to solve the problem that it is not easy to obtain the realistic fall sound

for training, a one class classifier technique was proposed in [19] using only

the non-fall sound for classifier construction. The sound signals were ini-

tially preprocessed by a Wiener filter for noise removal and the extracted

MFCC features were then used to build the corresponding classifiers. In this

work, three types of one class classifier: nearest neighbor classifier, the one

class support vector machine classifier and mixture of Gaussians classifier

were tested. From the preliminary results from the experimental part, it

was found that the fall detection results by the three one class classifiers

were comparable with those by using the popular two-class support vector

machine from the ROC curve analysis.

Alwan et al. [20] proposed a design for a floor vibration-based fall de-

tection system that was completely passive and unobtrusive to the resident.

The system used a special piezoelectric sensor coupled to the floor surface by

means of mass and spring arrangement. Successful differentiation between

the vibration patterns of a human fall from other activities of daily living

and from the falls of other objects were achieved. Laboratory tests were

conducted using anthropomorphic dummies. The results showed 100% fall

detection rate with minimum potential for false alarms. The drawback of

this approach was the very limited range of the vibration sensor; i.e. only

20 feet. Moreover, the vibrations couldn’t be detected on all kinds of floor

materials.

The acoustic and floor vibration sensors can be used together for a robust

fall detection system. Zigel et al. in [21] proposed a fall detection system

based on floor vibration and sound sensing; temporal and spectral features

were extracted from the obtained vibration and sound signals, and a Bayes’
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classifier was then applied to classify fall and nonfall activities based on the

extracted features. In their work, a doll which mimicked a human was used

to simulate falls and their system detected such falls with a fall detection

rate of 97.5% and a false detection rate of 1.4%.

Although non-computer vision based methods may appear to be suitable

for wide application in the fall detection field, several problems do exist; they

are either inconvenient (elderly people have to wear acceleration sensors) or

easily affected by noise in the environment (acoustic sensors and floor vi-

bration sensors). For the non-computer vision based methods, additional

hardware (such as the data acquisition card) needs to be applied to convert

the obtained analogue signals into digital signals for the PCs to process,

which adds extra costs. In order to overcome these problems, computer vi-

sion based fall detection techniques are adopted. For the computer vision

based method, there is no need for the elderly people to wear certain equip-

ment and it is not affected by the background noises; besides, only cheap

USB cameras are needed for the computer vision based method so that the

constructed fall detection system is economical. Infringement of personal pri-

vacy is a concerning issue for computer vision based fall detection systems

and elderly people may worry that they are being ‘watched’ by cameras.

However, in most computer vision based fall detection systems, only the

alarm signal (sometimes with a short video clip as further confirmation of

whether an elderly person has fallen or not) will be sent to the caregivers

or family members when a fall is detected; additionally, the original video

recordings of an elderly person’s normal activities will not be stored, nor

transmitted.
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2.3 Computer vision based methods

In the last 10 years, there have been many advances in computer vision and

camera/video and image processing techniques that use real time movement

of the subject, which opens up a new branch of methods for fall detection.

Compared with non-computer vision based methods, computer vision based

methods have the following advantages: (1) they are non-intrusive, an elderly

person need not wear some special equipment such as an accelerometer; (2)

they are not easily affected by noise in the environment (suffered by floor

vibration and acoustic sensors based methods). Based on the analysis of

algorithms for fall detection, the computer vision based methods are divided

into two categories: analytical methods and machine learning methods.

2.3.1 Analytical methods

For analytical methods, certain types of video features are extracted and

these features are analyzed empirically to determine whether falls happen or

not. The most popular used analytical method is the threshold-based algo-

rithm; a threshold is set empirically and the extracted features are compared

with the threshold to determine whether a fall happens or not.

Miaou et al. [22] and [23] proposed a detection system consisting of an

omni-dimensional camera and a computer server, which had the advantage

of capturing 360 ◦ simultaneously in a single shot to remove blind spots. In

this approach, a clean background was first obtained. After that, the fore-

ground of interest was obtained by subtracting the background model from

the current image. After removing noise from the picture, a rectangle enclos-

ing the object was created. The height to width ratio of this rectangle was

compared with a particular threshold to detect falls. The threshold value in

this system was customizable depending on personal physique. The experi-

mental results showed a detection rate of 78% without personal information
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that increased to 90% with personal information.

Rougier et.al in [24] proposed a fall detection system based on the motion

history image and some changes in the shape of the person. The movement

amplitude was measured by the motion history image (MHI) obtained from

the frame differencing results and when a large amplitude movement was

detected, the shape change information (such as the changes of the aspect

ratio and the orientation angle of the fitted ellipse) was compared with proper

thresholds for fall detection. The threshold values were chosen empirically

and the experimental results showed a good rate of fall detection with the

sensitivity of 88%, and an acceptable rate of false detection with a speci-

ficity of 87.5% being obtained, assuming fixed threshold. In another of their

works [25], a fall detection system based on the analysis of the human shape

deformation during the video sequence was proposed. The elderly person’s

silhouette was tracked along the video sequence using shape context match-

ing, and the Procrustes shape analysis was then applied to estimate the

shape deformation value based on the shape context matching results. A

fall was confirmed if the shape deformation value was larger than a preset

threshold, and an inactivity period was then detected by analyzing the mean

and the standard deviation of the shape deformation value during a period

of time. ROC analysis was applied in the experiment and a sensitivity of

95.5% and a specificity of 96.4% were obtained under the optimal threshold

set.

Shoaib et al. [26] proposed a novel context based human fall detection

mechanism in a real home environment by using a threshold method. The

image was divided into small blocks, the centroid location of the head and

feet from each frame were used to learn a context model consisting of normal

head and floor blocks. For each floor block, an associated Gaussian distri-

bution representing a set of head blocks was also trained and that Gaussian

distribution was used to define the head mean location (the mean of the cen-
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troid positions of the head blocks) for that particular floor block. To detect

a fall, head and feet locations were initially obtained; the vertical distance

between the head location and the head mean location corresponding to the

floor block at the feet location was compared. If the distance was larger

than a particular threshold, then a fall was detected. As presented in the

conclusion, the method achieved a high fall recognition rate of about 96% in

an unconstrained real world home environment. The core of this system was

the location of the head’s position and it failed when the head was invisible

in the image.

Instead of 2D features, 3D features are extracted and compared with

proper threshold for fall detection in some works. Leone et al. [27] proposed

a similar approach that reconstructed 3D bodies of the subjects. In their

work, the mixture of Gaussian background subtraction method was used

initially with a depth-image to obtain the foreground region. The 3-D posi-

tion of the centroid of the foreground region was obtained by a special TOF

(time-of-flight) camera, which was self-calibrated initially by automatic floor

detection. The distance from the 3-D centroid position of the person and

the floor plane was compared with a threshold to detect a fall. Good fall de-

tection performance can be obtained as presented in the experimental part,

100% fall detection rate is obtained with a very small false detection rate of

2.7% under a height threshold of 0.4m.

Rougier [28] developed an approach to detect a fall using monocular head

tracking in real time. The head was tracked by a particle filter and its 3D

position was determined. The head’s 3D velocity was then calculated and

compared with a particular threshold to determine whether a fall happens

or not. The proposed fall detection system can achieve perfect fall detection

rate (100%); however, this system will easily mistake some non-fall activi-

ties (such as fast sitting) as fall activities. A. Nghiem in [29] also proposed a

fall detection algorithm by detecting the head position, but using a Kinect
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camera for depth video. Moving regions were initially detected using a back-

ground subtraction algorithm, in each detected moving region; pixels were

clustered according to their depth (provided by the Kinect camera), which is

able to separate moving objects even if they overlap each other. The possi-

ble head positions for each moving object was then determined and the head

position for the particular moving object which was classified as the person

was taken as the final head position. The fall detection algorithm was based

on comparing the speed of the head and the body centroid, as well as their

distances to the ground with proper thresholds. Experimental results on a

particular dataset showed that 29 out of 30 falls were detected and no false

detections were generated for the 31 non-fall activities.

Another threshold based method on 3D features was proposed in [30].

Calibrated cameras were used to reconstruct the three-dimensional shape of a

person. Fall events were detected by analyzing the volume distribution along

the vertical axis, and an alarm was triggered when the major part of this

distribution was abnormally near the floor over a predefined period of time,

which implied that a person had fallen on the floor. The experimental results

showed good performance of this system (achieving 99.7% fall detection rate

or better with four cameras or more) and a graphic processing unit (GPU)

was applied for efficient computation.

The performance of the threshold-based algorithm is strongly related

to the chosen thresholds. For obtaining a good fall detection performance,

proper thresholds need to be chosen for the fall detection systems; however,

in the real scenario, sometimes it is difficult to choose the proper thresholds

for different persons to be monitored. In order to solve this problem, machine

leaning algorithms can be applied.
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2.3.2 Machine learning algorithms

Machine learning algorithms, as proposed in [31], have been used in a wide

range of areas and many researchers have applied these machine learning

algorithms for fall detection application. For machine learning algorithms,

different types of video features are extracted from video signals, and these

features are applied to train either classifiers by supervised methods (such

as k-nearest neighbor, neural network, support vector machine and Hidden

Markov Model (HMM)) to classify different types of postures or activities

for fall detection, or a general normal model by unsupervised methods (such

as single Gaussian, mixtures of Gaussians, Parzen window and one class

support vector machine) to distinguish normal activities and falls.

Supervised methods

For the supervised methods based fall detection system, some video features

are extracted from postures or short video sequences. and the extracted

features are then used to construct a particular supervised classifier for dis-

tinguishing different postures or activities to detect falls.

Posture recognition based fall detection methods are proposed in [32], [33]

and [34]. In [32] and [34], projection histogram features were extracted

from the segmented human body region from the background subtraction

method. And different types of supervised classifiers such as a neural fuzzy

network in [32] and posture probabilistic template in [34] were constructed

from the projection histogram features for classifying different postures. And

if the detected posture changed from ‘stand’ to ‘lie’ in a short time [32] or

the ‘lie’ posture stays for a long time [34], fall activities are reported. A

posture recognition rate of 97.8% was achieved in [32] and four sequences

were shown to illustrate falls can be successfully detected by the posture

recognition results combined with the rule set in this work (a fall is confirmed

when the posture changed from ‘stand’ to ‘lie’ in a short time), and a fairly
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robust posture recognition result (about 90% for three different datasets)

was reported in [34].

Similar projection histogram features were also used in [33] with an im-

provement by using a statistical scheme to reduce the effect of human body

upper limb activities, and a more common k-nearest neighbour classifier was

applied for posture classification purpose. A fall activity was then confirmed

if the time difference between a ‘stand’ posture and ‘lie’ posture is less than

a threshold; which is determined by statistical hypothesis testing for distin-

guishing a fall event from lying down. In the experiment, it was presented

that the obtained threshold for fall confirmation is 0.4s and a correct de-

tection rate of 84.44% is obtained on fall detection and lying down event

detection according to their experimental results.

Projection histogram features can be combined with other features to

achieve a more robust system for posture recognition and fall detection.

In [35], projection histogram features combined with ellipse features were

extracted for posture classification, the features were used to train a directed

acyclic graph support vector machine (DAGSVM) classifier and four different

types of postures (stand, bend, sit and lie) were classified, the classification

results together with the floor region detected during a floor detection phase

were applied to detect falls. The experimental results showed that the pos-

ture recognition rate of combining ellipse features and projection histogram

features is better than that of using either separately, and the final fall de-

tection system was tested on a 15 person dataset, a high fall detection rate

(97.08%) and very low false detection rate (0.8%) were achieved.

Besides posture features, some features can also be extracted from short

video sequences, Hazelhoff et al. [36] adopted a system with two uncalibrated

cameras. The human body regions were firstly extracted from both cameras;

then two features, the direction of the main axis of the body and the ratio of

the variances in the x and y directions were obtained by principle component



Section 2.3. Computer vision based methods 22

analysis (PCA); a Gaussian multi-frame classifier was used to recognize fall

activities based on the obtained features and the robustness of the system

was increased by a head-tracking module, which can reject false positives.

The performance of this system was evaluated in different situations (in-

cluding some challenging situations such as a person carrying objects and

occlusions) and more than 85% fall detection rate can be achieved in real-

time.

In [37], Ni et al. proposed a computer vision based fall prevention sys-

tem for hospital ward application. A Microsoft sensor which can obtain the

colour and depth information was applied; motion features and shape fea-

tures, such as motion history image (MHI), histogram of oriented gradients

(HOG) and histogram of optic flows (HOF) from both colour and depth im-

age sequences were extracted, which were then fused via a multiple kernel

learning framework for training the fall event detector. Experimental re-

sults demonstrated the high accuracy that can be achieved by the proposed

system with an activity recognition accuracy of 98.76%.

Mirnahboub et al. [38] proposed a view-invariant fall detection system

by using a single camera. The silhouette area extracted from background

subtraction combined with inclination angle were extracted from a video se-

quence as features. And these were then fed into the popularly-used support

vector machine (SVM) for classifying fall activities and non-fall activities.

Different kernels were tested in this work and the experimental results on a

public dataset showed that the polynomial kernel of 2nd degree can achieve

the best performance with 100% fall detection rate and less than 1% of

mistaking non-fall activities as falls.

The extracted features from short video sequences can be used to build

an HMM for activity recognition to detect fall activities. For [39], a bound-

ing box and motion information were extracted from consecutive silhouettes

as features. These features were then used to train HMMs for classifying fall
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and non-fall activities. Preliminary results were presented by constructing

three HMMs for walking, kneeling and falling activities from several training

sequences and the most likely state sequence for a particular test sequence

can be successfully estimated by the corresponding HMM. In [40] a method

was presented based on short video sequence activity classification. In this

work, a novel method was proposed to extract a person’s three-dimensional

orientation information from multiple uncalibrated cameras. From extracted

orientation information from a short video sequence, an improved version of

HMM—-layered hidden Markov model (LHMM) was trained and used to de-

tect falls. The experimental results on falling and walking sequences showed

that a fall detection rate of 98% can be achieved by using two cameras, with

no walking activities mistaken as falls. Htike et al. [41] presented a vision-

based framework that could detect falls using a single camera, irrespective

of the viewpoint of the camera with respect to the subjects. The proposed

system made use of invariant pose models which performed view-invariant

human pose recognition by using the chord distribution of the resampled

points along the contour of the extracted foreground region. Based on the

chord distribution information, inference with an expectation-maximization

algorithm was performed on an ensemble of pose models and the probability

value that the given frame contained a corresponding pose was then calcu-

lated. The system finally detected falls by analyzing a sequence of frames

using a fuzzy hidden Markov model (FHMM) based on the estimated pose

probability values for every frame and this system achieved a 94.1% suc-

cess rate when it was tested on a challenging multiple view dataset. A

multi-camera based HMM approach was proposed in [42], wherein projec-

tion histogram features were extracted from every single frame for posture

recognition by a posture probabilistic template, the results were then fed into

an HMM model which exploited the temporal coherence of the postures for

detecting falls for an acquired sequence. Multiple calibrated cameras were
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used to transfer the appearance information to solve the initial occlusion

problem when the person passes to another monitored room.

Besides the features extracted from postures or short video sequences,

some other features can also be applied to construct the corresponding su-

pervised classifiers. In [43], Mihailidis et al. used a single camera to classify

fall and non-fall activities. Carefully engineered features, such as silhou-

ette features, lighting features and flow features were extracted to allow the

system to be robust to lighting, environment and the presence of multiple

moving objects. Three pattern recognition methods were compared (logistic

regression, neural network and support vector machine) and the neural net-

work achieved the best performance with a fall detection rate of 92% and

a false detection rate of 5%. Foroughi et al. [44] proposed a new method

for fall detection using a multi-class support vector machine (MCSVM). A

combination of best-fit approximated ellipse around the human body, pro-

jection histograms of the segmented silhouette and temporal changes of head

pose was extracted as features and the extracted feature vectors were fed to

an MCSVM for precise classification of motions and determination of fall

events. A reliability rate of 88.08% was achieved in the experimentation.

3D features were applied in [39] by constructing a 3D voxel person from

multiple calibrated cameras. Based on the extracted 3D features (including

the 3D centroid and orientation information), Anderson proposed a fuzzy

logic based linguistic summarization for fall detection. A hierarchy of fuzzy

logic was used, where the output from each level was summarized and fed

into the next level for inference. Corresponding fuzzy rules were designed

under the supervision of nurses to ensure that they reflect the manner in

which elderly people perform their activities. The proposed framework was

extremely flexible and rules can be modified, added, or removed to allow

for per-resident customization. This system was tested on a dataset which

contained 14 fall activities and 32 non-fall activities, all the fall activities



Section 2.3. Computer vision based methods 25

were correctly detected and only two non-fall activities were mistaken as

fall activities (100% fall detection rate and 6% false detection rate), which

showed an acceptable level of performance.

The main problem for supervised fall detection methods is that they

do not provide a person-specific solution for individuals. A large dataset

needs to be constructed initially (which should contain the data collected

from many people in different views) for a supervised fall detection system,

if a person does not fit the dataset very well (such as if he/she is obese),

a good performance can definitely not be obtained for this specific person.

Moreover, supervised fall detection methods will be affected by occlusions

which happen in a real home environment. In order to solve these problems,

unsupervised methods can be exploited.

Unsupervised methods

As described in [31], an unsupervised learning method solves the problem of

finding the hidden structure in unlabeled data or the normal model which

unlabeled data follow. Some data (such as features extracted from pos-

tures or short video clips) can be collected from a particular elderly person’s

normal activity video stream and these data can be used to construct the

normal activity model by some unsupervised learning methods, which can

then be used to distinguish falls and normal activities. The representative

unsupervised fall detection methods include [45] and [46]. In [45], a single

camera was used for video recording and the particle filter technique was

applied to track the human body with an ellipse model. From the tracking

results, they obtained the position information and for normal activities, this

was used to find the “usual activity region” by using an expectation max-

imization (EM) method. A fall was detected when a person’s position was

outside the “usual activity region” for a certain time longer than the preset

time threshold. In [46], a shape matching technique was used to track the
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person’s silhouette through the video sequence. The shape deformation was

then calculated from shape-context information extracted from the obtained

silhouettes. The calculated shape deformation along with the inactivity time

of an elderly person were used as features to construct a Gaussian mixture

model to describe a person’s normal activity, which was then used to detect

falls and a multiple cameras scheme was applied to guarantee good perfor-

mance. As presented in the experimental results, a perfect fall detection

performance 100% fall detection rate and 0% false detection rate can be

obtained by using four cameras together.

For the unsupervised methods, a person-specific solution can be obtained

and there is no need to obtain a large dataset collected from different persons

for training a classifier. However, a particular time period is needed to collect

sufficient video features from that particular person for model construction,

during which the fall detection can not be operated.

In summary, a taxonomy of non-computer vision based methods and

computer vision based methods is given in Table 2.1.

Table 2.1. Comparison of non-computer vision based methods and
computer vision based methods for fall detection

Methods
description

Equipment Merits Demerits

Non-computer
vision based
methods

User-worn
accelerometer
devices, sound
or vibration
sensors

No infringement of
personal privacy

High rate of false
alarm;
inconvenient to
wear, easily
affected by
background noise

Computer
vision based
methods

Single or
multiple digital
cameras

Cheap, convenient
to use and high
accuracy

Some infringement
of personal
privacy, and the
performance is
strongly linked
with illumination
level
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Summary

In this chapter, some popular fall detection methods based on both non-

computer vision techniques and the computer vision technique were re-

viewed. For the non-computer vision techniques, some non-computer vi-

sion sensors (acceleration sensor, floor vibration sensor and acoustic sensor)

were used to capture the sound, vibration and human body movement in-

formation for fall detection. The non-computer vision based methods are

used widely in the fall detection field; however, they are either inconvenient

to use or easily affected by noise in the environment. For the computer

vision based methods, one or multiple cameras are applied to extract the

video information. The extracted video information is either compared with

certain thresholds, or used to construct supervised classifiers or an unsu-

pervised model for fall detection. Compared with the non-computer vision

based methods, computer vision based methods are not affected by the back-

ground noise and an elderly person need not wear any equipment. Although

infringement of personal privacy is a concerning issue for computer vision

based fall detection systems, this can be solved by sending only the alarm

signal to the caregivers or family members when a fall is detected, without

recording or transmitting the original video recordings of an elderly person’s

normal activities.

For the current computer-vision based techniques, four main problems

exist:

1. For most of the threshold-based methods, only one particular feature

(such as the ratio between the fitted rectangle or 3D head velocity) is used

for comparison with the threshold, which is not enough and may generate

high false detection rate. For a robust fall detection system, different types

of features (cues) should be extracted, and a decision should then be made

by comparing different features with proper thresholds in an organized way.

2. Most of the 2D features used in the fall detection works are not
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invariant to directions; either direction invariant 3D features need to be used

or 2D features captured from different directions need to be used to build a

supervised classifier or unsupervised model which is invariant to directions.

3. For the posture classification methods for fall detection, an improved

classifier should be applied for achieving a better posture classification per-

formance. Besides, the current posture classification based methods are not

easy to distinguish fall activities from fast lying activities. Additional infor-

mation, such as floor region information is needed to distinguish these two

activities.

4. For the unsupervised fall detection methods in either [45] or [46], not

enough information is exploited (only the position information is used in [45]

and two-dimensional feature vectors are applied to train the GMM model

in [46]) thus different types of activities can not be distinguished efficiently.

More information is needed either from postures or video sequences for a

robust model construction. Additionally, certain types of rules can also be

used together with the constructed model to achieve a better fall detection

performance.

Different techniques are proposed in the next three contribution chapters

to solve these four problems to achieve more robust fall detection methods

for better detection performance.



Chapter 3

FALL DETECTION BY USING

THREE CUES: HEAD

VELOCITY, SHAPE CHANGE

AND MOVEMENT

AMPLITUDE

3.1 Introduction

To cope with the problem that only one particular cue is applied in most

of the threshold-based methods for fall detection, in this chapter, three cues

obtained from head velocity, shape and movement information are used for

achieving a simple and robust fall detection system. The head is tracked

by a particle filter using gradient and colour information; the velocity of

the head is then estimated from the head tracking results. A codebook

background subtraction method is applied to extract the moving object and

moment-based ellipse fitting is applied to fit the human body region with

an ellipse. Changes of the orientation angle and ratio between the two axes

of the ellipse are used to reflect the shape change. A large head velocity

and a large shape change indicate a possible fall and finally, the movement

29
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amplitude of a person is estimated for a further confirmation of a fall activity.

Experiments are presented to show that by properly combining these three

cues: head velocity, shape change and movement amplitude, a simple but

robust fall detection system can be achieved which can distinguish falls from

different types of non-fall activities.

3.2 Particle filter for head tracking

In this section, the particle filtering scheme for head tracking is introduced,

which is exploited to estimate the head velocity for detecting falls. The

aim of the particle filter is to estimate the assembled state vectors Xt =

{xj , j = 0, ...t} at a time instance t based on the observations Zt = {zj , j =

0, ...t} using the sampling-based method [47]; the assembled state vectors

Xt and observations Zt have different meanings for different applications.

The particle filter is developed in the general sense then specialized to head

tracking.

3.2.1 Minimum Mean Square Error (MMSE) estimator

Assuming at a time instance t, a number of observations Zt = {zj , j = 0, ...t}

is available, where zi is an observation vector at the discrete time instance

i, and the target is to estimate the assembled state vectors Xt based on

observations Zt. One way is to minimize the Bayesian mean square error

defined by:

Bmse(X̂t) = Ep(Xt,Zt)[∥ Xt − X̂t ∥2]

=

∫ ∫
∥ Xt − X̂t ∥2 p(Xt,Zt)dXtdZt (3.2.1)

where X̂t is the estimate of Xt, and the multi-dimensional definite integrals

in (3.2.1) are defined between −∞ and +∞ but the limits are not shown in

the development.
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By conditional probability:

p(Xt,Zt) = p(Zt)p(Xt|Zt) (3.2.2)

and equation (3.2.1) can be rewritten as:

Bmse(X̂t) =

∫
[

∫
∥ Xt − X̂t ∥2 p(Xt|Zt)dXt]p(Zt)dZt (3.2.3)

In order to minimize equation (3.2.3) with respect to X̂t, the term in the

middle bracket of equation (3.2.3) is differentiated with respect to X̂t to

obtain:

∂

∂X̂t

∫
∥ Xt − X̂t ∥2 p(Xt|Zt)dXt =

∫
∂

∂X̂t

∥ Xt − X̂t ∥2 p(Xt|Zt)dXt

=

∫
−2(Xt − X̂t)p(Xt|Zt)dXt (3.2.4)

= −2
∫

Xtp(Xt|Zt)dXt + 2X̂t

∫
p(Xt|Zt)dXt

which when equated to zero results in:

X̂t =

∫
Xtp(Xt|Zt)dXt

= E(Xt|Zt) (3.2.5)

E(Xt|Zt) is called the MMSE estimator of Xt based on the observations

Zt. By letting X̂t = E(Xt|Zt), the Bayesian mean square error is thereby

minimized. Evaluation of the integral for calculating E(Xt|Zt) is considered

next.
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3.2.2 Sequential Importance Sampling Particle Filtering

Importance Sampling for Monte Carlo integration

From equation (3.2.5), it is clear the integration operation is required to

obtain the MMSE. One simple and efficient way to calculate this integration

is to use the Monte Carlo method for numerical integration [47]. Assuming

N samples {Xi
t|i = 1, ..., N} are drawn from the distribution p(Xt|Zt), where

N is large enough, the distribution can be approximated as:

p(Xt|Zt) ≈
1

N

N∑
i=1

δ(Xt −Xi
t) (3.2.6)

Then the MMSE estimator can be approximated as:

E(Xt|Zt) ≈
∫

Xt(
1

N

N∑
i=1

δ(Xt −Xi
t))dXt

=
1

N

N∑
i=1

Xi
t (3.2.7)

However, in most cases p(Xt|Zt) is unknown so that it is not possible to

sample directly from this posterior distribution. Instead, a technique called

importance sampling [47] is applied. Instead of directly sampling on the

distribution p(Xt|Zt), another distribution q(Xt|Zt) can be used which is

comparatively easy to obtain, then equation (3.2.5) can be rewritten by

introducing q(Xt|Zt) as:

E(Xt|Zt) =

∫
Xtp(Xt|Zt)dXt

=

∫
Xt

p(Xt|Zt)
q(Xt|Zt)

q(Xt|Zt)dXt

(3.2.8)

A sufficient number of N samples {Xi
t|i = 1, ..., N} is then drawn from

q(Xt|Zt), so that equation (3.2.8) can be written as:
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E(Xt|Zt) =

∫
Xt

p(Xt|Zt)
q(Xt|Zt)

q(Xt|Zt)dXt

≈
∫

Xt
p(Xt|Zt)
q(Xt|Zt)

(
1

N

N∑
i=1

δ(Xt −Xi
t))dXt

=
1

N

N∑
i=1

Xi
t

p(Xi
t|Zt)

q(Xi
t|Zt)

(3.2.9)

As in [47], wit is used to replace
p(Xi

t|Zt)
q(Xi

t|Zt)
, and equation (3.2.9) becomes:

E(Xt|Zt) =
1

N

N∑
i=1

Xi
tw

i
t (3.2.10)

Sequential Importance Sampling and Weight Calculation

From equation (3.2.10), it is evident that in order to find the MMSE estimate

of Xt, the samples {Xi
t, i = 1, ..., N} and the weights {wit, i = 1, ..., N} are

required. Assuming at time instance t− 1, the values of {Xi
t−1, i = 1, ..., N}

and {wit−1, i = 1, ..., N} are known and by using conditional probability, the

following equation holds for the distribution of q(Xt|Zt):

q(Xt|Zt) = q(xt|Xt−1,Zt)q(Xt−1|Zt−1) (3.2.11)

so that samples Xi
t ∼ q(Xt|Zt) can be obtained by augmenting each of the

samples {Xi
t−1, i = 1, ..., N} (which are already obtained) with the new state

vector xit ∼ q(xt|Xi
t−1,Zt). In this way, the samples {Xi

t, i = 1, ..., N} are

obtained.
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For calculating {wit, i = 1, ..., N}, it is observed that:

p(Xt|Zt) =
p(zt|Xt,Zt−1)p(Xt|Zt−1)

p(zt|Zt−1)

=
p(zt|Xt,Zt−1)p(xt|Xt−1,Zt−1)p(Xt−1|Zt−1)

p(zt|Zt−1)

=
p(zt|xt)p(xt|xt−1)

p(zt|Zt−1)
p(Xt−1|Zt−1)

∝ p(zt|xt)p(xt|xt−1)p(Xt−1|Zt−1) (3.2.12)

in which the first-order Markov assumption: p(xt|Xt−1,Zt−1) = p(xt|xt−1)

and the assumption that zt only relies on xt :p(zt|Xt,Zt−1) = p(zt|xt) are

used.

From equations (3.2.11) and (3.2.12), the following can be obtained:

wit =
p(Xi

t|Zt)
q(Xi

t|Zt)

∝
p(zt|xit)p(xit|xit−1)p(X

i
t−1|Zt−1)

q(xit|Xi
t−1,Zt)q(X

i
t−1|Zt−1)

= wit−1

p(zt|xit)p(xit|xit−1)

q(xit|xit−1, zt)
(3.2.13)

For the commonly used SIR (sampling importance resampling) particle filter

[47], the term q(xt|xt−1, zt) is chosen as the transitional prior: p(xt|xt−1),

so the weight for the SIR particle filter is calculated as:

wit = wit−1p(zt|xit) (3.2.14)

After obtaining {wit, i = 1, ..., N}, a normalized weights set can be obtained

by:

w̃it =
wit∑N
j=1w

i
t

, i = 1, ...N (3.2.15)

and the normalized weights set {w̃it, i = 1, ..., N} is then used to replace the
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original weights set {wit, i = 1, ..., N}:

wit = w̃it, i = 1, ...N (3.2.16)

in order to make the integration of p(Xt|Zt) ≈
∑N

i=1w
i
tδ(Xt−Xi

t) be unity,

i.e. exploiting
∑N

i=1w
i
t = 1.

Resampling

After the sequential importance sampling and weight calculation at time t,

a new set of samples with corresponding weights: {xit, wit, i = 1, ..., N} is

obtained. Sometimes, the variance of the estimated weights will be high and

this will lead to the degeneracy problem [48], which means that all but one

particle will have negligible normalized weights and a large computational

effort is devoted to updating particles whose contribution to the approxima-

tion of the MMSE estimator E(Xt|Zt) is almost zero. In this case, a resam-

pling scheme is applied to eliminate samples with low importance weights

and multiple samples with high importance weights.

As in [48], a measurement of degeneracy is introduced as:

N̂eff =
1∑N

i=1(w
i
t)
2

(3.2.17)

where 1 ≤ N̂eff ≤ N ; if the weights are uniform then N̂eff = N and if all

but one particle have negligible normalized weights (assuming zeros) then

N̂eff = 1. So, small N̂eff indicates a severe degeneracy. An approximate

threshold is set and if N̂eff falls below this threshold, resampling is applied.

Resampling generates a new set of samples {xit, i = 1, ..., N} by sampling

N times from an approximate representation of p(xt|Zt) described as:

p(xt|Zt) ≈
N∑
i=1

witδ(xt − xit) (3.2.18)
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and each of the obtained sample is assigned to a new weight 1/N, the details

of how to sample from the distribution of p(xt|Zt) are shown in [47]. By using

resampling, the degeneracy problem is avoided, each of the samples will have

the same non-zero weight 1/N to guarantee the non-negligible contribution

to the MMSE estimators for the current and ensuing time instances.

The Framework of the Sequential Importance Sampling Particle Filter

From the above discussions, the framework of a SIR particle filter is listed

in Table 3.1, from which it can be seen that the new samples {xit|i = 1 : N}

and weights {wit|i = 1 : N} can be obtained from the previous samples

{Xi
t−1|i = 1 : N} and weights {wit−1|i = 1 : N}:

Table 3.1. The procedure of a SIR particle filter.

Given {Xi
t−1|i = 1 : N} and {wi

t−1|i = 1 : N}:
I. Obtain the new samples xit from the proposal distribution
p(xt|xit−1) for every i

II. Calculate the weights wi
t from wi

t = wi
t−1p(zt|xit)

III. Normalize the wi
t to make

∑N
i=1w

i
t = 1

IV. If N̂eff is less than a threshold, a resampling procedure is
operated.

Finally, the new samples {xit|i = 1 : N} and new weights
{wi

t|i = 1 : N} are obtained at time t.

The MMSE estimation of xt (state vector at time t) can then be calcu-

lated by:

E(xt|Zt) =
1

N

N∑
i=1

xitw
i
t (3.2.19)

using the weights and samples obtained at time t as shown in Table 3.1.
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3.2.3 Particle filter for head tracking

From Table 3.1, it can be seen that to estimate the new weights and samples,

two types of distribution are needed, they are p(xt|xt−1) and p(zt|xt).

For the head tracking problem, the head is modeled as an ellipse for

simplicity (as shown in [49], [50] and [51]) and the state vector xt can be

represented as a four-by-one vector xt = [xt, yt, lt, θt]
T , where (xt, yt) is the

center of the ellipse representing a head at time t; lt is the length of the

minor semi-axis at time t and θt is the orientation angle of the ellipse at

time t.

In this work, the relationship between xt and xt−1 is modeled as a first-

order random walk model with additive Gaussian noise [49], which has the

following form:

xt = xt−1 +A · nt (3.2.20)

where A is a four-by-four diagonal matrix and nt is a four-by-one Gaussian

noise vector, each component of nt has zero mean and unity variance. So,

the distribution of p(xt|xt−1) is in a Gaussian form, with mean xt−1 and its

covariance matrix is determined by A.

For calculating p(zt|xt), two types of measurements are needed, they are

the gradient measurement and colour measurement. And p(zt|xt) can be

represented as:

p(zt|xt) = p(zt,gradient|xt)p(zt,colour|xt) (3.2.21)

where p(zt,gradient|xt) and p(zt,colour|xt) are the probabilities obtained from

the gradient and colour measurements.

Gradient Measurement

For a particular xit, the summation of the gradient magnitude along the

contour of the ellipse that xit corresponds to can be estimated. A higher
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summation value means that xit is more likely to represent the head region,

considering that the contrast between the head’s edge and background is

always large (as shown in 3.1 (b)).

(a) (b)

(c) (d)

Figure 3.1. Illustration of the gradient magnitude. (a) is the original
image; (b) shows the gradient magnitude image, the brighter pixels have
larger gradient magnitude values; (c) shows that the head is modeled
by a blue ellipse and (d) shows the normal lines (in red) along the
ellipse for more accurate estimation of the summation of the gradient
magnitude along the contour of the ellipse.

The normalized summation of the gradient magnitude around the ellipse

boundary is calculated in the following way [51]:

ψg(x
i
t) =

1

N

N∑
i=1

g(xi, yi) (3.2.22)

where g(xi, yi) is the intensity gradient magnitude of pixel (xi, yi) located at

the boundary of the ellipse and N is the number of pixels on the perimeter

of the ellipse.
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A simple operator is used to compute the gradient in the x-direction and

y-direction gradients for pixel (xn, yn):

gx(xn, yn) = I(xn − 2, yn) + 2I(xn − 1, yn)

−2I(xn + 1, yn)− I(xn + 1, yn)

gy(xn, yn) = I(xn, yn − 2) + 2I(xn, yn − 1)

−2I(xn, yn + 1)− I(xn, yn + 1) (3.2.23)

Finally, g(xn, yn) can be calculated as

g(xn, yn) =
√
g2x(xn, yn) + g2y(xn, yn) (3.2.24)

However, it should be noticed that an ellipse does not accurately model

the contour of the head. Therefore, given the inaccurate modeling, a more

robust way to calculate the intensity gradient magnitude is proposed as:

g(xi, yi) = max(xn,yn)∈Ln{g(xn, yn)}, where
√

(xn − xi)2 + (yn − yi)2 ≤ c

(3.2.25)

where Ln represents the normal line along the point (xi, yi) (as shown in Fig-

ure 3.1 (d)), c is a small constant value and the condition
√

(xn − xi)2 + (yn − yi)2 ≤

c implies (xn, yn) is in the nearby region of (xi, yi).

The normalized summation of the gradient magnitude ψg(x
i
t) corre-

sponding to the sample xit is taken as the sample’s gradient measurement

zt,gradient and according to [49], 1
ψg(xit)

is substituted into a Gaussian distri-

bution function to estimate p(zt,gradient|xit) as:

p(zt,gradient|xit) = p(ψg(x
i
t)|xit)

=
1√
2πσg

e
−

(
1

ψg(x
i
t)

)2

2σ2g (3.2.26)
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A large ψg(x
i
t) value means a high p(zt,gradient|xit), which indicates a

high probability that the sample xit corresponds to the head in terms of the

gradient aspect.

Colour Measurement

For calculating the colour measurement p(zt,colour|xt), a histogram-

based colour model is adopted. Different from the model introduced in [52],

whose colour distribution is represented by a colour histogram calculated

in the RGB space, a normalized r-g-b colour space is applied to avoid the

change of illumination [53]. The colour model is constructed from some

reference image patches (in this work, the captured patches are the head

region captured from different views, as shown in Figure 3.2).

For a particular image patch R centered at o, its colour histogram, de-

noted by p, is calculated as [52]:

p(u) = f
∑
xi∈R

k(
∥o− xi∥

a
)δ[h(xi)− u] (3.2.27)

where xi is the position of the i-th pixel in R, u is the bin index, δ is the

Kronecker delta function and h(xi) gives the index of the bin to which the

colour of the pixel at xi belongs, f is the normalization factor, o is the center

of the image patch, a is the size of the image patch R and k(·) is defined by:

k(r) =

 1− r2 r < 1

0 otherwise
(3.2.28)

which gives higher weights to pixels closer to the region center o (r represents

the variable of the function k(·)). Figure (3.2) shows the colour histogram

of the head images with different views.

Assuming N reference patches are available (in this work, the head’s

image is captured from eight different directions and N is equal to eight), for
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Figure 3.2. The captured images of heads from different views and
their corresponding histograms.

each reference patch the colour histogram is obtained according to equation

(3.2.27) and the colour histogram set {pj , j = 1, ..., N} is obtained. For

a particular sample xit, the colour histogram corresponding to the region

that sample represents is also calculated, and denoted as qxit . The largest

Bhattacharyya coefficient (which is used to measure the similarity between

two histograms) between qxit and the colour histogram set is calculated as:

ρ = maxj{
m∑
u=1

√
p
(u)
j q

(u)

xit
} (3.2.29)
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where u is the bin index of a colour histogram and j is from 1 to N.

The calculated Bhattacharyya coefficient ρ is taken as the colour mea-

surement zt,colour for the sample xit and similar to the case of the gradient

model, the p(zt,colour|xit) is also assumed to be a Gaussian form by substi-

tuting (1− ρ) into a Gaussian distribution function to obtain:

p(zt,colour|xit) = p(ρ|xit)

=
1√
2πσc

e
− (1−ρ)2

2σ2c (3.2.30)

From this equation, it can be seen that a large value ρ means a high

p(zt,colour|xit), which indicates a higher probability that the sample xit cor-

responds to the head in terms of the colour aspect.

Importantly, the reference patches need to be updated to cope with the

changes in the head region image. An update criterion with a properly

chosen threshold value is:

p(zt,colour|x̂t) > threshold (3.2.31)

where x̂t is the MMSE estimate of xt and this criterion can prevent the

model updating when the object is out of track.

If the criterion is met, the colour histogram of the reference image patch

whose Bhattacharyya coefficient with qx̂t (which represents the colour his-

togram for the region represented by the MMSE estimator x̂t) is largest, is

updated as: pimaxt = (1 − α)qx̂t + αpimaxt−1 , where imax is the index of the

reference patch whose Bhattacharyya coefficient with qx̂t is the largest.

After obtaining p(zt,gradient|xit) and p(zt,colour|xit), then p(zt|xit) can be

obtained according to equation (3.2.21), together with new samples obtained

from equation (3.2.20), Table 3.1 is thereby finalized for the head tracking

problem and equation (3.2.19) is then used to estimate the MMSE estimation
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of xt, including the positions, axis length and orientation angle of the ellipse

model representing a head.

The head velocity can then be obtained from the head tracking results,

assuming for the frame instances t− 1 and t, the head tracking results x̂t =

[x̂t, ŷt, l̂t, θ̂t]
T and x̂t−1 = [x̂t−1, ŷt−1, l̂t−1, θ̂t−1]

T are obtained and the head

velocity vt can then be estimated as:

vt =
√

(x̂t − x̂t−1)2 + (ŷt − ŷt−1)2 (3.2.32)

Normally, the head velocity of an elderly person is low (considering the

movement of an elderly person is usually slow) and a large value of vt is

usually obtained for some abnormal activities such as falling, in this way vt

can be taken as a cue to detect falls and a large vt indicates a possible fall

activity.

3.3 Ellipse Fitting for Shape Change Analysis

Although the head velocity discussed in Section 3.2 can be used to distinguish

fall and non-fall activities; using only the head velocity will cause many false

detections (such as fast walking or sudden sitting will be mistaken as a fall).

In order to solve this problem, shape change is analyzed by ellipse fitting to

provide other cues for a more accurate fall detection system.

3.3.1 Codebook Background Subtraction

The first step for ellipse fitting is to extract the object from the background.

In visual surveillance, a common approach for discriminating moving objects

from the background is detection by background subtraction. Currently,

there are many background subtraction algorithms, which include the single-

mode model background subtraction method [54] and [55], the mixture of

Gaussians (MoG) background subtraction method [56], the non-parametric
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density estimation based method [57] and the codebook background sub-

traction method [58]. Here, the codebook method is applied because of its

advantages. There is no parametric assumption on the codebook model and

it shows the following merits as proposed in [58]: (1) resistance to artifacts

of acquisition, digitization and compression, (2) capability of coping with

illumination changes, (3) adaptive and compressed background models that

can capture structural background motion over a long period of time under

limited memory, (4) unconstrained training that allows moving foreground

objects in the scene during the initial training period.

As for the single-mode model background subtraction method in [54] and

[55] and the mixture of Gaussians (MoG) background subtraction method

in [56], the codebook background subtraction algorithm is also a pixel-

wise method, and each pixel is modelled by a number of codewords. One

codeword c is composed of an RGB vector v = (R̄, Ḡ, B̄) and a 6-tuple

aux = ⟨Ǐ , Î , f, λ, p, q⟩. The meaning of the elements in the 6-tuple aux is

shown in Table 3.2:

Table 3.2. The meaning of the elements in the tuple aux.

Ǐ , Î the min and max brightness of all pixels assigned to this codeword

f the frequency with which the codeword has occurred

λ the maximum negative run-length (MNRL) defined as the longest interval
during the training period that the codeword has not recurred

p,q the first and last access times, respectively, that the codeword has occurred

The codebook background subtraction algorithm is divided into three

main steps: model training, testing and model updating. For model train-

ing, the codewords used to model every single pixel will be obtained from

a training sequence. The procedure for constructing the codewords for a

particular pixel is shown in Table 3.3.

Initially, the codewords set for a pixel is set to be empty so that the
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Table 3.3. The training procedure for constructing the codewords for a
pixel.
I.L←0, Φ← ϕ(empty set)

II.for t=1 to N do

(i) xt=(R,G,B),I ←
√
R2 +G2 +B2

(ii) Find the codeword cm in Φ (codewords class for a pixel) = {ci|1 ≤ ci ≤ L}
matching to xt based on:

(a) colourdist(xt,vm)≤ εt

(b) brightness(I,⟨Îm, Ǐm⟩)=true

(iii) If Φ = ϕ or there is no match,then L←L+1.
Create a new codeword cL by setting:

•vL ← (R,G,B)

•auxL ← ⟨I, I, 1, t− 1, t, t⟩

(iv) Otherwise, update the matched codeword cm, consisting of
vm = (R̄m, Ḡm, B̄m) and

auxm = ⟨Ǐm, Îm, fm, λm, pm, qm⟩, by setting:

•vm ← (fmR̄m+R
fm+1

, fmḠm+G
fm+1

, fmB̄m+B
fm+1

)

•auxm ← ⟨min{I, Ǐm},max{I, Îm}, fm + 1,max{λm, t− qm}, pm, t⟩.

end for

III. For each codeword ci, i=1,.......,L, wrap around λi by setting
λi ← max{λi, (N − qi + pi − 1)}, removing the codewords whose
λs are larger than a particular threshold.

number is zero. Codewords are constructed and updated by matching the

existing codewords with the incoming pixel in the training set. If matched,

the matched codeword will be updated and a new codeword will be con-

structed if there is no match. Finally, the codeword set is refined by deleting

the codewords which don’t recur for a certain interval (measured by the
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MNRL value λ) to form a more compact codebook model. For a particular

codeword c, it is said to match the incoming pixel xt if the following two

conditions are met:

colordist(xt, c) ≤ ε

brightness(I, ⟨Î , Ǐ⟩) = true (3.3.1)

where ε is a preset threshold value for comparison, I represents the norm

of xt, Î and Ǐ are the first two parameters of the 6-tuple aux vector of the

codeword c.

The colordist(xt, c) measures the chromatic difference between two colour

vectors, which can be calculated as:

colordist(xt, c) =

√
∥ xt ∥2 −

xt · v
∥ v ∥2

(3.3.2)

where v represents the RGB vector v = (R,G,B) of codeword c.

The brightness(I, ⟨Î , Ǐ⟩) is defined as:

brightness(I, ⟨Î , Ǐ⟩) =

 true if Ilow ≤ I ≤ Ihi

false otherwise
(3.3.3)

where Ilow = αÎ and Ihi = min{βÎ, Ǐα}. In the experimental studies, α and

β are fixed to be 0.5 and 2 respectively for background subtraction.

The codebook model training procedure is applied for every pixel and

codewords for every pixel are constructed, the trained codebook models are

then used for background subtraction, the procedure is shown in Table 3.4.

A background subtraction result is shown in Figure 3.3, the black and white

object extraction result is presented in Figure 3.3 (c).

Sometimes, the background will change after the training process (due to
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Table 3.4. The codebook background subtraction procedure.
Step I. For each pixel xt=(R,G,B) (assuming the time instance of the frame is t),
calculate the intensity from the (R,G,B) value of a colour image by

I←
√
R2 +G2 +B2

Step II. Find the first codeword cm from the corresponding codebook
matching to xt based on two conditions:

1. colourdist(xt,cm)≤ ε2

2. brightness(I,⟨Îm, Ǐm⟩)=true

Update the matched codeword

Step III. If there is no match, then the pixel xt is categorized as foreground;
otherwise, it is regarded as a background pixel.

(a) (b) (c)

Figure 3.3. Example background subtraction result. (a) the origi-
nal background (b) the person enters into the scene (c) background
subtraction result

the movement of furniture, etc.) and therefore the corresponding codebook

model for every pixel should be updated. For the model updating, an addi-

tional model ~′ called a cache and three parameters— T~′ , Tadd and Tdelete

are defined. The updating procedure is then described as in Table 3.5.

The codebook model is updated so any changes in the background will be

taken as the new background after certain iterations of the above steps. One

example is shown in Figure 3.4, from which it can be seen that the moved

chair and the generated ghost region (where the chair was previously) is

absorbed into the background by using the updating procedure as shown in
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Table 3.5. The updating procedure for the codebook model.
Step I. After training, the background model ~ for a pixel is obtained.
Create an empty model ~′ as a cache.

Step II. For an incoming pixel value xt, find a matching codeword in ~.
If found, update the codeword.

Step III. Otherwise, try to find a matching codeword in ~′ and update it. For no
matching, a new codeword h is created and added to ~′.

Step IV. Filter out the cache codewords based on T~′ :

~′ ← ~′ − {hi|hi ∈ ~′, λ of hi is longer than T~′}

Step V. Move to the cache codewords staying for enough time, to ~:

~← ~ ∪ {hi|hi ∈ ~′,hi stays longer than Tadd}

VI. Delete the codewords not accessed for a long time from ~:

~← ~− {ci|ci ∈ ~, ci not accessed for Tdelete}

VII. Repeat the process from the Step II.

Table 3.5.

(a) (b) (c) (d)

Figure 3.4. The background subtraction with background model up-
dating. (a) the original background image (b) the person moves the
chair to a different place (c) the background subtraction result without
background model updating (d) the background subtraction result with
background model updating.
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Postprocessing

Although background subtraction can obtain the moving object, however,

the obtained result is not always perfect and it can contain noise (as shown in

Figure 3.5 (a)). In order to obtain a better background subtraction result,

some postprocessing technique can be applied. Here two types of post-

processing technique are applied to improve the final results:

Figure 3.5. The post-processing for removing noises and filling holes.
(a) original background subtraction result (b) background subtraction
result with post-processing.

I. Blob operation: Different groups of foreground pixels which are 4-

connected or 8-connected (shown in in Figure 3.6) form different blobs. A

threshold is set and the blobs whose pixel numbers are less than the set

threshold are removed and the pixels in these blobs are taken as background

pixels. In this way, most of the noise (salt-and-pepper noise and small noisy

blobs) can be removed.

II. Filling of small holes: Small holes can be filled by a ‘CLOSE’ op-

eration, which is composed of erosion and dilation. As mentioned in [59],

erosion and dilation are two morphological techniques. Morphological tech-

niques typically probe an image with a small shape called a structuring el-

ement. Two structuring element examples are presented in Figure 3.7 with

the square-shape and cross-shape respectively.
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Figure 3.6. 4-connection and 8-connection for a pixel p. (a) the 4-
connection (b) the 8-connection. The pixels which are connected to p
are marked 1.

Figure 3.7. Two structure elements. (a) square structure element (b)
cross structure element. The center of the structure element is marked
by red 1 and neighboring pixels are marked by black 1s.)

The structure element is positioned at all possible locations in the image

and compared to the neighboring pixels (the pixels covered by the black

‘1s’ are shown in Figure 3.7). The morphological operations differ in how

they carry out this comparison. For the binary-image erosion operation,

the center pixel of the structure element will be set to 0 (black) if any of

its neighboring pixels is zero. For the binary-image dilation operation, the

center pixel of the structure element will be set to 1 (white) if any of its

neighboring pixels is 1. For the image processing, the size of the structure

element needs to be chosen properly to obtain good postprocessing results

and in this work, the square element is applied with the size 3 pixels for
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erosion operation and 5 pixels for dilation operation.

3.3.2 Moments Based Ellipse Fitting

After applying the post-processing technique to obtain a better object ex-

traction result, ellipse fitting is applied to find the ellipse which best fits the

object. A moments based technique for ellipse fitting is presented.

For the obtained binary image f(x, y), the moments can be calculated

by:

mpq =
∑

(x,y)∈Pixels

xpyqf(x, y) (3.3.4)

where p, q = 0, 1, 2.

The centroid (x̄, ȳ) of the fitted ellipse can then be obtained by: x̄ =

m10/m00 and ȳ = m01/m00.

After obtaining the centroid, central moments can be calculated in the

following way:

upq =
∑

(x,y)∈Pixels

(x− x̄)p(y − ȳ)qf(x, y) (3.3.5)

With the aid of central moments, the orientation of the ellipse can be

calculated as:

θ =
1

2
arctan(

2u11
u20 − u02

) (3.3.6)

The major semi-axis a and the minor semi-axis b of the fitted ellipse are

calculated in the following formula:

a = (4/π)1/4
[
(Imax)

3

Imin

]1/8
b = (4/π)1/4

[
(Imin)

3

Imax

]1/8
(3.3.7)
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where Imax and Imin are the larger and smaller eigenvalues of J, where

J =

 u20 u11

u11 u02

 (3.3.8)

An ellipse can then be fitted when the necessary parameters (center, ori-

entation angle, major and minor axes) are calculated. Figure 3.8 shows the

comparison of the moments-based ellipse fitting with the simple minimum

enclosing rectangle (MER) fitting for a stretching person, from which it can

be seen that the moments-based ellipse fitting method obtains a better result

with less affect when the arms of the human are stretched.

(a) (b) (c)

Figure 3.8. The comparison of the MER fitting result and moment-
based ellipse fitting result. (a) original image with a person stretching
the arms (b) MER fitting result (c) moment-based ellipse fitting result.

The fitted ellipse approximately reflects the shape of a human body; the

changes of the ellipse’s orientation angle and ratio between two axes during

a time period can be used to reflect the shape change and a large shape

change indicates a possible fall.

3.3.3 Movement Amplitude Detection

The last cue used for detecting falls is the movement amplitude of a per-

son. It is noticed that after a person falls, a person will be always static

(considering for the general cases, elderly persons fall due to loss of con-

sciousness and usually lie on the floor for a certain time) and the movement
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amplitude is low. So, whether the movement amplitude of a person is low

for a certain time or not can be used for the confirmation of a fall activity.

To estimate the movement amplitude, the concept of motion history image

(MHI) is proposed. MHI is first introduced by Bobick and Davis [60], which

is an image where the pixel intensity represents the recency of motion in an

image sequence. The motion history image shows the tendency of a person’s

movement by the magnitudes of its pixels so that it is commonly used for

activity recognition. The definition of the MHI is given in equation (3.3.9)

and one example of MHI is given in Figure 3.9.

MHIτ (x, y, t) =

 τ if D(x,y,t)=1

max(0,MHIτ (x, y, t− 1)− 1) otherwise

(3.3.9)

where τ is a parameter called duration time defined in [60] and D(x, y, t)

represents the pixel value at the position (x, y) of a binary image D at time

t, which is ‘1’ if the absolute value of the difference between consecutive

frames I(x, y, t) and I(x, y, t − 1) is larger than a threshold. The resulting

MHIτ (x, y, t) is a scalar-valued image in which more recently moving pixels

are brighter.

(a) (b)

Figure 3.9. Demonstration of the MHI image. (a) a person walks in
the room (b) the corresponding MHI of a person’s walking activity.

After the MHI is obtained, whether the movement is large or small can be

determined by calculating a parameter Cmotion defined by [24]. The formula
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to calculate Cmotion is given as:

Cmotion =

∑
pixel(x,y)∈blobMHIτ (x, y, t)

255 ∗ ♯pixels ∈ blob
(3.3.10)

where blob represents the region of the person extracted using the code-book

background subtraction and ♯pixels ∈ blob means the number of pixels in

the extracted person’s region. The value of Cmotion is between 0 and 1, and

a large value of Cmotion means a large movement amplitude and vice verse.

All the obtained three cues–head velocity, shape change and movement

amplitude are combined to construct a robust fall detection system, which

is shown in the experimental results.

3.4 Experimental Evaluation

The experiments were undertaken in a simulated home environment in the

Intelligent lab, Loughborough University, as shown in Figure 3.10. A Basler

Af312c colour camera together with the Streampix 5 software were used

to record the video sequences with a frame rate of 8 frames/s. And the

recorded sequence are then processed by VC++ 6.0 (with OpenCV 1.0) and

MATLAB R2010.

Figure 3.10. The experimental mock room environment.
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3.4.1 Head Tracking Results

Figure 3.11 shows the comparison of head tracking results using gradient

measurement, colour measurement and the combined measurement, which

shows that by using only the gradient and colour measurement, the head

is out of track after a certain number of frames and accurate tracking re-

sults can be obtained by combining the gradient measurement and colour

measurement.

A fall activity is simulated and the corresponding head velocity curve is

presented in Figure 3.12, it can be observed that for a fall activity, high head

velocity is obtained. Initially, when a person walks slowly, the head velocity

is low (less than 15 pixels/frame); when the person falls around the 50th

frame, the head velocity suddenly increases to be above 35 pixels/frame.

After the person falls (from around the 65th frame), the head velocity is low

again because the person lies on the floor with little movement after falling.

3.4.2 Ellipse Fitting Results

Figure 3.13 presents the ellipse fitting results for four activities (standing,

sitting, bending and lying) and Figure 3.14 and 3.15 show the orientation

angle (denoted as theta) and ratio between two axes (denoted as rho) ve-

locities for two fall activities in two different directions (one is parallel to

the optical axis of the camera and the other is perpendicular to it). From

Figure 3.14 and 3.15 it can be seen that large shape change occurs when

a person falls; either the orientation angle or the ratio between two axes

changes dramatically (at around the 55th frame in Figure 3.14 and the 45th

frame in Figure 3.15 when a person falls).
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Figure 3.11. The comparison results of head tracking for selected
frames. The first line shows the tracking results using only the gradient
measurement, the second line shows the tracking results using only the
colour measurement and the third line shows the results by using the
combined gradient and colour measurement. Accurate results can be
obtained by combining the gradient and colour measurement together.



Section 3.4. Experimental Evaluation 57

Head 

velocity

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

frames

h
ea

d
 v

el
o

ci
ty

Figure 3.12. The head velocity for a fall activity, which is calculated
as the difference between the head’s center positions for two consecutive
frames. The x-axis indicates the frame number and the y-axis indicates
the head velocity (with the unit pixels/frame). The frames are captured
at a frame rate of 8 frames/second.

3.4.3 Movement Amplitude Detection Results

Figure 3.16 shows the MHI results and Cmotion values for four different ac-

tivities and a large Cmotion value is obtained for a fall activity. Figure 3.17

and 3.18 show the Cmotion curves for two falls in two different directions. It

can be observed that although the variation patterns of Cmotion are different

for falling in different directions, there is one thing in common after a fall

happens, the Cmotion values drops to be very low for a certain number of

frames (the person lies almost statically on the floor).
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Figure 3.13. The ellipse fitting for for four activities ((a) standing,
(b) sitting, (c) bending and (d) lying).

3.4.4 Fall Detection Scheme by fusing three cues

From the above analysis, it can be concluded that for a fall activity:

1. The head velocity is high.

2. The shape change (either the theta or rho velocity) is large.

3. The movement amplitude (measured by Cmotion) is low for a certain

number of frames after a fall happens.

If ALL of the three conditions are met, then a fall is determined; other-

wise, no falls are reported. Different thresholds, typically found empirically,

are set to head velocity, theta velocity, rho velocity movement amplitude

velocity and the time period for low Cmotion, which are denoted as: thhead,

ththeta, thrho, thmovement and thperiod. And the flowchart of the proposed

fall detection system is presented as Figure 3.19. The head is tracked by

particle filter and an ellipse is fitted to the human body according to the

codebook background subtraction result. If either the head velocity or the

shape change value is less than the corresponding threshold, then no falls

are reported; otherwise, a further confirmation is made by the Cmotion value
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Figure 3.14. The velocity of theta for a fall activity which is per-
pendicular to the optical axis of the camera. The x-axis indicates the
frame number and the y-axis indicates the theta change velocity (with
the unit radians/frame).

and if Cmotion is larger than a threshold for a certain time, then a fall is

confirmed.

To validate the proposed system, six persons were invited to participate

in the experiment. Each person simulated a series of common daily activities

(including walking, walking behind furniture, sitting/standing and bending

to tie the shoe belts) and two fall activities (in directions which are parallel

and perpendicular to the camera’s optical axis). In total, 12 fall activities

and 24 non-fall activities (with each activity lasts about 30 seconds) were

recorded. The system shown in Figure 3.19 is tested with different threshold

values and the result with the optimal threshold is shown in Table 3.6, in

which it can be seen that fall and non-fall activities can be successfully
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Figure 3.15. The velocity of rho for a fall activity which is parallel to
the optical axis of the camera.

(a) (b) (c) (d)

Figure 3.16. MHI for four different activities. (a) Walking, Cmotion =
0.2147 (b) Sitting, Cmotion = 0.1286 (c) Bending, Cmotion = 0.2252 (d)
Falling, Cmotion = 0.5227

distinguished when proper thresholds are set.
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Figure 3.17. Cmotion curve for a fall activity which is perpendicular to
the optical axis of the camera. The x-axis indicates the frame number
and the y-axis indicates the change of Cmotion value per frame.

Table 3.6. Detection results of the proposed fall detection system
with the optimal threshold set (chosen by trial-and-error from different
threshold values): thhead = 35, ththeta = 0.3, thrho = 0.15, thmovement =
0.05 and thperiod = 200 (in frames).

No. of Activities Detected as falls Detected as non-falls
Falling 12 12 0
Walking 6 0 6

Walking behind furniture 6 0 6
Sitting/Standing 6 0 6

Bending 6 0 6

A particular example is given to show how the proposed fall detection

system operates; Figure 3.20 shows the variations of head velocity, theta

velocity, rho velocity and Cmotion for a sequence containing different types

of activities. The threshold values are chosen as the optimal ones shown in
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Figure 3.18. Cmotion curve for a fall activity which is parallel to the
optical axis of the camera. The x-axis indicates the frame number and
the y-axis indicates the change of Cmotion value per frame.

Table 3.6. A person enters the scene at around the 600th frame and in total

more than 1200 frames are recorded.

This sequence is divided into five phases: in Phase I, a person walks in

the room without any occlusion and none of the head velocity, theta velocity

and rho velocity exceed the threshold, so no falls are reported.

In Phase II, the person walks behind a chair. Due to the occlusion of

the chair, large changes of the rho value and the rho velocity exceed the

thresholds. However, the head velocity is still far below the threshold value.

So, no falls are reported because the condition for the head velocity is not

met.

In Phase III, this person sits quickly down on the chair and the head
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Figure 3.19. The flowchart of the proposed fall detection system.

velocity exceeds the threshold. Although the head velocity condition for

falling is met for this case, neither the rho velocity nor the theta velocity

exceeds the corresponding threshold. So no falls are reported because no

large shape change is detected.

Phase IV shows a person bends to fasten his shoe belts. In this case,

both the head velocity and rho velocity exceed the corresponding thresholds.

So both the head velocity condition and shape change conditions are met;

however, the Cmotion curve shows that the length of the low movement am-

plitude (the Cmotion value is less than the threshold) period is short and less

than 200 frames (because the person only bends for a short time and then

continues to walk). So, no falls are reported because the third condition is

not met.

In Phase V, a person falls on the ground. All of the three conditions
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Figure 3.20. The variations of head velocity, theta velocity, rho veloc-
ity and Cmotion for a sequence containing different types of activities.

are met–the head velocity, rho velocity and theta velocity exceed the corre-

sponding thresholds, and the Cmotion value is below the threshold for a long
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time. So, a fall is detected.

3.5 Summary

In this chapter, a simple and robust fall detection system has been proposed

by using three cues: head velocity cue, shape cue and movement amplitude

cue. The head was tracked by the particle filter using the gradient and colour

information; the velocity of the head between consecutive frames was then

estimated from the head tracking results. Codebook background subtraction

method and the moment-based ellipse fitting were then applied to fit the

human body region by an ellipse. And the shape change can be reflected

by the velocities of the orientation angle and two axes’ ratio of an ellipse.

Finally, the movement amplitude of a person was estimated by a Cmotion

value obtained from MHI for a further confirmation of a fall when both the

head velocity and shape change exceed certain threshold values. Experiment

on a comparatively simple dataset was presented to show that by combining

these three cues–head velocity, shape change and movement amplitude, a

simple but robust fall detection system can be achieved which can distinguish

falls with different types of non-fall activities under a proper threshold set.

However, this proposed system has its limitations from the following

aspects:

1. The 2D head velocity cue commonly generates false alarms; fast walk-

ing, sudden sitting or bending, even fast nodding will generate high head

velocity, which is similar to the case of falling.

2. The orientation angle and the two axes’ ratio obtained from the fitted

ellipse are not invariant to directions, as mentioned in [38]. For the same

activity in different directions, the variations of orientation angle and ratio

are different. Although good results are obtained in distinguishing two-

direction falls from some non-fall activities performed in certain directions;
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however, these features are not adequate for distinguishing falls and non-falls

in all different directions.

3. For this system, many threshold values (thhead, ththeta, thrho, thmovement

and thperiod) need to be chosen carefully, which is inconvenient for the prac-

tical use.

In order to solve these problems, more elegant 3D features which are

both distinguishable between falls and non-falls and invariant to different

directions need to be considered; instead of using a simple analytic method

by comparing the extracted cues with different thresholds, a model based

method is applied to represent fall activities by certain models which are

then used for distinguishing fall activities and non-fall activities by only

one single threshold value. The details of the 3D features and model based

method are discussed in the next chapter. Besides, another dataset which

contains more types of fall activities and non-fall activities will be recorded

for a better validation.



Chapter 4

DATA FITTING MODEL

BASED FALL DETECTION

METHOD BY USING 3D

FEATURES

4.1 Introduction

For solving the problem that 2D features used in earlier fall detection works

are not invariant to directions, in this chapter, a fall detection method is pro-

posed on the basis of data fitting schemes, which model fall activities based

on obtained 3D features. A 3D person representation is initially constructed

by multiple calibrated cameras, from which 3D features are then extracted.

The resulting 3D features corresponding to fall activities are used to build a

particular model for fitting the feature dataset and the model is then applied

to distinguish fall activities and non-fall activities. Three forms of models:

single Gaussian model, mixture of Gaussians model and one class support

vector machine model (OCSVM) are tested and the corresponding compari-

son results in the context of fall detection are presented in the experimental

section.

67
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4.2 Camera Calibration

The first step in reconstructing the 3D person and obtaining corresponding

3D features is the camera calibration, which involves estimating the external

parameters and internal parameters of a camera based on certain camera

models. Some well-known camera calibration methods include: the DLT

method [61], Zhang method [62] and Tsai method [63]. In this work, the Tsai

camera calibration method is adopted. Compared with the DLT method and

Zhang method, the Tsai camera calibration method offers the possibility to

calibrate internal and external parameters separately, which is particularly

useful since it gives the possibility to fix the internal parameters of the

camera, when known, and carry out only pose estimation.

4.2.1 Tsai Camera Model

The Tsai camera model assumes a four step procedure of transformation from

3D world coordinates to image coordinates captured by a camera, which is

based on the camera geometry as shown in Figure 4.1.

Step I. For a 3D point in a scene (denoted as P as shown in Figure

4.1), it has a corresponding 3D world coordinate (xw, yw, zw) (based on the

3D world coordinate system (Ow, xw, yw, zw) as shown in Figure 4.1). The

camera itself also has its own coordinate system, which is called the camera

coordinate system denoted as (O, x, y, z) in Figure 4.1 (with the origin being

the center of the lens of the camera). The world coordinate system can be

aligned to the camera coordinate system by certain rotation and translation

operations. So, the 3D world coordinate (xw, yw, zw) and camera coordinate

(x, y, z) of the point P have the following relationship:


x

y

z

 = R


xw

yw

zw

+ T (4.2.1)
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Figure 4.1. The camera geometry corresponding to the Tsai model.
(Ow, xw, yw, zw) is the 3D world coordinate system and (O, x, y, z) is the
camera coordinate system, one 3D point P is converted to the point Pd
on the image plane (Oi, x, y) according to the four step procedure for
coordinates transformation.

where R is a 3×3 rotation matrix which can be represented by three rotation

angles in 3D space (Euler angles yaw θ, pitch ϕ and tilt ψ) as:

R =


cos(ψ) cos(θ) sin(ψ) cos(θ) − sin(θ)

− sin(ψ) cos(ϕ) + cos(ψ) sin(θ) sin(ϕ) cos(ψ) cos(ϕ) + sin(ψ) sin(θ) sin(ϕ) cos(θ) sin(ϕ)

sin(ψ) sin(ϕ) + cos(ψ) sin(θ) cos(ϕ) − cos(ψ) sin(ϕ) + sin(ψ) sin(θ) cos(ϕ) cos(θ) cos(ϕ)


(4.2.2)

or in a simpler form:

R =


r1 r2 r3

r4 r5 r6

r7 r8 r9

 (4.2.3)
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and T is a 3× 1 vector with:

T =


Tx

Ty

Tz

 (4.2.4)

Step II. After the camera coordinate (x, y, z) of the point P is obtained,

according to the pinhole camera model [63], the image plane coordinate

(Xu, Yu) of the ideally projected point Pu can be obtained as:

Xu = f
x

z

Yu = f
y

z
(4.2.5)

where f is the focal length of the camera, which measures the distance

between the center of the lens and image plane.

Step III. Rather than the perfect pinhole camera model, for the real cam-

era there are inevitably certain types of distortion. One important distortion

which has the largest effect is the radial lens distortion. Due to radial lens

distortion, the actual point on the image plane (denoted as Pd) is different

from the ideally projected point Pu and the image plane coordinate of Pd is

denoted as (Xd, Yd). As proposed in [63], the relationship between (Xu, Yu)

and (Xd, Yd) is:

Xu = Xd(1 + kr2)

Yu = Yd(1 + kr2) (4.2.6)

where r =
√
X2
d + Y 2

d and k is the coefficient of the radial lens distortion.

Step IV. The last step is to convert the image plane coordinate (Xd, Yd)

to the image plane coordinate (Xf , Yf ) measured by pixels with the following
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transformation:

Xf = sxḋ
−1
x Xd + Cx

Yf = ḋ−1
y Yd + Cy (4.2.7)

where Cx and Cy are the center coordinates of the captured image, sx is the

uncertainty scaling factor due to camera scanning and acquisition time error,

ḋx and ḋy represent the corresponding sizes of a pixel, which are calculated

as:

ḋx = dx
Ncx

Nfx

ḋy = dy
Ncy

Nfy
(4.2.8)

where dx and dy are the center-to-center distance between adjacent CCD

sensor elements in the X and Y directions, Ncx and Ncy are the numbers of

CCD sensor elements in the X and Y directions and Nfx and Nfy are the

numbers of image pixels in the X and Y directions.

The above four steps show the correspondence between the 3D real world

coordinate and 2D image pixel coordinate for a particular point. From the

above four steps, a 3D point is converted to a 2D point in the image.

4.2.2 Parameter Estimation

Different camera parameters are employed in the above four steps and in

camera calibration these parameters are estimated. Figure 4.2 shows the

parameters needed to be estimated for each step.

These parameters are divided into two groups:

External parameters: rotation matrix R and translation vector T .

Internal parameters: focal length–f , radial lens distortion coefficient–k

and uncertainty scale factor–sx.
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3D world coordinates (xw,yw,zw)

Step 1

Transformation from the 3D world coordinate  (xw, yw, zw) to camera 

coordinate (x, y, z)

Parameters needed to be estimated: rotation matrix R, translation vector T

Step 2

Calculation of the ideal image coordinate (Xu, Yu)
Parameter needed to be estimated: focal length f

Step 3

Evaluation of the real image coordinate with distortion (Xd, Yd)
Parameters needed to be estimated: radial lens distortion k

Step 4

Converting to the image coordinate measured by pixels (Xf, Yf)
Parameters needed to be estimated: uncertainty scale factor sx

the image coordinate (Xf,Yf) measured by pixels

Figure 4.2. The flowchart of converting from the 3D world coordinate
to the 2D image pixel coordinate and the parameters that must be
estimated.

The procedures to estimate the external and internal parameters are

shown in the remaining parts of the section.

Estimations of T−1
y sxr1, T

−1
y sxr2, T

−1
y sxr3, T

−1
y sxTx, T

−1
y r4, T−1

y r5 and T−1
y r6

If points P (x, y, z) and Poz(0, 0, z) are connected (as shown in Figure 4.3),

OiPd//PozP (// means parallel) can be obtained by the fact that OiPd and

PozP are the intersections of the plane (O,P, Poz) and two parallel planes

((Oi, x, y) and (Poz, x, y)).

As OiPd//PozP , and OiPd × PozP = 0 (‘×’ denotes the cross product),
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z

Figure 4.3. OiPd//PozP by connecting P and Poz by the fact that
OiPd and PozP are the intersections of the plane (O,P, Poz) with two
parallel planes (Oi, x, y) and (Poz, x, y).

then:

(Xd, Yd)× (x, y) = 0 (4.2.9)

from which it yields Xdy − Ydx = 0.

If equations (4.2.3) and (4.2.4) are substituted into equation (4.2.1), the

following can be obtained:

x = r1xw + r2yw + r3zw + Tx

y = r4xw + r5yw + r6zw + Ty (4.2.10)

and from equation (4.2.9), it can be derived that:

Xd(r4xw + r5yw + r6zw + Ty)− Yd(r1xw + r2yw + r3zw + Tx) = 0 (4.2.11)
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By dividing each side by Ty and after some algebraic operations, equation

(4.2.11) can be obtained:

[
Ydxw Ydyw Ydzw Yd −Xdxw −Xdyw −Xdzw

]
·



T−1
y r1

T−1
y r2

T−1
y r3

T−1
y Tx

T−1
y r4

T−1
y r5

T−1
y r6



= Xd

(4.2.12)

Both sides are then multiplied by sx and Ẋd is used to replace Xdsx,

equation (4.2.12) can be written as:

[
Ydxw Ydyw Ydzw Yd − Ẋdxw − Ẋdyw − Ẋdzw

]
·



T−1
y sxr1

T−1
y sxr2

T−1
y sxr3

T−1
y sxTx

T−1
y r4

T−1
y r5

T−1
y r6



= Ẋd

(4.2.13)

Initially, a set of points is chosen and for each point i, its 3D world co-

ordinate (xwi, ywi, zwi) and 2D image pixel coordinate (Xfi, Yfi) are known.

By using equation (4.2.7), Ẋdi and Ydi can be calculated as:

Ẋdi = (Xfi − Cx)ḋx

Ydi = (Yfi − Cy)ḋy (4.2.14)
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and equation (4.2.13) can be denoted as:

ai · x = bi (4.2.15)

where

ai =

[
Ydixwi Ydiywi Ydizwi Ydi − Ẋdixwi − Ẋdiywi − Ẋdizwi

]
,

x =



T−1
y sxr1

T−1
y sxr2

T−1
y sxr3

T−1
y sxTx

T−1
y r4

T−1
y r5

T−1
y r6



and bi = Ẋdi, each element of the vector ai and bi are all

known.

If there are N points, then equation (4.2.16) holds:

a1
...

ai
...

aN


x =



b1
...

bi
...

bN


(4.2.16)

and if A is used to represent



a1
...

ai
...

aN


which is a N ×7 matrix, and b is used
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to represent



b1
...

bi
...

bN


which is an N × 1 vector then equation (4.2.17) can be

obtained as:

A · x = b (4.2.17)

and the least squares solution for equation (4.2.17) is:

x = (ATA)−1ATb (4.2.18)

from which the seven parameters:

T−1
y sxr1, T

−1
y sxr2, T

−1
y sxr3, T

−1
y sxTx, T

−1
y r4, T−1

y r5 and T−1
y r6 are esti-

mated.

Determination of Ty and sx

The solution of equation (4.2.18) can be used to determine |Ty| and if the

i-th element of x is denoted as xi, |Ty| can be calculated as:

|Ty| = (x25 + x26 + x27)
−1/2 (4.2.19)

by using r24 + r25 + r26 = 1 according to the correspondence between equation

(4.2.2) and (4.2.3). The uncertainty scale factor sx can be determined from

|Ty| as:

sx = (x21 + x22 + x23)
−1/2|Ty| (4.2.20)

by using r21 + r22 + r23 = 1.

To determine the sign of Ty an object point i whose 2D image pixel

coordinate (Xfi, Yfi) is away from the image center (Cx, Cy) is selected; its

3D world coordinate is denoted as (xwi, ywi, zwi). Initially, the sign of Ty is
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assumed as +1 and this point’s 3D camera coordinate (xi, yi) is computed:

xi = r1xwi + r2ywi + r3zwi + Tx yi = r4xwi + r5ywi + r6zwi + Ty (4.2.21)

where r1, r2, r3, r4, r5, r6 and Tx can be calculated as:

r1 = (T−1
y sxr1) · Tys−1

x = x1Tys
−1
x r2 = (T−1

y sxr2) · Tys−1
x = x2Tys

−1
x

r3 = (T−1
y sxr3) · Tysx−1 = x3Tys

−1
x r4 = (T−1

y r4) · Ty = x5Ty

r5 = (T−1
y r5) · Ty = x6Ty r6 = (T−1

y r6) · Ty = x7Ty

Tx = (T−1
y Tx) · Ty = x4Ty (4.2.22)

Moreover, by using equation (4.2.7), the distorted image coordinate

(Xdi, Ydi) can be obtained from (Xfi, Yfi). From the relationship between

(Xdi, Ydi) and (xi, yi) as shown in equations (4.2.5) and (4.2.6), it can be

concluded that Xdi and xi, together with Ydi and yi should have the same

signs. So, if the calculated (Xdi, Ydi) and (xi, yi) meet this condition, the

initial assumption is right and the sign of Ty is +1; otherwise, the sign of Ty

is −1.

Computations of R and Tx

After obtaining Ty, sx and the solution x = [T−1
y sxr1, T

−1
y sxr2, T

−1
y sxr3,

T−1
y sxTx, T

−1
y r4, T−1

y r5, T−1
y r6], some elements of the rotation matrix

(r1, r2, r3, r4, r5, r6) and Tx can be obtained in the same way as equation

(4.2.22).

For the remaining three elements r7, r8, r9 of the rotation matrix R, they

can be estimated by using the fact that the third row of R can be computed

as the cross product of the first two rows according to the form of R (equation
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(4.2.2)), which becomes:

r7 = r2 ∗ r6− r3 ∗ r5

r8 = r3 ∗ r4− r1 ∗ r6

r9 = r1 ∗ r5− r2 ∗ r4 (4.2.23)

Computations of f , Tz and k

The remaining parameters needed to be calculated include focal length–f , Tz

and radial lens distortion coefficient–k. In order to obtain these parameters,

a two-step procedure is applied:

Step I. For a particular point Pi in a set of N points {P1, ..., PN}, by

combining equations (4.2.5), (4.2.6) and (4.2.10), the following can be ob-

tained:

Xdi(1 + kr2) = f
r1xwi + r2ywi + r3zwi + Tx
r7xwi + r8ywi + r9zwi + Tz

Ydi(1 + kr2) = f
r4xwi + r5ywi + r6zwi + Ty
r7xwi + r8ywi + r9zwi + Tz

(4.2.24)

if k is set to zero, then equation (4.2.25) can be obtained:

[
xi −Xdi

] f

Tz

 = Xdiwi

[
yi − Ydi

] f

Tz

 = Ydiwi (4.2.25)

where xi = r1xwi+ r2ywi+ r3zwi+ Tx, yi = r4xwi+ r5ywi+ r6zwi+ Ty and

wi = r7xwi + r8ywi + r9zwi.
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Extending this to N points, then:

x1 −Xd1

y1 − Yd1
...

xi −Xdi

yi − Ydi
...

xi −XdN

yN − YdN



 f

Tz

 =



Xd1w1

Yd1w1

...

Xdiwi

Ydiwi
...

XdNwN

YdNwN



(4.2.26)

Similarly, a least squares solution of

 f

Tz

 can be obtained by using

equation (4.2.18), with A =



x1 −Xd1

y1 − Yd1
...

xi −Xdi

yi − Ydi
...

xi −XdN

yN − YdN



which is a 2N × 2 matrix and

b =



Xd1w1

Yd1w1

...

Xdiwi

Ydiwi
...

XdNwN

YdNwN



which is a 2N × 1 vector.

Step II. In order to obtain more precise estimates of f , Tz and k, an error
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function e(f, Tz, k) with respect to f , Tz and k is minimized, which becomes:

e(f, Tz, k) =

N∑
i=1

(
Xdi(1 + kr2)− f r1xwi + r2ywi + r3zwi + Tx

r7xwi + r8ywi + r9zwi + Tz

)2

+

N∑
i=1

(
Ydi(1 + kr2)− f r4xwi + r5ywi + r6zwi + Ty

r7xwi + r8ywi + r9zwi + Tz

)2

(4.2.27)

e(f, Tz, k) is a non-linear function with respect to f , Tz and k and in or-

der to minimize it, some non-linear optimization methods, such as the steep-

est gradient method, Gaussian Newton method and Levenberg-Marquardt

method (damped Gaussian-Newton method) [64] can be applied. In this

work, the Levenberg-Marquardt method is applied, which obtains its oper-

ating stability from the steepest descent method and gains its accelerated

convergence in the minimum vicinity from the Newton method as shown

in [64] and the f , Tz and k values obtained in Step I are used as the ini-

tial values for the Levenberg-Marquardt method. By minimizing e(f, Tz, k),

the difference between the image plane coordinate obtained from 2D image

pixel and that obtained from 3D real world coordinate will be small, which

indicates an accurate camera model for the correspondence between the 2D

image pixel coordinate and the 3D real world coordinate.

Until now, all the camera parameters are estimated and the estimated

camera parameters can then be applied to reconstruct the approximate 3D

person.

4.3 3D person reconstruction and 3D features extraction

4.3.1 3D person reconstruction

For 3D person reconstruction, as presented in [39], the room space (assumed

to be cubic) is divided into non-overlapping blocks called ‘voxels’ as shown
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in Figure 4.4. Similar to Section 4.1, (Ow, xw, yw, zw) and (O, x, y, z) rep-

resent the 3D world coordinate system and 3D camera coordinate system

respectively.

Ow xwywzw

O z

y

x

Figure 4.4. A 3D room space which is composed of non-overlapping
voxels (marked as blue blocks). (Ow, xw, yw, zw) and (O, x, y, z) repre-
sent the 3D world coordinate system and 3D camera coordinate system
respectively

For a 2D image pixel P with the 2D image pixel coordinate (Xf , Yf ),

from equations (4.2.6) and (4.2.7) the image plane coordinate (Xu, Yu) of

the corresponding ideally projected point Pu on the image plane can be

obtained from (Xf , Yf ) as:

Xu =
(Xf − Cx)ḋx

sx
(1 + kr2)

Yu = (Yf − Cy)ḋy(1 + kr2) (4.3.1)

For every point on the image plane, its coordinate in the z-axis of the 3D

camera coordinate system is the focal length–f , so the 3D camera coordi-

nate of the point Pu is (Xu, Yu, f), which can be converted to the 3D world
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coordinate by equation (4.2.1), denoted as (Pxw, Pyw, Pzw). Similarly, the

original point O(0, 0, 0) of the 3D camera coordinate system (center of the

camera lens) can also be converted to the 3D world coordinate by equation

(4.2.1), denoted as (Oxw, Oyw, Ozw).

Points (Pxw, Pyw, P zw) and (Oxw, Oyw, Ozw) can determine a 3D line

in the 3D world coordinate system (xw, yw, zw) as:

xw −Oxw
Pxw −Oxw

=
yw −Oyw
Pyw −Oyw

=
zw −Ozw
Pzw −Ozw

= t (4.3.2)

which intersects with voxels in the 3D space.

In this work a simple and efficient strategy is applied for obtaining the

voxels with which the 3D line intersects. Assuming the size of a voxel is

l× l× l and the numbers of voxels along the xw, yw and zw directions (which

coincide with the length, width and height of the 3D space as shown in

Figure 4.4) in 3D room space are Nxw, Nyw and Nzw respectively. The 3D

room space can then be divided into Nxw, Nyw and Nzw bins along the

three axes of the 3D world coordinate system, with each bin’s length being

l.

For the i-th bin along the xw direction, its xw coordinate range is [(i −

1) ∗ l, i ∗ l]. As such (i − 1) ∗ l and i ∗ l can be substituted into equation

(4.3.2) to obtain the yw range of the line segment in that bin, denoted as

[ywlow , ywhigh ] with

ywlow = min{Oyw +
(i− 1) ∗ l −Oxw
Pxw −Oxw

(Pyw −Oyw), Oyw +
i ∗ l −Oxw
Pxw −Oxw

(Pyw −Oyw)}

ywhigh = max{Oyw +
i ∗ l −Oxw
Pxw −Oxw

(Pyw −Oyw), Oyw +
(i− 1) ∗ l −Oxw
Pxw −Oxw

(Pyw −Oyw)}

(4.3.3)

which can be converted to the bin-index range [Iywlow, I
yw
high] along the yw axis



Section 4.3. 3D person reconstruction and 3D features extraction 83

as:

Iywlow = int(
ywlow
l

) + 1

Iywhigh = int(
ywhigh
l

) + 1 (4.3.4)

where int(·) represents the operation of getting the integer part of the result.

Finally, [Iywlow, I
yw
high] intersects with [1, Nyw] to obtain the bin-index range

confined by the 3D room space, denoted as [Ĩywlow, Ĩ
yw
high] if the intersection

result is non-empty.

In a similar way, for every bin index from Ĩywlow to Ĩywhigh, the corresponding

zw direction’s bin-index range confined by the 3D room space (denoted as

[Ĩzwlow, Ĩ
zw
high]) can be calculated. In the end, the bin indices of voxels which

are intersected with the 3D line are obtained in the i-th bin along the xw

direction.

Figure 4.5 shows the procedure of obtaining the intersection of voxels in

the i-th bin along the xw direction with the line OPu, the same procedure

is applied for every bin along this direction and to obtain all the voxels

with which the 3D line intersects in the 3D room space. For every pixel on

the image, the voxels intersected by the corresponding 3D line are obtained

which form a voxel set corresponding to that pixel.

Multiple cameras are applied for 3D person reconstruction (as shown

in Figure 4.6 for a two-camera case). For each camera the voxel set which

corresponds to every pixel on the image plane is initially obtained and the

codebook background subtraction method as shown in Section 3 is applied

for extracting the moving object. The union of voxels corresponding to

pixels in the moving object for the i-th camera is then calculated, denoted

as Vi
t = {Vi

t,1, ......,V
i
t,Pi
}, where t is the captured time, i is the index of the

camera, Vi
t,i represents a voxel and Pi is the number of voxels. The voxel

person can finally be obtained by intersecting the union sets of multiple
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Ow xwy wzw
Pu

O

z

x

y

P1
P2

P1

P2

(a)

(b)

i-th

l

ywlowywhigh
Figure 4.5. The procedure of obtaining the intersected voxels for the
i-th bin along the xw axis. (a) The 3D line connecting the camera
coordinate origin O and point Pu intersects with the i-th bin along
the xw axis, the intersected line segment is P1P2. (b) The coordinate
range of P1P2 in yw direction is denoted as [ywlow , ywhigh ], every bin in
[ywlow , ywhigh ] is tested to obtain the final intersected voxels (marked in
red).

cameras as: V′
t =

∩C
i=1V

i
t, where V

′
t denotes the voxel set corresponding to

the 3D reconstructed person and C is the number of cameras.
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Silhouette 1
Camera1 Camera2SilhouetteExtraction1 Voxel Set1
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Silhouette 2
Figure 4.6. The procedure for 3D person reconstruction from two
video camera measurements.

4.3.2 3D features extraction

After the voxel set V′
t is obtained, the position of the centroid and the

orientation value (denoted as θ), which reflects the 3D angle between the

constructed person and the ground floor plane, are then calculated.

The centroid of the voxel person at time t, ut = [xt, yt, zt] can be obtained

as:

ut = (
1

P
)
P∑
j=1

V′
t,j (4.3.5)

where V′
t,j is the j-th voxel of a voxel person V′

t at time t.

The centroid’s height information and differences of the centroid’s hori-

zontal and vertical positions in a time interval ∆t can be applied as part of

a feature for fall recognition. The horizontal variation of the centroid can

be calculated as:
√

(xt+∆t − xt)2 + (yt+∆t − yt)2 and the vertical variation

is: |zt+∆t − zt|.
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The covariance matrix used to define the orientation information is:

(
1

P
)

P∑
j=1

(V′
t,j − ut)(V

′
t,j − ut)

T (4.3.6)

where (V′
t,j−ut) is the difference between the 3-d positions of the j-th voxel

and the voxel person’s centroid.

The eigenvalues and eigenvectors of the covariance matrix are calculated

according to [65] and the eigenvector corresponding to the largest eigenvalue

at time t is denoted as eigenvect and the orientation value θt is calculated

as:

θt = max(eigenvect · ⟨0, 0, 1⟩T ,−eigenvect · ⟨0, 0, 1⟩T ) (4.3.7)

If the person is upright, the value is near unity; if he or she is on the ground,

the value is near zero.

This value and its difference during ∆t (|θt+∆t − θt|) are chosen as the

remaining elements of the feature vector. Finally, a 5-dimensional feature

vector is obtained, which consists of the following elements:

The centroid’s horizontal position change over ∆t

The centroid’s vertical position change over ∆t

The centroid’s horizontal position at the particular time

The θ value change over ∆t

The θ value at the particular time

In this work, ∆t is chosen to be 1s. The 3D video features are obtained

and the ones which corresponding to fall activities are used to construct

models representing falling, which are then used to distinguish fall and non-

fall activities. Different forms of models are adopted and presented in the

next section.



Section 4.4. Model methods used for representing fall activities 87

4.4 Model methods used for representing fall activities

As mentioned in [66], for a dataset X = [x1, ...,xN ] drawn from a distri-

bution P, different types of models can be constructed to fit the dataset,

which obtains the supporting region (where the distribution value is larger

than a particular threshold and the dataset X is most likely to be sampled)

corresponding to the dataset X. In this section, three popular models are

introduced, they are the single Gaussian model, mixture of Gaussians model

and one class support vector machine (OCSVM) model.

4.4.1 Single Gaussian model

For a single Gaussian model, it follows a distribution P (x) with the form:

P (x) =
1

(2π)d/2|Σ|1/2
exp(−1

2
(x− u)TΣ−1(x− u)) (4.4.1)

where d is the dimension of variable x, u and Σ represent the mean and

covariance matrix respectively.

If N dataset samples X = [x1, ...,xN ] are provided, these samples can be

used to fit a single Gaussian model. The corresponding model parameters–u

and Σ can be obtained from the maximum likelihood (ML) function as:

ln((P (X)) =
N∑
i=1

ln(P (xi))

=

N∑
i=1

ln(
1

(2π)d/2|Σ|1/2
exp(−1

2
(xi − u)TΣ−1(xi − u)))

= −Nd
2

ln(2π)− N

2
ln |Σ| − 1

2

N∑
i=1

(xi − u)TΣ−1(xi − u)

(4.4.2)

To estimate the value of u which maximizes equation (4.4.2) (denoted as

uML), the derivative of equation (4.4.2) with respect to u is set to 0, which
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yields:
N∑
i=1

Σ−1(xi − u) = 0 (4.4.3)

and uML is then calculated by solving equation (4.4.3) as:

uML =
1

N

N∑
i=1

xi (4.4.4)

Another value ΣML is obtained by imposing the symmetry and positive

definiteness constraints explicitly, which can be found in [67]. The corre-

sponding ΣML which maximizes equation (4.4.2) is then estimated as:

ΣML =
1

N

N∑
i=1

(xi − uML)(xi − uML)
T (4.4.5)

After uML and ΣML are calculated, the single Gaussian model with

the distribution P (x) is determined, which is used to fit the sample set

X = [x1, ...,xN ]. A large value of P (x) means that the sample x is likely to

come from the supporting region from which the data set X is sampled.

4.4.2 Mixture of Gaussians model

For a dataset from a non-Gaussian distribution, a single Gaussian distri-

bution can not fit the dataset accurately. Instead, a mixture of Gaussians

model as shown in [31] is exploited, which is a linear combination of Gaussian

distributions and represented as:

P (x) =

K∑
k=1

πkN(x|uk,Σk) (4.4.6)

Each Gaussian density N(x|uk,Σk) is called a component of the mixture

and has its own mean uk and covariance matrix Σk. And πk, k = 1, ...,K

are the mixing coefficients which satisfy 0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1.

Given N samples X = [x1, ...,xN ], as in the single Gaussian case, the
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corresponding parameters uk, Σk and πk of the mixture of Gaussians model

which fits the sample set can be estimated by maximizing the log of the

likelihood function as:

ln(P (X)) =
N∑
i=1

ln{
K∑
k=1

πkN(xi|uk,Σk)} (4.4.7)

As presented in [31], the derivatives of equation (4.4.7) with respect to

uk, Σk and πk are calculated (for the πk case a Lagrangian term is introduced

due to the constraint
∑K

k=1 πk = 1) and set to zero, which can then yield:

uk =
1

Nk

N∑
i=1

γ(zik)xi

Σk =
1

Nk

N∑
i=1

γ(zik)(xi − uk)(xi − uk)
T

πk =
Nk

N
(4.4.8)

where γ(zik) =
πkN(xi|uk,Σk)∑K
j=1 πjN(xi|uj ,Σj)

, which represents the posterior probability

that component k was responsible for generating xi and Nk =
∑N

i=1 γ(zik).

From equation (4.4.8), it can be observed that the solutions of uk, Σk

and πk are not in a closed form–the solutions are related to γ(zik) which

needs to be calculated from uk, Σk and πk. So, no direct solutions for uk,

Σk and πk can be obtained and instead, an expectation-maximization (EM)

algorithm [31] is applied to obtain these parameters, which is divided into

an E-step and M-step as follows:

1. Initialize the means uk, covariances Σk and mixing coefficients πk

(normally be the K-means algorithm as mentioned in [31]), and evaluate the

initial value of the log likelihood.

2. E step. Evaluate the responsibilities γ(zik), using the current uk, Σk

and πk values as

γ(zik) =
πkN(xi|uk,Σk)∑K
j=1 πjN(xi|uj ,Σj)

(4.4.9)
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3. M step. Re-estimate the parameters by equation (4.4.8) using the

responsibilities calculated from equation (4.4.9).

4. Evaluate the log likelihood

ln(P (X)) =
N∑
n=1

ln{
K∑
k=1

πkN(x|uk,Σk)} (4.4.10)

and check for convergence of either the parameters or the log likelihood

(whether the parameter values or the log likelihood value remain almost

constant or not). If the convergence criterion is not satisfied return to Step

2.

By using the EM algorithm, the parameters uk, Σk and πk are estimated

for fitting a mixture of Gaussians distribution forN samplesX = [x1, ...,xN ].

Another important parameter which must be determined for the mixture

of Gaussians model is the number of components–K, in this work the most

popularly used Bayes Information Criterion (BIC) as mentioned in [68] is

applied for its determination, which is:

BIC(k) = ln(Pk(X))− λd ln(N) (4.4.11)

whereBIC(k) represents the BIC value obtained for the k-component model,

ln(Pk(X)) represents the log likelihood value for the fitted k-component mix-

ture of Gaussians model, d is the number of free parameters in the mixture

model, N is the number of samples and λ is a control parameter to balance

the fitting of the data and the complexity of the model. For determining K,

different values are tested and the value which maximizes equation (4.4.11)

is taken as the number of components for the mixture of Gaussians model.

Overall, BIC ensures the constructed model is a reasonable fit to the data

whilst the complexity is not too high so that good generalization perfor-

mance can be guaranteed. Discussions of other model selection criteria can

be found in [69].
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Compared with the single Gaussian model, the mixture of Gaussians

model can fit a non-Gaussian distributed dataset more precisely; however,

the mixture of Gaussians model still assumes the data needed to be fit follows

a mixture of Gaussians distribution, which is unrealistic in many practical

cases. In the next sub-section, a more elegant OCSVM model is proposed

for which there is no assumption for a particular distribution that the data

should follow.

4.4.3 OCSVM model

The OCSVM is a more elegant data fitting method which is also described

in [70], the basic idea behind OCSVM model is that given a data set X =

[x1, ...,xN ] drawn from an underlying probability distribution P, the cor-

responding supporting region can be obtained by estimating a function f .

If a sample is obtained from the supporting region, both the distribution

probability value and the function f value are large; otherwise, small values

of distribution probability and f are obtained. Compared with the single

Gaussian model or mixture of Gaussians model, OCSVM is more flexible

because there is no assumption in OCSVM that the data needed to be fitted

should follow particular types of distributions (single Gaussian or mixture

of Gaussians).

As proposed in [70], the function f is in a linear form as:

f(x) = w · x− ρ (4.4.12)

for the data sample x. And in most cases, the data x is mapped into a

feature space with x→ Φ(x) in order to obtain a better non-linear result for

data fitting and equation (4.4.12) becomes:

f(x) = w · Φ(x)− ρ (4.4.13)
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In order to obtain the parameters w and ρ, the following quadratic prob-

lem needs to be solved based on the dataset X = [x1, ...,xN ]:

min
w,ξ,ρ

1

2
∥w∥2 + 1

νN

∑
i

ξi − ρ

subject to (w · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0 (4.4.14)

where ν ∈ (0, 1] and the nonzero slack variables ξ = [ξ1, ..., ξN ] are introduced

to allow for the possibility of outliers (the data points which are not drawn

from the supporting region), the range of i is from 1 to N .

Using multipliers αi, βi ≥ 0, where i = 1, ..., N , a Lagrangian function is

introduced as:

L(w, ξ, ρ, α, β) =
1

2
∥ w ∥2 + 1

νN

∑
i

ξi − ρ

−
∑
i

αi((w · Φ(x))− ρ+ ξi)−
∑
i

βiξi (4.4.15)

where α = [α1, ..., αN ] and β = [β1, ..., βN ]; the derivatives of the above

Lagrangian function with respect to w, ξ and ρ are set to zeros, which

yields:

w =
∑
i

αiΦ(xi)

αi =
1

νN
− βi ≤

1

νN∑
i

αi = 1 (4.4.16)



Section 4.4. Model methods used for representing fall activities 93

The results of (4.4.16) are substituted into (4.4.15), which are:

L(w, ξ, ρ, α, β) =
1

2
∥ w ∥2 + 1

νN

∑
i

ξi − ρ−
∑
i

αi((w · Φ(xi))− ρ+ ξi)−
∑
i

βiξi

=
1

2

∑
ij

αiαj(Φ(xi) · Φ(xj)) +
1

νN

∑
i

ξi − ρ−
∑
ij

αiαj(Φ(xi) · Φ(xj)) + ρ

− 1

νN

∑
i

ξi +
∑
i

βiξi −
∑
i

βiξi

= −1

2

∑
ij

αiαj(Φ(xi) · Φ(xj)) (4.4.17)

As mentioned in [50], a dual form of problem (4.4.14) is obtained by

maximizing (4.4.17) with respect to α considering the constraints of α in

(4.4.16), which is:

min
α

1

2

∑
ij

αiαjΦ(xi) · Φ(xj)

subject to 0 ≤ αi ≤
1

νN
,

∑
i

αi = 1 (4.4.18)

The problem (4.4.18) is a convex problem and can be solved by the

standard algorithm for solving the convex problem as mentioned in [50].

Instead of representing Φ(x) explicitly, the kernel technique [31] is applied

and a kernel function k(x,y) is used to represent the dot product of samples

in the feature space as:

k(x,y) = Φ(x) · Φ(y) (4.4.19)

and (4.4.18) is rewritten as:

min
α

1

2

∑
ij

αiαjk(xi,xj)

subject to 0 ≤ αi ≤
1

νN
,

∑
i

αi = 1 (4.4.20)

By introducing the concept of kernel, it is convenient to obtain the dot
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product of mapped samples without knowing their exact forms explicitly

and in this work, the popular Gaussian kernel is applied with:

k(x,y) = e
−∥x−y∥2

2σ2 (4.4.21)

where σ is the Gaussian kernel parameter.

As mentioned in [50], the solution of α in (4.4.20) (denoted as α∗) is

related to the solution of w in (4.4.14) (denoted as w∗) with:

w∗ =
∑
i

α∗
iΦ(xi) (4.4.22)

The solution of parameter ρ in (4.4.14) (denoted as ρ∗) can be estimated

from the Karush-Kuhn-Tucker (KKT) conditions as mentioned in [50], from

which the following equations hold:

α∗
i ((w

∗ · Φ(x))− ρ∗ + ξ∗i ) = 0

β∗i ξ
∗
i = 0 (4.4.23)

where ξ∗i and β∗i denote the i-th solutions of ξ and β for minimizing (4.4.14).

It can be observed from equation (4.4.23) that for a particular index i,

if α∗
i and β∗i are non-zero, the corresponding data sample xi satisfies:

ρ∗ = (w∗ · Φ(xi)) (4.4.24)

and from equation (4.4.16), w∗ is replaced with
∑

i α
∗
iΦ(xi), then

ρ∗ =
∑
i

α∗
i (Φ(xi) · Φ(xi))

=
∑
j

α∗
jk(xj ,xi) (4.4.25)

Finally, after α∗ and ρ∗ are obtained, the decision function (4.4.13) is



Section 4.4. Model methods used for representing fall activities 95

determined as:

f(x) =
∑
j

α∗
jk(xj ,x)− ρ∗ (4.4.26)

which is then used to model the dataset X, if the value of f(x) for a data

sample x is large, then the sample x is likely to come from the supporting

region where most samples of X come from.

Fuzzy OCSVM model

In the real world application, it is evident that a perfect dataset X can not

always be obtained, some samples would be outliers and less important than

other ‘good’ samples in the design of the OCSVM model. In order to reflect

the importance of different samples, each training data point is assigned

with an associated fuzzy membership and the training dataset becomes:

(x1, u1), ....., (xN , uN ), where N is the number of samples in the dataset. The

fuzzy membership ui which represents the likelihood of the corresponding

point xi belonging to the target class is calculated as proposed in [71]:

ui = 1− ||xi − xmean||
rtarget

(4.4.27)

where xmean represents the mean of the data sample from x1 to xN and

rtarget = maxi||xi − xmean||.

As proposed in [72], the constrained optimization problem of the fuzzy

OCSVM is formulated as:

min
w, h, ρ

1

2
∥ w ∥2 + 1

νN

∑
i

uihi − ρ

subject to (w · Φ(xi)) ≥ ρ− hi, hi ≥ 0 (4.4.28)

using a similar procedure as when solving the traditional OCSVM problem,
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the dual problem is obtained as:

min
α

1

2

∑
ij

αiαjk(xi,xj)

subject to 0 ≤ αi ≤ ui
1

νN
,

∑
i

αi = 1 (4.4.29)

from which the optimal value of α for the fuzzy OCSVM can be obtained

and the way of estimating ρ∗ is similar to the OCSVM case. In the end, the

decision function of fuzzy OCSVM can be obtained with the exact same form

as the OCSVM case in (4.4.26). Compared with the traditional OCSVM,

the fuzzy OCSVM assigns ‘good’ training samples with high weights and

outliers with low weights, which is more robust to noise and obtains a better

result under a noisy dataset as presented in the experimental section.

4.4.4 Model-based fall detection

For the particular fall detection problem, initially multiple fall activities are

simulated and 3D video features are then extracted from the video sequences

of fall activities to form the datasetX. Different models are constructed from

the dataset X and the constructed models are then used to distinguish fall

and non-fall activities. For a 3D video feature vector (denoted as x) of a

certain type of activity, if P (x) (the probability value for the single Gaussian

model or mixture of Gaussians model) or f(x) (the value of the estimated

function f of the OCSVM model) is high, then x is from the supporting

region corresponding to X and the corresponding activity is regarded as a

fall; otherwise, the activity is regarded as a non-fall activity. A threshold is

set and the following formula shows the criteria of detecting falls:

Activity =

 Fall Model V alue ≥ threshold

NonFall Model V alue < threshold
(4.4.30)
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where a threshold value is set and if the corresponding Model V alue (P (x)

or f(x)) is no less than the threshold for an extracted feature vector x, then

the corresponding activity from which the feature vector is extracted belongs

to fall activity; otherwise, the activity belongs to non-fall activity.

In this work, different threshold values are chosen and tested for all the

three models mentioned in this section for distinguishing fall and non-fall

activities; the corresponding results are compared and presented below.

4.5 Experimental Analysis

The experiments are performed in the Intelligent lab, Loughborough Univer-

sity. Two Basler A312fc cameras and the Streampix 5 software were applied

to capture the video sequences. And the recorded sequence was then pro-

cessed by VC++ 6.0 (with OpenCV 1.0) and Matlab R2010. Figure 4.7

shows the room scene captured by two cameras.

(a) (b)

Figure 4.7. The room’s scenes captured by two cameras. (a) the room
scene captured by camera 1; (b) the room scene captured by camera 2

4.5.1 Camera calibration and 3D person construction

For the calibration of each camera, a large chessboard is printed and adhered

to a plate, which is placed at a particular position in the room and captured

by the camera needed to be calibrated. The corner points of the chessboard

blocks are used for camera calibration, whose 3D world coordinates are con-

venient to calculate (the length and width of the chessboard plate are parallel
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to the world coordinate axes xw and yw) and the 2D image pixel coordinates

are obtained manually from the image. The chessboard images captured by

two cameras are presented in Figure 4.8 whose block corner points used for

camera calibration are marked as red stars. Both cameras’ parameters are

estimated from the corresponding points set and the estimated parameters

are shown in Tables 4.1 and 4.2.

Figure 4.8. The chessboard plate used for camera calibration with
the block corner points marked as red stars.

Table 4.1. Calibrated camera parameters for camera 1.
Parameters needed to be estimated Calibration results r1 r2 r3

r4 r5 r6
r7 r8 r9

  −0.7001 − 0.7105 − 0.0717
−0.1772 0.2563 − 0.9502
0.6935 − 0.6525 − 0.3053


[Tx, Ty , Tz ] (mm) [760.4500, 1122.9000, 5620.2000]

f(mm) 7.5100
k 0.0033
sx 0.9719

Table 4.2. Calibrated camera parameters for camera 2.
Parameters needed to be estimated Calibration results r1 r2 r3

r4 r5 r6
r7 r8 r9

  −0.4405 0.8959 0.0569
0.3853 0.1964 − 0.9016

−0.8190 − 0.3753 − 0.4318


[Tx, Ty , Tz ] (mm) [−1867.9000, 588.9082, 4325.1000]

f (mm) 6.2373
k 0.0028
sx 0.9462
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The 3D person is constructed by dividing the room space into 94×74×50

blocks along the xw, yw and zw axes of the 3D world coordinate and each

block has the size of 60mm × 60mm × 60mm. Figure 4.9 shows the 3D

person construction results for two different activities. Initially, codebook

background subtraction is applied on both cameras to obtain the moving ob-

ject, and the 3D person is then constructed from the background subtraction

results and the estimated camera parameters. After 3D person construction,

the 3D features are then extracted and the features corresponding to fall ac-

tivities are applied to build the models for fall detection.
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Figure 4.9. 3D person construction by using background subtraction
results from two cameras. (a) 3D construction result for standing (b)
3D construction result for lying

4.5.2 Model comparison results

In this part, the performances of three models–single Gaussian model, mix-

ture of Gaussians model and OCSVM model are compared on a synthetic
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dataset and the real dataset of extracted 3D features.

Data fitting for a synthetic dataset

An ‘X’ shape dataset is generated as presented in Figure 4.10 (a) and three

models are used to fit the dataset, the component number of the mixture

of Gaussians model is set to 2 (which is obtained by maximizing the BIC

criteria) and the parameters of the OCSVM model–ν and Gaussian kernel

parameter σ are set to 0.01 and 0.2 respectively. The fitting results are

presented in Figure 4.10 with the supporting region corresponding to this ‘X’

dataset is enclosed by black lines, which are obtained by the data description

toolbox [73]. From the fitting results of (b), (c) and (d) in Figure 4.10, it

can be observed that the estimated supporting region of OCSVM fits the

‘X’ dataset best.
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Figure 4.10. The comparisons of data fitting results for three models
on an ‘X’ shape synthetic dataset: (a) fitting result of single Gaussian
model (b) fitting result of mixture of Gaussians model (c) fitting result
of OCSVM model
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Fall detection results for a real dataset

To evaluate the performances of the three models for fall detection, two

datasets are recorded. Eight people were invited to participate in the exper-

iment and divided into two groups, each containing four people. One group

simulates 40 fall activities (including 10 frontal falls, 10 backward falls and

20 side falls and each fall activity lasts for 1-2 seconds), which are used to

compose a training dataset for model constructing. The other group simu-

lates 40 different fall activities and 40 non-fall activities (including 8 walking

actions, 8 rapid moving actions, 8 bending actions, 8 sitting actions and 8

lying actions), which are used for testing purpose. In this work, receiver

operating characteristic (ROC) analysis [66] is applied for different models.

Different thresholds are chosen and the true positive rate (TPR, which repre-

sents the percentage of falls which are correctly detected) and false negative

rate (FNR, which represents the percentage of non-falls which are wrongly

detected as falls) are calculated for these thresholds, and the results are plot-

ted as a ROC curve. Ideally, for a perfect fall detection system, TPR should

be 1 and FNR should be 0.

As proposed in [66], two criteria are used to evaluate the performance of

each model, they are:

1. AUC value—which denotes the area under the ROC curve, a larger

AUC value means a better performance of the corresponding model used for

detecting falls.

2. optimal TPR and FNR pair under a particular threshold, which max-

imizes the geometric mean–
√
TPR ∗ (1− FPR) whose range is [0, 1], for a

perfect system with unity TPR and FNR zero the corresponding value of

geometric mean is unity.

Three models are constructed from the 3D feature vectors extracted from

the training dataset (the component number of the mixture of Gaussians

model is chosen as 2 from the BIC criteria, the parameters ν and σ of the
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OCSVM are both set to 0.1), and the ROC curves results on the testing

dataset are presented in Figure 4.11. The AUC value, optimal TPR and

FNR values obtained from corresponding ROC curves are shown in Table 4.3.

From Table 4.3, it can be observed that the single Gaussian model achieves

the lowest AUC value indicating the worst performance among the three

tested models for distinguishing fall and non-fall activities; and its optimal

FNR is very large compared with that of the mixture of Gaussians model

and OCSVM model, which means many non-fall activities are mistaken as

fall activities. The mixture of Gaussian model achieves a higher AUC value

than the single Gaussian model and the optimal FNR value is much lower

than that of the single Gaussian model; however, its optimal TPR value is

the lowest, which means the number of detected fall activities is the least.

The OCSVM model achieves the best performance with a unity AUC value,

and the optimal TPR and FNR values of OCSVM model are unity and zero

respectively, all the fall activities are detected with no false detection.
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Figure 4.11. ROC curves for three models on the recorded dataset.
(a) ROC curve for single Gaussian model (b) ROC curve for mixture
of Gaussians model (c) ROC curve for OCSVM model
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Table 4.3. Comparison results for three different models
AUC value optimal TPR optimal FNR

single Gaussian model 0.8531 96.3% 15%
mixture of Gaussians model 0.9896 90% 1.3%

OCSVM model 1 100% 0%

4.5.3 Comparison of OCSVM and Fuzzy OCSVM

In the real case, a perfect training dataset can not be always obtained and

there will inevitably be some outliers. In the particular fall detection prob-

lem, the outliers mainly come from:

1. Poor background subtraction results due to sudden light change and

the similarity between the person’s clothes and background, which will gen-

erate wrong feature vector values.

2. Wrong labelling, sometimes extracted features from non-fall activity

will be labelled wrongly as fall activity features and used in the training

dataset for model construction.

In this work, 10% outliers are introduced to make an imperfect training

dataset. The corresponding OCSVM and fuzzy OCSVM models are then

compared on the imperfect dataset (the parameters ν and σ are both set

to 0.1). The comparison results are presented in Figure 4.12 and Table 4.4,

from which it can be observed that compared with the OCSVM model, the

AUC value of fuzzy OCSVM model is higher and its optimal FNR value is

lower, which means that fuzzy OCSVM can achieve better performance with

less non-fall activities being mistaken as fall activities under an imperfect

training dataset.

Table 4.4. Comparison results for OCSVM and fuzzy OCSVM models
based on a noisy dataset

AUC value optimal TPR optimal FNR
OCSVM model 0.9825 100% 10%

fuzzy OCSVM model 0.9944 100% 5%
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Figure 4.12. ROC curves for OCSVM and fuzzy OCSVM

4.6 Summary

This chapter proposed a fall detection scheme based on 3D features and a

data fitting model scheme. Cameras were calibrated by the popular Tsai

camera calibration method, a 3D person was then constructed from the

obtained codebook background subtraction results from two cameras. 3D

features, including the 3D position, velocity and orientation information

corresponding to fall activities were extracted to build the model for distin-

guishing fall activities and non-fall activities. Three types of models–single

Gaussian model, mixture of Gaussians model and OCSVM model were con-

structed and comparison results were presented in the experimental part,

which showed that the OCSVM model achieved the best performance; be-

sides, by introducing different weights to samples in the training dataset,

a fuzzy OCSVM was obtained which achieved a better performance if the

training dataset is contaminated by some outliers.

However, in order to obtain the 3D person construction results and ex-

tract the corresponding features more than one camera is used, which in-

creases the economical costs; besides, each camera needs to be calibrated and

the room dimension also needs to be measured beforehand, which causes in-

convenience in the real application. In order to obtain a simple but effective
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fall detection system, a 2D postures recognition based fall detection scheme

is next proposed, which uses only one camera and as compared with the

scheme proposed in Chapter 3, this scheme can effectively distinguish fall

activities and non-fall activities performed in different directions.



Chapter 5

TOWARDS A REAL HOME

APPLICATION: SUPERVISED

AND UNSUPERVISED FALL

DETECTION SYSTEMS

BASED ON POSTURE

FEATURES

5.1 Introduction

In this chapter, effective fall detection systems based on posture features are

proposed; more feature information and rules are utilized for fall confirma-

tion and improved versions of corresponding classifiers are constructed for

better classification purpose. The codebook background subtraction method

is used to segment the human body posture, with some new post-processing

techniques to obtain improved background subtraction results in a real home

environment. Some types of features which can be used to describe the seg-

mented human body posture are then extracted. Based on the obtained

106
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posture features, two types of fall detection systems are proposed. One is

to use a supervised multi-class classifier, for which the features from various

types of postures simulated by different persons are used to build a corre-

sponding supervised classifier for posture classification. The other is to use

an unsupervised classifier, for which the obtained features from one single

person’s normal postures are use to build a model and this model can then

be used to distinguish normal from abnormal postures. The results of the

multi-class classifier or model, together with some rules set according to the

characteristics of fall activities, can then be used for detecting whether a fall

happens or not. Experimental studies are used to assess the fall detection

performance in a real home environment.

5.2 Background subtraction revisit

In Chapter 3, an efficient codebook background subtraction algorithm was

applied to extract the moving object, and some post-processing techniques

(including a blob operation and a morphological technique) were applied to

obtain an improved background subtraction result. However, in a real home

environment, there are three problems:

1. Sometimes the furniture (chair or table) in the home environment will

be moved.

2. In some situations the person is static in the room for a long period

of time (such as sitting on a chair) and the static human body region will

be absorbed into the background.

3. The light condition will change dramatically when the light is turned

on/off.

These three problems will definitely generate large background subtrac-

tion errors, which can not be solved by the basic post-processing technique

as mentioned in Chapter 3. In order to obtain good background subtraction
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results when these problems occur, some other post-processing techniques

are applied.

5.2.1 Post-processing technique for selective updating

In this work, a three step blob operation strategy is adopted after the code-

book background subtraction procedure in order to remove the errors caused

by the movement of furniture and the long static period for an elderly person,

which is divided into:

Step1. Blob merging: firstly, a blob merging operation is applied on the

original background subtraction result. If the distance between two blobs is

less than a threshold, these two blobs will be merged (as shown in Figure 5.1

(d), the blobs B2 and B3 contain several separate blobs which are near to

each other respectively). The distance between two blobs is defined as the

minimum 4-distance [59] between two rectangles which enclose the blobs as

given by:

Distance(B1, B2) = minp1∈R1,p2∈R2d4(p1, p2) (5.2.1)

where B1 and B2 are two blobs, R1 and R2 are two rectangles which enclose

them, and p1 and p2 are points belonging to R1 and R2. Figure 5.2 shows

examples of the distance between two blobs with respect to their positions.

Step2. Human body blob determination: Small blobs after blob merging

are removed by the post-processing technique as mentioned in Chapter 3.

According to the number of remaining blobs and assuming that the elderly

person lives alone, so that normally there should be only one human moving

object, giving three cases:

case 1: the number of remaining blobs is zero, which means that no large

foreground object (human body) is in the scene and the room is empty.

case 2: the number of remaining blobs is one, which indicates that the

blob represents the human body region.
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B1 B2

B3

(a) (b)

(c) (d)

(e)

Figure 5.1. The background subtraction and the human body blob de-
termination. a) Background image; b) Image with object; c) Frame dif-
ference result obtained from two consecutive frames; d) Original back-
ground subtraction result, there are three large blobs (B1, B2 and B3)
after the blob merging operation and they are marked red, green and
yellow, and the blue colour represents the small noise-like blobs; e) The
final obtained human body blob.

case 3: the number of blobs after blob merging is more than one, which

suggests some other regions (such as the chair regions at the new and pre-

vious positions as shown in Figure 5.1 (d)) are mistaken as foreground. In

this case, the human body blob is determined by using the frame difference

technique as:

Dt(x, y) = |It(x, y)− It−1(x, y)| (5.2.2)

where It(x, y) and It−1(x, y) are the gray level pixel values of consecutive

frames It and It−1 at position (x, y), | · | denotes the operation to obtain the

absolute value and Dt(x, y) is the frame differencing result for the position

(x, y) at time t.
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Frame differencing is operated to obtain the moving pixels (shown in

Figure 5.1 (c)) and the blob with the greatest number of moving pixels is

taken as the human body blob. From Figure 5.1, it can be seen that the

blob B1 contains the most moving pixels and so B1 is finally taken as the

human body blobs.

Step3. Selective updating: The non-human body blobs are removed (as

shown in Figure 5.1 (e), B2 and B3 are removed from the final background

subtraction result) and their pixel values form new codewords to be added

to the background codebook immediately for background model updating.

And no updating is performed for pixels in the human body blob.

In this way, the errors generated by the movement of furniture are ab-

sorbed into the background model immediately, which obtains a better back-

ground subtraction result. Besides, the foreground human body object is not

absorbed into the background even though he/she is static for a long time.
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Figure 5.2. Four cases of the distance between two blobs with respect
to their relative positions
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5.2.2 Background model retraining for the sudden illumination

change

The trained background codebook model can be affected in various of ways,

such as dramatic global illumination change due to suddenly turning on/off

the light. In this situation, the codebook needs to be re-trained because the

previous codebook is no longer available. The dramatic global illumination

change can be detected by frame differencing results, if the percent of the

active pixels in an image is larger than a threshold (50% is set), then the

dramatic global illumination change is regarded to occur and the background

model is retrained.

By using selective updating and background model retraining, the prac-

tical problems (movement of the furniture, long time static for the elderly

person and sudden light change) existing in the real home environment can

be solved to obtain a better human body region extraction result, which is

used for the next step in the posture feature extraction.

5.3 Features used for posture description

The extracted human body postures can be described in details by certain

types of features. These can then be fed into some supervised or unsuper-

vised classifier for classification. In this work, two types of such features are

tested, they are projection histogram features and shape-structure features.

5.3.1 Projection histogram features

A widely used feature to describe the posture’s detail information is the

projection histogram, as mentioned in [32], [33] and [42]. This feature is

computationally efficient so that it can be applied in a real time applica-

tion, while achieving a good performance for posture classification purpose

of the supervised classifier. In this work, the projection directions of the
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corresponding projection histogram are along the major and minor axes of

the fitted ellipse as presented in Chapter 3. One example is as in Figure

5.3 where the projection histograms of the long and short axes of the fitted

ellipses are obtained for different types of postures. From the results, it can

be observed that there are differences in the patterns within the histograms

between different postures, which are helpful for posture classification.

The numbers of bins of the major axis projection and minor axis projec-

tion histograms are all set to 30 in this work, a value found empirically to

provide suitable detail whilst not introducing undue complexity. For partic-

ular bins of the projection histograms along the ellipse’s major and minor

axes, their values are calculated as in (5.3.1) and (5.3.2).

binmajor(i) =
NoFPmajor(i)

Lmajor
(5.3.1)

binminor(i) =
NoFPminor(i)

Lminor
(5.3.2)

where i is the index of bins, NoFPmajor(i) and NoFPminor(i) denote the

number of foreground pixels along the ith-projection line in the directions

of the major and minor axes respectively. The results are normalized by

Lmajor and Lminor, which represent the length of the major and minor axes.

The purpose of the normalization is to make sure this feature is invariant to

the size of the foreground human body region (which will vary according to

a person’s distance to the camera).

The projection histogram features, together with two features obtained

from the fitted ellipse result: the ratio between the major and minor axes

rho and the orientation angle theta can be applied for posture classification

by a supervised classifier and the results are presented in section 5.7.
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Figure 5.3. Projection histograms of four different types of postures.
(a) original frames (b) Background subtraction results with fitted el-
lipses and projection lines (c) Projection histograms along the major
axis of the ellipse (d). Projection histograms along the minor axis of the
ellipse. The horizontal axis of the projection histogram represents the
index of bins and the vertical axis represents the value of the projection
histogram.

5.3.2 Shape-structure features

Another type of feature describes the posture’s detail information by ana-

lyzing the posture’s shape and structure, which can be extracted with the
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method as proposed in [74]. Initially, the perimeter contour of a human

body posture is extracted by some contour detection method [59], which is

represented as a contourlist = [point1, ..., pointN ] where pointi is a particu-

lar point on the perimeter contour. One example of an extracted perimeter

contour is shown in Figure 5.4 (c).

Figure 5.4. The result of the perimeter contour detection, (a) original
image (b) background subtraction result (c) perimeter contour detec-
tion result.

Not all the points in the contourlist are necessary to represent a bound-

ary, only the points with high curvature are the ‘key points’ which determine

a boundary shape and these points form a more concise perimeter contour

representation. As presented in Figure 5.5, the shape of the star can be

totally determined by the high curvature points.

For a two-dimensional point p, its angle can be calculated by:

angle(p) = arccos
∥ p− p+ ∥2 + ∥ p− p− ∥2 − ∥ p+ − p− ∥2

2 ∥ p− p− ∥ × ∥ p− p+ ∥
(5.3.3)

where p+ and p− are selected from both sides of p along the boundary and

satisfy dmin ≤∥ p − p+ ∥≤ dmax and dmin ≤∥ p − p− ∥≤ dmax, where dmax

and dmin are chosen thresholds (which are taken as 1/20 and 1/30 of the

boundary perimeter respectively from the empirical study). If angle(p) is
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(a) (b)

Figure 5.5. The representation of key points: (a) shows the contour
points which are marked in green. Only the points with high curvature
are retained in (b), from which it shows these high curvature points
(‘key points’) are enough to determine the perimeter contour (the con-
nection of these ‘key points’ forms the boundary, which is marked in
blue.)

low then it means the curative of this point is high and this point is taken

as a ‘key point’. For two ‘key points’, their distance should be larger than

a proper threshold (chosen the same as dmin in this work) so that if several

points with low angle(p) are near to each other, only one representation

point is chosen as the ‘key point’.

The result of the extracted ‘key points’ set (denoted as V ) can be further

applied to extract the skeleton structure of a posture from the constrained

Delaunay triangulation technique. Assuming two adjacent ‘key points’ in the

set V are connected by an edge, a polygon is then formed with the vertices

being the ‘key points’ in V . If the set of interior points of V is denoted as

Φ, for a triangulation T ⊂ Φ with three vertices vi, vj and vk from the set

V , T is said to be a constrained Delaunay triangle if:

(i) vk ∈ Uij , where Uij = {v ∈ V |e(vi, v) ⊂ Φ, e(vj , v) ⊂ Φ} and e(a, b)

denotes the line segment by connecting points a and b.

(ii) C(vi, vj , vk)∩Uij = ∅, where C is a circum-circle of vi, vj and vk and

∅ denotes the empty set. That is, the interior of C(vi, vj , vk) does not have
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a vertex v ∈ Uij .

Based on the two conditions, an algorithm as proposed in [75] is applied

for obtaining the constrained Delaunay triangulation result for the set V ,

the procedure of this algorithm is presented in Table 5.1.

Table 5.1. The procedure for obtaining the constrained Delaunay trian-
gulation result.
1. Choose a starting edge e(vi, vj) from the polygon formed by V .

2. Find the third vertex vk of V that satisfies properties (i) and (ii).

3. Subdivide V into two sub-polygons: Va = {vi, vk, vk+1, ...., vi−1, vi}
and Vb = {vj, vj+1, ...., vk, vj}

4. Repeat Steps 1–3 on Va and Vb until the processed polygon consists
of only one triangle.

The skeleton can then be extracted from the constrained Delaunay tri-

angulation result by connecting the centroid of neighboring triangulations.

An example of the skeleton structure extraction is presented in Figure 5.6.

The constrained Delaunay triangulation result for a standing posture is ob-

tained and the corresponding skeleton is then extracted by connecting the

neighboring triangulations’ centroid.

(a) (b) (c) (d)

Figure 5.6. The extraction of the posture of a human body skeleton,
(a) the original image (b) background subtraction result (c) the result of
the constrained Delaunay triangulation and (d) the extracted skeleton
by connecting the triangular centroid.

The centroid of the constrained Delaunay triangles which determine a
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posture’s skeleton, together with the ‘key points’ set on the boundary can

be used as information to describe the posture. As in [74], an accurate and

efficient single centroid context shape descriptor is applied to ‘summarize’

the information to obtain the corresponding shape-structure features. Ini-

tially, the center of gravity of the whole human body posture is calculated;

then fixing this centroid point as the origin, a polar coordinate system is

constructed, which is equally divided into m shells and n sectors to form

m × n bins (m and n were chosen as 8 and 30 respectively on the basis of

empirical study), as seen in Figure 5.7 (d). An m × n histogram is then

constructed to obtain the spatial distribution of points. Different from [74],

in this work two modifications on the histogram construction procedure are

made:

(1) Not only are the triangular centroid points used for histogram con-

struction, but the ‘key points’ are also applied so that the constructed his-

togram can reflect both the skeleton structure and perimeter contour infor-

mation.

(2) Instead of simply calculating the number of points in each bin for

histogram construction, an improved strategy is applied to get a more ac-

curate histogram result: for a point (either the ‘key point’ on the perimeter

contour or the triangle’s centroid), if it is in the kth bin, then histogram

values are updated as:

hnew(k) = hold(k) + 1 (5.3.4)

hnew(kneighbors) = hold(kneighbors) + 0.5 (5.3.5)

where hnew(k) and hnew(kneighbors) represent respectively new histogram

values of the kth bin and its neighbors after updating, and hold(k) and

hold(kneighbors) represent old values; initially the histogram values are set to
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zero.

The obtained histogram is finally normalized to make sure the summa-

tion of the values of all bins is unity and the normalized histogram is ob-

tained as the shape-structure feature which gives a detailed posture descrip-

tion. Figure 5.7 (e) shows the corresponding histograms for four postures of

standing, sitting, bending and lying. The shape-structure feature, the ratio

between the major and minor axes rho and the orientation angle theta ob-

tained from the ellipse fitting results as shown in Chapter 3 and the centroid

of the human body posture (which provides the position information) are

together used for building an unsupervised model used for distinguishing fall

activities and non-fall activities.

5.4 Supervised and unsupervised learning methods

The obtained features for describing postures can then be fed into the su-

pervised classifier for the detection of different postures or a unsupervised

model to distinguish normal and abnormal postures. In this section, some

supervised and unsupervised learning methods are introduced.

5.4.1 Support vector machine based supervised classifier

Two class support vector machine

A support vector machine (SVM) is a recently emerging classification tech-

nique. As proposed in [76], an SVM is based on statistical learning theory

and it has good generalization performance compared with the traditional

classification methods, such as the nearest neighbour method and neural net-

work based techniques. For a two class classification problem with the train-

ing dataset:{xi, yi}, yi ∈ {−1, 1},xi ∈ Rd, a hyperplane h(x) = w ·Φ(x) + b

in a particular feature space is estimated to separate these two classes while

making the margin (the smallest distance between the hyperplane and any
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Figure 5.7. Histograms for four postures obtained from centroid con-
text descriptor. (a) the original images for four postures (stand, lie, sit
and bend) (b) the background subtraction results with postprocessing
(c) the extracted skeleton (marked as blue) and points (including the
‘key points’ on the contour and triangular centroid, marked as red) (d)
the polar coordinate system, which is composed of 8 shells and 30 sec-
tors, total 240 bins (e) the finally obtained histograms, the horizontal
axis represents the indices of bins and the vertical axis represents the
values of the bins.

of the samples) maximum, as presented in Figure 5.8.

In order to obtain the hyperplane, the following quadratic problem needs
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h(x)=w· φ(x)+b

m
argin

Figure 5.8. The illustration of a hyperplane to separate samples from
two classes (white and black) in a particular feature space.

to be solved to obtain the hyperplane’s parameters w and b:

min
w,ξ,b

1

2
∥w∥2 + C

∑
i

ξi

subject to yi(w · Φ(xi)− b) ≥ 1− ξi, ξi ≥ 0 (5.4.1)

where w and b are the parameters determining a hyperplane, ξ = [ξ1, ..., ξN ]

are slack variables to cope with noise, C is called a penalized parameter

which balances the noises and the margin and Φ(·) is a mapping operation

which maps the original sample into a feature space for better separation

purpose as mentioned in [76] and [31].

Similar to the case of OCSVM as mentioned in Chapter 4, a Lagrangian

function L is obtained by introducing multipliers α = [α1, ..., αN ], β =
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[β1, ..., βN ] as:

L(w, ξ, b, α, β) =
1

2
∥ w ∥2 +C

∑
i

ξi −
∑
i

αi(yi(w · Φ(xi) + b)− 1 + ξi)−
∑
i

βiξi

(5.4.2)

The derivatives of the above Lagrangian function with respect to w, ξ

and b are set to zeros, which yields:

w =
∑
i

αiyiΦ(xi)

αi = C − βi∑
i

αiyi = 0 (5.4.3)

From the results of (5.4.3), the Lagrangian function L in (5.4.2) then

becomes:

L(w, ξ, b, α, β) =
1

2
∥ w ∥2 +C

∑
i

ξi −
∑
i

αi(yi(w · Φ(xi) + b)− 1 + ξi)−
∑
i

βiξi

=
1

2

∑
ij

αiαjyiyjΦ(xi) · Φ(xj) + C
∑
i

ξi −
∑
ij

αiαjyiyjΦ(xi) · Φ(xj)

− b
∑
i

αiyi +
∑
i

αi −
∑
i

αiξi −
∑
i

βiξi

= −1

2

∑
ij

αiαjyiyjΦ(xi) · Φ(xj) +
∑
i

αi (5.4.4)

According to [50], a dual form of the problem (5.4.1) is obtained by

maximizing (5.4.4) with respect to α considering the constraints of α in

(5.4.3), which is:

max
α

− 1

2

∑
ij

αiαjyiyjΦ(xi) · Φ(xj) +
∑
i

αi

subject to 0 ≤ αi ≤ C,
∑
i

αiyi = 0 (5.4.5)

which corresponds to the OCSVM case in Chapter 4; a Gaussian kernel
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function k(x,y) is applied to replace the dot product of samples in the

feature space (Φ(x) · Φ(y)), thus (5.4.5) is rewritten as:

max
α

− 1

2

∑
ij

αiαjyiyjk(xi,xj) +
∑
i

αi

subject to 0 ≤ αi ≤ C,
∑
i

yiαi = 0 (5.4.6)

and the Gaussian kernel is applied in this work.

From the relationship of w and α as mentioned in (5.4.3), the solution of

α in (5.4.6) (denoted as α∗) is related to the solution of w in (5.4.1) (denoted

as w∗) with:

w∗ =
∑
i

α∗
i yiΦ(xi) (5.4.7)

The solution of parameter b in (5.4.1) (denoted as b∗) can be estimated

from the Karush-Kuhn-Tucker (KKT) conditions as mentioned in [50], from

which it follows that:

α∗
i (yi(w

∗ · Φ(xi) + b∗)− 1 + ξ∗i ) = 0

β∗i ξ
∗
i = 0 (5.4.8)

where ξ∗i and β∗i denote the i-th optimal solutions of ξ and β.

If α∗
i ̸= 0 and β∗i ̸= 0, then from the KKT conditions in (5.4.8):

b∗ = yi −w∗ · Φ(xi) (5.4.9)

and if w∗ is replaced with
∑

i α
∗
i yiΦ(xi) by (5.4.7), then

b∗ = yi −
∑
j

α∗
jyj(Φ(xj) · Φ(xi))

= yi −
∑
j

α∗
jyjk(xj ,xi) (5.4.10)

Finally, after α∗ and b∗ are obtained, the hyperplane can be determined
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as:

h(x) =
∑
i

α∗
i yik(xi,x) + b∗ (5.4.11)

the value of h(x) is then used to determine to which class the sample x

belongs. For an incoming test sample x, if h(x) ≥ 0, then the corresponding

symbol y is then determined as +1 and x belongs to the ‘+1’ class; or else,

the symbol value is -1 and x belongs to the ‘−1’ class.

Directed acyclic graph support vector machine (DAGSVM) for multi-class clas-

sification

The traditional two-class SVM can only solve the two-class separation

problem and several schemes have been applied to solve the multi-class clas-

sification problem, the representative ones are one-versus-one (1-v-1) [77]

and one-versus-rest (1-v-r) [76]. Compared with these two methods, Platt et

al. [1] proposed a concept of directed acyclic graph support vector machine

(DAGSVM), which has a theoretically defined generalization error bound

and it is more efficient than 1-v-1 and 1-v-r schemes with respect to the

training and computation time.

As mentioned in [1], the DAGSVM is equivalent to operating on a list,

which is initialized with all classes. For an incoming sample x, it is evaluated

by the two-class support vector machine corresponding to the first and last

class element. After the evaluation by the two-class support vector machine,

the sample x is determined to be one of the two classes and the class element

that x does not belong to will be eliminated from the list. This procedure

is repeated until only one class element remains in the list and this class

element is taken as the class to which x belongs. In this way, it can be seen

that for a problem with N classes, N-1 decisions will be evaluated in order

to derive an answer.

An example of the decision procedure of the DAGSVM for a four class
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classification problem is shown in Figure 5.9, which presents a tree-like struc-

ture and each node in this structure corresponds to a two-class SVM. The

decision process just follows the structure and is based on a sequence of

two-class operations, a decision is made when a bottom node is reached.

Figure 5.9. The decision process for the traditional DAGSVM for a four
class problem [1]

As for all other classifiers, an indispensable step for training the DAGSVM

classifier is to determine optimal parameters so that the classifier can achieve

the optimal performance. There are two sets of parameters needed to be

tuned for the DAGSVM classifier:

1) The list sequence for the DAGSVM, which is equivalent to the se-

quence of different two-class support vector machines for making a decision

as shown in Figure 5.9; the list sequence is related to the performance of the

DAGSVM and a proper list sequence is needed to guarantee good perfor-

mance.

2) The parameters of each two-class SVM node, including the kernel

parameters (Gaussian kernel is used here for non-linear classification) and

the penalty parameter in the two-class SVM scheme.
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Traditional cross-validation [31] can be used to find the optimal param-

eters, but it is time consuming when the number of parameters needed to

be tuned is large. In this work, a new parameter optimization scheme is

proposed to reduce the training time to a large extent.

For tuning the kernel parameters, the concept of distance between two

classes (DBTC) is exploited, as shown in [78]. The calculation of DBTC in

a feature space with n1 and n2 samples for two classes is defined as follows:

DBTC = ∥mΦ
1 −mΦ

2 ∥2

= (mΦ
1 −mΦ

2 )
T (mΦ

1 −mΦ
2 )

=
1

n21

n1∑
i=1

n1∑
j=1

k(x1,i,x1,j) +
1

n22

n2∑
i=1

n2∑
j=1

k(x2,i,x2,j)

− 2

n1n2

n1∑
i=1

n2∑
j=1

k(x1,i,x2,j)

(5.4.12)

where k(x,y) is the kernel function mentioned previously and mΦ
1 , m

Φ
2 are

the means of the two classes in the feature space: mΦ
1 = 1

n1

∑n1
i=1Φ(x1,i)

and mΦ
2 = 1

n2

∑n2
i=1Φ(x2,i).

For the Gaussian kernel used in this work, the following equation holds:

DBTC = (2− 2

n1n2

n1∑
i=1

n2∑
j=1

k(x1,i,x2,j))

− 1

2
(2− 2

n21

n1∑
i=1

n1∑
j=1

k(x1,i,x1,j))

− 1

2
(2− 2

n22

n2∑
i=1

n2∑
j=1

k(x2,i,x2,j))

=
d(C1, C2)

n1n2
− d(C1, C1)

2n21
− d(C2, C2)

2n22

(5.4.13)

where d(Ci, Cj) is calculated as: d(Ci, Cj) =
∑

x∈Ci
∑

y∈Cj ∥Φ(x)−Φ(y)∥2,

which measure the distance between two classes.
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From Eq. (5.4.13), it can be observed that a large DBTC value means a

large inter-distance value d(Ci, Cj) and small intra-distance values d(Ci, Ci)

and d(Cj , Cj), which means the two classes have high separation level.

For each two class SVM, the optimal Gaussian kernel parameter can

then be obtained by maximizing the DBTC value between the correspond-

ing two classes, which reduces the training time because compared with the

traditional cross-validation method [67] to tune this parameter, the time con-

suming two-class SVM training procedure is avoided. The cross-validation

method is still applied to tune the penalty parameter of the two-class SVM.

Assuming that the parameters for every two-class SVM node have al-

ready been tuned, the two-class SVMs are trained and the DBTCs are cal-

culated under the tuned parameters to obtain two lists:

DBTClist = DBTC1,1, .., DBTC1,n, .., DBTCi,i+1, .., DBTCi,n, .., DBTCn−1,n

SVMlist = SVM1,1, .., SVM1,n, .., SVMi,i+1, .., SVMi,n, .., SVMn−1,n

(5.4.14)

For an incoming sample, the sequence of different two-class support vec-

tor machines for making a decision is determined by DBTClist, which is

summarized in Table 5.2 and a four class example is presented in Figure

5.10.
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Table 5.2. Optimal sequence of two-class support vector machines for
decision making
Optimal sequence for decision making
Step1. Initially, the largest value in the DBTClist is chosen.
Assuming the largest value is DBTCx,y, SVMx,y is then used to make a decision.

Step2. After the decision, one class is eliminated. Assuming the eliminated class is x,
all the DBTCs and SVMs whose indexes contain x will be eliminated from the
DBTClist and SVMlist.

Step3. Choosing the largest value among the DBTC values whose index contain y
for the remaining elements in the DBTClist. And the corresponding SVM
in the SVMlist will be applied for the second round classification.

Step4. Repeating step 2-3, until one element is left in DBTClist and SVMlist,
and the final classification is then made.

The procedure in Table 5.2 guarantees that at every step, the two classes

used to build up the two-class SVM for classification are always the most

separable (with the largest DBTC value in the current DBTClist), thus

good generalization performance can be achieved. Another advantage of

this decision making scheme is that it avoids the trial of every possible list

sequence of DAGSVM for cross validation, thus greatly saving the parameter

optimization time.

For the particular fall detection problem, the projection histogram fea-

tures of a posture and features obtained from the posture’s ellipse fitting

result (the ratio between the major and minor axes rho and the orientation

angle theta) are used for DAGSVM construction or posture classification.

This sub-section proposes a supervised classification method of classi-

fying different types of postures for fall detection; in the next sub-section,

another unsupervised method is proposed, which constructs a model from

extracted features for distinguishing normal and abnormal postures.
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Figure 5.10. The decision process for the DAGSVM based on the DBTC
values for a four class example, the DBTC value between classes i and j is
denoted as Dij .

5.4.2 Unsupervised online OCSVM

A one class support vector machine (OCSVM) is applied in this work for

building the model corresponding to normal postures after the features are

extracted, and the obtained model is then used to distinguish normal and

abnormal postures for further fall detection. The concept of one class sup-

port vector machine (OCSVM) was proposed in Chapter 4, which is an

efficient data fitting method. Given a dataset X = [x1, ...,xN ] drawn from

an underlying probability distribution P, the OCSVM obtains the support-

ing region from which the samples in the dataset X are most likely to lie

by estimating a function f . If a sample x is from the supporting region,

the function f value is large; otherwise, a small value of f is obtained. In

Chapter 4, a batch learning algorithm is applied to obtain the function f

(which means estimating f from a particular training dataset); however, this

batch learning scheme is not a good choice for the practical application of
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fall detection due to the following reasons: firstly, the computational time

of the batch learning method is very long and it is inadequate to be used

on a large training dataset, which is necessary for constructing the model

of normal postures in the practical application; secondly, the batch learning

method is a one-time solution, all the training samples need to be gathered

during the training phase and the trained OCSVM is kept unchanged after

training, which contradicts the situation when an infinite datastream with

varying data distribution is encountered in the real-time application. So, in-

stead of a batch learning method, an online learning method ( [75] and [79])

is applied for OCSVM model construction.

Online learning algorithm

As it is mentioned in [75] and [79] for the online learning scheme, at time

instance t, f can be explicitly represented as by the samples x1, ...,xt−1 as:

ft =

t−1∑
i=1

αik(xi, ·) (5.4.15)

where xi, i = 1, ..., t − 1 are the incoming samples before time t and k(x, ·)

is a kernel function.

The online OCSVM algorithm is operated in a sample-by-sample way,

when a new sample xt arrives, the online OCSVM algorithm finds a new set

of coefficients αi, i = 1, ..., t to determine a new function ft+1 =
∑t

i=1 αik(xi, ·).

This can be achieved by minimizing a modified regularized risk for the online

scheme as proposed in [75]:

R(f) =
1

2
∥ f − ft ∥2H +η(

λ

2
∥ f ∥2H +C · (γ − f(xt))+) (5.4.16)

where ∥ · ∥2H means the reproducing kernel Hilbert space (RKHS) distance

[79] and (·)+ is used to represent max{·, 0}, the first term measures the

RKHS distance of f from the previous predicted function and the second
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term is the traditional regularized risk, which controls the complexity of

f and the convex loss for the sample xt. Due to the convex property of

R(f), the optimal ft+1 can be found by setting the gradient of R(f) to

zero, by some algebraic operations as mentioned in [75], the optimal ft+1 is

represented as:

ft+1 =
1

1 + ηλ
ft −

C

1 + ηλ
βtk(xt, ·) (5.4.17)

where βt ∈ [−1, 0] and normally η is set to one. An auxiliary variable

τ = λ
1+λ is introduced and ft+1 is rewritten as:

ft+1 = (1− τ)ft − (1− τ)Cβtk(xt, ·) (5.4.18)

Note previously, ft+1 is represented as the following form:

ft+1 =

t∑
i=1

αik(xi, ·) (5.4.19)

By comparing (5.4.18) and (5.4.19), it can be observed the coefficients

of ft+1 can be updated as:

αi = (1− τ)αi, i = 1, ..., t− 1

αt = −(1− τ)Cβt (5.4.20)

Moreover, as discussed in [75] and [79], for the optimal αt, γ−ft+1(xt) =

0 is needed to minimize the convex loss (γ− f(xt))+ in (5.4.16), which leads

to:

γ − ((1− τ)ft(xt) + αtk(xt,xt)) = 0 (5.4.21)

and the optimal αt is calculated as:
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αt =
γ − (1− τ)ft(xt)

k(xt,xt)
(5.4.22)

From the above derivations, the coefficients of ft+1 can be updated for

a new incoming sample xt using (5.4.20) and (5.4.22). Note, αt must be

truncated into the range of [0, (1 − τ)C] if it lies outside this range after

(5.4.22). As time increases, the number of samples determining the OCSVM

function f will become very large, which will lead to memory overload. So

in the real application, the previous samples whose coefficients become lower

than a small threshold need to be deleted as f updates.

For the obtained f at a time instance t, whether the next incoming

sample xt+1 comes from the supporting region corresponding to the previous

samples can be determined by:

D(xt+1) =

 1 γ − f(xt+1) ≤ threshold

0 otherwise
(5.4.23)

where D(·) is an indication function, D(xt+1) = 1 implies the sample is

from the supporting region; otherwise, the sample is not from the support-

ing region and is taken as an outlier. The value of γ − f(xt+1) is calculated

and compared with a preset threshold to make a decision. In the experi-

mental results, the receiver operation characteristic (ROC) analysis of the

proposed fall detection system’s performance is presented by choosing dif-

ferent thresholds.

Kernel selection for normal posture model construction: A proper kernel

needs to be chosen for the implement of the OCSVM. In this work, the most

popular RBF kernel [76] is applied to obtain a non-linear model boundary

for a better distinguishing result of normal and abnormal samples. The form

of RBF kernel can be represented as (5.4.24):
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k(F1,F2) = exp(−γ · d(F1,F2)) (5.4.24)

where γ is defined as the kernel parameter and d(F1,F2) measures the dis-

tance between two vectors F1 and F2, normally, Euclidean distance is ap-

plied. In this work for modelling postures, different types of features (ellipse

features, shape-structure features and position features) are concatenated

into one feature vector as F = [fe, fs, fp] for OCSVM model construction,

where F is the finally concatenated feature vector, fe, fs and fp represent the

ellipse features, shape-structure features and position features respectively.

For different types of features, the scales are different (for example, the

shape-structure histogram values will always be less than one and for the

position feature, the value will be much larger). In this case, it is not proper

to apply the Euclidean distance because the small scale features will be

omitted and therefore the distance between two feature vectors F1 and F2

is measured in the following way:

d(F1,F2) = w1·DEuclidean(fe1, fe2)+w2·DBhattacharyya(fs1, fs2)+w3·DEuclidean(fp1, fp2)

(5.4.25)

where DEuclidean is the normal Euclidean distance and DBhattacharyya is the

Bhattacharyya distance [59] measuring the distance between histograms.

Distances between different types of features are calculated and summed

in a weighted form (weighted by the set w1, w2 and w3) to compensate for

different scales of different types of feature.

By substituting (5.4.25) into (5.4.24), the final kernel form is obtained

as:
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k(F1,F2) = exp(−γ · d(F1,F2))

= exp(−γw1 ·DEuclidean(fe1, fe2)) + exp(−γw2 ·DBhattacharyya(fs1, fs2))

+ exp(−γw3 ·DEuclidean(fp1, fp2))

= exp(−c1 ·DEuclidean(fe1, fe2)) + exp(−c2 ·DBhattacharyya(fs1, fs2))

+ exp(−c3 ·DEuclidean(fp1, fp2)) (5.4.26)

here c1, c2 and c3 are used to replace γw1, γw2 and γw3 and this RBF

kernel based on the weighted summation of different distances is used in

implementation of the OCSVM model for normal postures.

5.5 Rules used for fall detection

After classifying a particular posture by a supervised classifier or determining

whether a posture is a normal one or not by an unsupervised classifier, some

rules can be used to further confirm whether a fall happens or not, these

rules and the results obtained from postures are used together to achieve a

robust fall detection system.

5.5.1 Rules used for supervised fall detection

After obtaining the posture class by using a supervised classifier, a fall ac-

tivity is determined if the following three rules are met:

1) The posture is classified as ‘lie’ or ‘bend’.

2) The posture is inside the ground region.

3) The above two conditions are kept for a certain time, which exceeds

a preset time threshold (20s is used).

The three rules are set according to the characteristic of fall activity, in

most cases, fall activities end up with a ‘lie’ posture and this ‘lie’ posture
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usually remains for a certain time due to the period of immobility of an

elderly person after the fall. Moreover, different from lying on the bed/sofa,

the posture should be inside the ground region (or at least a large part is

inside the ground region). And considering that an elderly person rarely

‘bends’ for a long time in the ground region (here the ‘bend’ class is defined

as postures of bending to fasten a shoe lace or bending to pick up some-

thing, which is very common to occur in an elderly person’s daily life), if a

‘bend’ posture is detected in the ground region for a certain time, it is also

regarded as an abnormal activity (this can happen when an elderly person

falls while ending up with a bend-like posture, an example will be given in

the experimental section).

In order to detect falls by the three rules, the ground region needs to

be determined initially. Before the fall detection phase, floor detection is

carried out. In this phase, when the posture is classified as stand or sit, the

region nearby the lower extreme point of the ellipse (an 8× 8 block is used

here) is marked as the ground region. Figure 5.11 shows the result of floor

detection.

Note, as shown in (d) and (e), sometimes the furniture is moved and

the floor region has to be updated accordingly. The detected floor region

is extremely helpful to distinguish a fall on the floor from lying on a sofa,

which is shown in the experimental part.

5.5.2 Rules used for unsupervised fall detection

Two rules are used together with the OCSVM model constructed for de-

scribing normal postures to achieve a robust fall detection system, they are:

1) A fall is only reported when a large movement is detected. In Chapter

3, a measurement of the amplitude of movement is proposed by using the

motion history image (MHI); however, the frame difference results used to

construct the MHI are easily affected by noise and illumination change in
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B1

B2

(a) (b) (c)

(d) (d)

Figure 5.11. The floor detection results. a) Original image; b) De-
tected floor region while a person is walking; c) Floor detection result
after some time; d) More than one blob after the furniture is moved, the
moving blob (human body) is marked in red, the static blob (furniture)
is marked green; e) The updated floor region result after moving furni-
ture. The region nearby the new position of the furniture is unmarked
and that nearby the person’s feet is marked as the floor region.

the environment. In this work, a new measurement is proposed based on the

motion energy image (MEI) [80]. The amplitude of movement is measured

by the area ratio (denoted as AR) between the area of certain number of

MEI frames and the area of the current frame’s foreground region. One

example is shown in Figure 5.12, from this figure, it can be observed for

a large movement, fall activity has a larger AR value than the other three

types of activities (walking, sitting and bending).

In a video sequence, a sliding window method is applied to estimate the

AR value for each frame, which is illustrated in Figure 5.13. For a particular

frame Ft, the AR value is calculated as the ratio between the area of the

MEI of the frames in the sliding window and the area of the Ft’s foreground

region. For the next time, the sliding window moves forward over one frame
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(a) (b) (c) (d)

Figure 5.12. The movement amplitude measurement for four activi-
ties. The first line shows the original images and the second line shows
the MEI results (non-black region with the current images’ foreground
regions marked as gray). The calculated AR values are: (a) walking,
AR=1.13 (b) sitting, AR=1.28 (c) bending, AR=1.34 and (d) falling,
AR=1.67.

and the new AR value is calculated, which is compared with the previous one

and the larger value is then retained. The final AR value of Ft is obtained

when the sliding window passes over this frame (as shown in Figure 5.13

(e)), which reflects the largest movement around this frame. In this work,

a threshold of 1.5 (chosen by empirical study) is set on the AR value for

distinguishing large and small movements.

2) Normally after an old person falls, he/she will be most likely to lie

on the ground for a certain time interval. So, a fall is reported only if the

abnormal posture lasts longer than a time interval (20s is used but this could

be tuned in application), this will avoid occasional abnormal postures which

do not last for a predifined threshold (such as bending to fasten the shoe

ties).

By using these two rules, better performance can be achieved than when

using only the OCSVM model for abnormal posture detection with the less

number of non-fall activities being taken as fall activities, the corresponding

experimental results are presented in the experimental section.
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FtFt-1 Ft+1

FtFt-1 Ft+1

FtFt-1 Ft+1

FtFt-1 Ft+1

FtFt-1 Ft+1

Sliding Window

12345

Sliding Window

12345

Sliding Window

12345

Sliding Window

12345

Sliding Window

12345

AR1(Ft)=AREA(MEISliding window)/AREA(Ft)
AR2(Ft)=max(AR1(Ft),AREA(MEISliding window)/AREA(Ft))
AR3(Ft)=max(AR2(Ft),AREA(MEISliding window)/AREA(Ft))
AR4(Ft)=max(AR3(Ft),AREA(MEISliding window)/AREA(Ft))
AR5(Ft)=max(AR4(Ft),AREA(MEISliding window)/AREA(Ft))

Figure 5.13. Estimation of the AR value for a frame using a sliding
window (a length of five). At each time, the sliding window moves
forward over one frame and the AR value for frame Ft is calculated
as the maximum value between the new calculated AR value and the
previous one. The final AR value (AR5) is obtained when the sliding
window passes over the frame.

5.6 The supervised and unsupervised fall detection systems

The supervised and unsupervised classifiers for posture classification, to-

gether with the corresponding rules are used to construct robust fall de-

tection systems for fall detection, which are presented in Figures 5.14 and

5.15.

Figure 5.14 shows the fall detection system based on supervised posture

classification method. An efficient codebook background subtraction algo-
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Figure 5.14. The flow chart of the proposed supervised DAGSVM
classifier based fall detection system.

rithm is initially applied to extract the human body foreground and some

post-processing is applied to improve the results. From the extracted fore-

ground silhouette, features are extracted from the fitted ellipse and projec-

tion histogram, which are used for classification purposes. These features are

fed into the DAGSVM (which is trained from a dataset containing features

extracted from different postures in different orientations) and the extracted

foreground silhouette is classified as one of four different postures (bend, lie,

sit and stand). The classification results, together with the detected floor

information, are then used to determine fall or non-fall activities.

Figure 5.15 shows the fall detection system based on the online OCSVM

model. Firstly, the codebook background subtraction method is applied

to extract the human body silhouette and some post-processing is applied
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Figure 5.15. The flow chart of the proposed unsupervised online
OCSVM based fall detection system.

to improve the results. In order to describe fully the posture, three types

of features, including ellipse features, shape structure features and position

features are extracted. After the extraction of these features, an online

OCSVM is then applied to describe the normal region described by these

features, which can be updated to adapt to new postures. To further improve

classification performance, two rules are added, one rule is to measure the

amplitude of the movement, if there is not a large movement, a fall will not be

reported even though abnormal postures are detected by the online OCSVM.

The other is the duration of an abnormal posture; a fall is reported only if

the duration of an abnormal posture is longer than a threshold, which will
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effectively avoid false alarms when the person occasionally bends quickly. By

combination of the online OCSVM and these two rules, good performance

can be achieved as will be shown in the later experimental analysis section.

If no fall is detected, normal postures are then used to update the normal

OCSVM model in order to adapt to new normal postures.

The evaluations of performance of these two fall detection systems are

presented in the experimental part.

5.7 Experimental analysis

The performances of the proposed supervised and unsupervised fall detection

systems are next presented. The experiments were carried out in a simulated

home environment. A USB camera was used for recording the real video

sequence with the image size of 320 × 240, the recorded video sequence is

processed by using VC++ 6.0 (with OpenCv library 1.0) and MATLAB

on an Intel(R) Core(TM)2 Duo CPU laptop with 1.00GB Memory. Figure

5.16 shows the camera used in the experiment and the background image it

records.

Figure 5.16. The USB camera used in the experimental room envi-
ronment (a) and the experimental environment (b)
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5.7.1 Background subtraction results

Some background subtraction results in this more realistic home environment

are shown in Figures 5.17, 5.18 and 5.19, in which three challenging scenarios

which occur commonly in a home environment are analyzed. Initially, a

short video clip which contains 100 frames is applied for training the original

background model, which will be updated with the evolution of time.

Figure 5.17 shows the background subtraction results at different times

of day with gradual light change. Images (a) and (c) show a frame captured

at noon time and the corresponding background subtraction result. The

background model is updated to cope with the gradual light change and the

results are shown in (b) and (d), where (b) is a frame captured later in the

afternoon and (d) is the background subtraction result with the updated

background model.

Figure 5.17. Background subtraction results at different times of a
day; (a) and (c) show an original frame captured at noon time and the
corresponding background subtraction result; (b) is a frame captured
in the afternoon with the light condition changed and (d) is the back-
ground subtraction result of (b) with the updated background model.

Figure 5.18 shows the background subtraction results in the presence of

moving objects. Line (a) shows four frames sampled in a short video se-
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quence, which shows that a person moves the table and fruit plate. Line (b)

shows the background subtraction results by directly applying the codebook

background subtraction method. It can be seen that there are many seg-

mentation errors due to the movement of the table and fruit plate. Frame

differencing results are shown in line (c), which indicate active pixels and help

to find the active blob representing the human body. By the post-processing

technique as discussed in Section 5.2, improved background subtraction re-

sults are obtained in line (d).

Figure 5.18. Background subtraction results for moving furniture.
Line (a) shows original frames of a person moving the table and fruit
plate. Codebook background subtraction results are shown in line (b).
Line (c) shows the frame differencing results which indicate active pix-
els. From the frame differencing results and blob operations, improved
background subtraction results are obtained in line (d).
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Figure 5.19 shows a case of sudden illumination change. At frame (c),

the light is turned on and a large illumination change can be observed. This

sudden change of illumination can be detected by the frame differencing

result as shown in (g), with more than 50% of pixels being marked as active

ones (white). The background model is then retrained to cope with this

sudden illumination change. As shown in (d) and (h), good segmentation is

obtained by the retrained background model.

Figure 5.19. Background subtraction for sudden illumination change.
Frames (a) and (b) are captured with the light off, at frame (c) the
light is turned on and a drastic illumination change can be observed.
And frame (d) is captured after the light is turned on for a certain time.
Frames (e) and (f) are the background subtraction results of (a) and (b).
Image (g) is the frame difference result for (c), sudden illumination is
detected because more than 50% of the pixels are marked as active ones
and the background model is retrained. Frame (h) is the subtraction
result of (d) by the retrained background model.

5.7.2 Results for the supervised fall detection system

For the experiment of the fall detection based on supervised classifiers, 15

people (11 males and 4 females) were invited to attend the experiments

for simulating different postures and activities. The characteristics of the
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15 people are summarized in Table 5.3. It has to be noted that real elderly

people were not invited to participate in the experiments because it is unsafe

for an elderly person to simulate fall activities; instead, younger people were

invited to mimic elderly people.

Table 5.3. The characteristics of 15 participators in the experiments
No. of people 15
Male/Female 11/4

Age 25-49
Weight 57-94 (kg)
Height 158-187 (cm)

Posture classification results

To form the posture dataset, 3200 postures (including 800 stands, 800 sits,

800 lies and 800 bends) from 15 people were recorded. As in [54], each person

was asked to simulate postures in different directions so that the constructed

classifier is robust to view angles. Some samples are shown in Figure 5.20.

Based on this recorded dataset, a commonly used 10-fold validation [31]

was applied to evaluate the performance of the posture classification and

three types of comparisons were made:

The first evaluation is the feature comparison, which is shown in Table

5.4; the classification results are compared when using the ellipse features

or projection histogram features alone and using a combination of these two

features. The DAGSVM is applied for classification.

Table 5.4. Classification result by different types of features.
Global features Local features Combined features

Classification rate 89.72% 76.70% 96.09%

From Table 5.4, it can be seen that the classification result by the com-

bined feature is clearly better than using either feature alone.
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Figure 5.20. Posture samples simulated by different participates in differ-
ent orientations: (a) stand (b) sit (c) lie and (d) bend.

For the second assessment, two types of parameter optimization methods

are compared for DAGSVM: the 10-fold validation based method and the

DBTC based method, which is shown in Table 5.5.
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Table 5.5. Comparison of different parameter optimization methods.
10-fold validation method DBTC based method

Training time (s) 2453.40 397.87
Classification rate 95.63% 96.09%

From Table 5.5, it can be seen that the DBTC based parameters opti-

mization method can greatly reduce the training time of DAGSVM while

achieving an even slightly better performance, so that it is preferred in this

work.

In the third assessment, the performance of DAGSVM is compared with

other traditional classifiers (k-nearest neighbour (KNN), multi-layer percep-

tron neural network (MLPNN), naive Bayes classifier (NBC) and binary

decision tree (BDT) implemented in PRtools–a well-known software pack-

age for pattern recognition [81]), the results of which are shown in Table 5.6.

For a fair comparison, the parameters of the comparison classifiers are tuned

to be optimal by using the cross validation function in PRtools.

Table 5.6. Comparison of different classifiers.
DAGSVM KNN MLPNN NBC BDT

Classification rate 96.09% 92.64% 92.53% 75.27% 83.72%

It can be observed that DAGSVM achieves the best performance with a

slightly better classification rate performance than k-nearest neighbour and

the MLP neural network.

However, in the real situation, the training dataset is not perfect and it is

common that some outliers exist in the training dataset. In posture classifi-

cation, outliers are mainly caused by extremely bad background subtraction

results and wrong labeling (the feature of one class is mislabeled as another

class). In Table 5.7, the comparison results of the classifiers are presented

on a dataset which includes 10% outliers.
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Table 5.7. Comparison of different classifiers on a dataset which is
corrupted by 10% outliers.

DAGSVM KNN MLPNN NBC BDT
Classification rate 95.51% 84.07% 85.93% 72.42% 58.72%

Table 5.7 shows a more obvious advantage of the classification rate of the

DAGSVM over other classifiers on this noisy dataset. And compared with

other classifiers, DAGSVM is the most robust to such noise due to the reason

that slack variables are introduced in the two-class SVMs of the DAGSVM

classifier to cope with the noises as mentioned in Section 5.4 (with only a

0.58% drop in classification rate compared with the result of Table 5.6).

So, according to Table 5.6 and Table 5.7, DAGSVM is better for posture

classification than other traditional classifiers.

Fall detection by the supervised DAGSVM classifier

Posture classification results along with the detected floor information are

used to detect falls according to the three conditions in Section 5.5.1. To

illustrate, five cases are presented in Figure 5.21, (a) shows a person who

has fallen on the floor, and a ‘lie’ posture is detected and most parts of

the human body region are in the detected ground region; and this posture

is kept for a certain time (longer than 20s), so a fall is detected. For (b),

although a ‘lie’ posture is detected, the human body blob is not in the floor

region, so the lying on the sofa case is correctly classified as non-fall. For (c),

(d) and (e), the postures are all classified as ‘bend’; however, for (c), a large

portion of the human body is in the ground region and the ‘bend’ posture

remains for longer than 20s. It is generally impossible for an elderly person

to bend for a long time in the ground region, so this is abnormal activity and

it is detected as a fall. For (d) and (e), either the detected ‘bend’ posture

does not hold for a long time (for case (d), a person ties his shoe lace and the

‘bend’ posture recovers to ‘stand’ posture in a short time), or the posture is
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not in the ground region (only a small portion of the human body region is

in the ground), so they are not detected as falls.

(a) (b) (c) (d) (e)

Figure 5.21. Different cases of fall and non-fall activities. a) Fall on
the floor; b) Lie on the sofa; c) Fall on the floor; d) Bend to fasten the
shoe tie; e) Sit on the sofa. For (a) and (b), the postures are classified
as ‘lie’ and for (c), (d) and (e), the postures are classified as ‘bend’.
The blue region represents the detected floor, the red region represents
the intersected part of the foreground human body with the detected
floor region, the white region represents the foreground human body
part which is not intersected with the detected floor region and the
remaining background region is marked as black. The proposed system
successfully classifies (a), (c) as falls and (b), (d) and (e) as non-falls.

For evaluating this fall detection system, each person is asked to simulate

16 fall activities and 16 non-fall activities in different directions. A total

number of 240 fall activities and 240 non-fall activities are recorded, which

are used to evaluate the proposed fall detection system. For classifying one

person’s activity, the postures from other people in the recorded posture

dataset are used to construct the DAGSVM classifier. Final results are

given in Table 5.8, which show that 233 out of 240 (97.08%) falls can be

detected while only 2 out of 240 (0.8%) non-falls are mistaken as falls; and

a high fall detection rate is obtained with a very low false detection rate.
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Table 5.8. Evaluation of the proposed fall detection system.
No. of Detected as Detected as

activities falls non-falls
Falls 240 233 7

Walking around 60 0 60
Sitting on the sofa/chair 60 2 58

Bending 60 0 60
Lying on the sofa 60 0 60

5.7.3 Results for the unsupervised fall detection system

For the unsupervised fall detection system, one man simulates the normal

activities of an old person in the hall and kitchen (such as normal walk-

ing, sitting on the sofa/chair and lying on the sofa) and a total number of

6882 postures was chosen to build up the normal model. Some samples are

presented in Figure 5.22, which show a person’s activities in a cluttered en-

vironment, for some frames the human body is even seriously occluded by

the background (such as the third line in Figure 5.22).

Fall detection by the OCSVM model

The collected normal postures were used to construct a normal model by

using the online OCSVM scheme. Initially, the parameters of the OCSVM

model needed to be set properly, in the experiment, γ = 1, C = 0.01, kernel

parameters c1 = 0.6, c2 = 1.1 and c3 = 0.06 and auxiliary variable τ = 10−5

were set; 38 fall activities (falls were simulated in every possible place in the

environment) and 34 non-fall activities were recorded for evaluating the pro-

posed fall detection system. Two schemes were evaluated and compared, the

first scheme was using only the OCSVM, falls were reported if abnormal pos-

tures were detected by the OCSVM; the second scheme was the combination

of the OCSVM with two rules (in Section 5.5.2) for fall detection. Different

threshold values defined in (5.4.23) for the OCSVM model are tested for
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(a) (b) (c) (d) (e)

Figure 5.22. Sample frames of simulated normal activities.

the ROC analysis and the ROC curves for these two schemes are plotted in

Figure 5.23; the AUC value, optimal TPR and FNR pair are presented in

Table 5.9. From Table 5.9, it can be observed that by using rules, the AUC

value can reach unity, the optimal TPR and FNR can be unity and zero

respectively (under the optimal threshold value 0.5 according to the trial on

a range between [0, 1] with the interval 0.05), which means that all the fall

activities are detected without mistaking any non-fall activities as falls.

Table 5.9. Comparison results for OCSVM model for fall detection
with and without rules

AUC value optimal TPR optimal FNR
OCSVM without rules 0.9781 95% 6%
OCSVM with rules 1 100% 0%

Two examples are presented to illustrate the effect of the proposed two
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Figure 5.23. The ROC curves comparison for OCSVM with and with-
out rules.

rules on reducing FNR, the first example shows a sequence of moving furni-

ture, a chair, with the selective frame samples being shown in Figure 5.24.

The corresponding AR values (calculated with a sliding window size of five)

and results calculated by the trained OCSVM model are shown in Figure

5.25. From Figure 5.25 (b), it can be seen that the posture is taken as ab-

normal (the OCSVM value is less than the preset threshold 0.5, under which

the best performance can be achieved according to Table I) after around the

150th frame. However, from (a), it shows that the AR values are always less

than the threshold 1.5, so according to Rule 1 in Section 5.5.2, no falls are

reported because large activity is not detected.

Another example shows a sequence of fast bending, the selective frame

samples are shown in Figure 5.26. Figure 5.27 shows the results of AR and

OCSVM for this video sequence and a large movement happens around the

60th frame (bending happens) and the bending posture is detected as the

abnormal one. However, this abnormal state only lasts a very short time

(the posture recovers to the normal standing posture after a short bending
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Figure 5.24. Selective frame samples for moving a piece of furniture,
a chair.
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Figure 5.25. The AR and OCSVM values for a sequence of moving
furniture. (a) AR results for moving furniture sequence (b) OCSVM
results for moving furniture sequence

period). So, according to Rule 2, the duration of the abnormal posture does

not exceed the preset threshold (20s), so no falls are reported.

The two examples show that some non-fall activities can be effectively

avoided to be taken as fall activities by using the proposed two rules, which
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Figure 5.26. Selective frame samples for fast bending activity.
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Figure 5.27. The AR and OCSVM values for a sequence of bending
activity. (a) AR results for bending sequence (b) OCSVM results for
bending sequence.

obtains a better fall detection system than using only the OCSVM model

for abnormal posture detection.

New Postures Adaptation

An old person’s behavior will not be unchanged over time and sometimes his

behavior changes and new postures emerge, so a good fall detection system

needs to be capable of adapting to the changes. In the following, an example

of adapting to new postures with the online OCSVM is presented. A video

sequence in which a person sits at a new position is recorded, selective frame
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samples are shown in Figure 5.28.

Figure 5.28. Selective frame samples of the person sitting at a new
position.

The variations of AR values of the sequence are shown in Figure 5.29,

from which it can be seen that no large movement is detected because the

AR value does not exceed the threshold so no falls are reported. The online

OCSVM scheme is applied to update the trained OCSVMmodel described in

Section 5.4.2 using the posture features extracted from this video sequence,

the evolutions of the OCSVM results for this sequence during the updating

procedure are shown in Figure 5.30. Different parameters C are chosen for

this online updating procedure and two phenomena can be observed: (1)

the OCSVM value for this new sitting posture increases with time, initially

the OCSVM value for this new posture is below the threshold but this value

will increase over time and exceed the threshold with the aid of the online

OCSVM scheme for updating; (2) a larger C value means a faster updating

rate. In a real application, a proper value C needs to be chosen to control

the updating time for new postures.

In order to illustrate the advantage of OCSVM model updating, an ex-

ample that a person who sits at the new position bends quickly to pick

something (selective frame samples are shown in Figure 5.31) is presented.

And in Figure 5.32, the AR values and OCSVM results are calculated for

this fast bending sequence example. The AR results in (a) show that large

movement (bending) is detected during the initial frames; (b) shows the re-
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Figure 5.29. The variations of AR values for a sequence of sitting at
a new position.

Figure 5.30. The evolutions of OCSVM values using the online scheme
with different penalty parameters C.

sults of the OCSVM models with and without the updating procedure (for a

fair comparison, same parameters are adopted for the two models, as shown

in Section 4.2), from which it can be observed that results of the two models

all fall below the threshold during the initial frames when bending occurs.
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However, for the updated OCSVM model, the value returns to be above the

threshold when the person recovers to sit after a very short interval, so ac-

cording to Rule 2 no falls are reported. Additionally, for the OCSVM model

without updating, the value is always less than the threshold and a fall is

wrongly reported when the abnormal state lasts for longer than 20s (around

the 100th frame).

Figure 5.31. Selective frame samples of fast bending to pick something
at a new position.

5.8 Summary

This chapter presented two fall detection systems based on supervised and

unsupervised methods. The codebook background subtraction was used

to extract the silhouettes and some post-processing technique was applied

to solve the background subtraction errors caused by some environmental

changes in a real home environment. Some features (projection histogram

and shape-structure features) which can describe postures in details were

extracted and used to construct the corresponding DAGSVM classifier or

online OCSVM together with some simple features (ellipse features and po-

sition features). The classification results of DAGSVM or online OCSVM,

together with some rules were used to distinguish falls and non-falls. Exper-

imental results showed that acceptable fall detection results can be obtained

for both supervised and unsupervised fall detection systems.
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Figure 5.32. The variations of AR values (a) and OCSVM values (b)
for a video sequence of fast bending while sitting at new position. For
comparison, both the values of the OCSVM models with and without
updating are presented.

Both the supervised fall detection system and unsupervised fall detec-

tion system have their own merits and drawbacks. For the fall detection

based on the supervised method, initially a large posture dataset composed

of postures from different persons is needed for training the classifier, which

is inconvenient. But the trained classifier can be immediately applied for

classifying postures for fall detection for a particular elderly person as long

as the classifier is well trained. For the unsupervised classifier, it provides

a person-specific solution, there is no need to collect different people’s pos-

tures and the normal postures captured from the normal activities of that

specific person (the person who is monitored) are used to construct the nor-

mal model. However, during the time period for collecting enough normal

postures for model building, falls can not be detected.

Besides the information obtained from postures, other types of informa-
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tion can be applied to achieve a more robust fall detection system. One such

type of information can be obtained from audio as proposed in [18] and [21],

the floor sounds generated for fall activities and non-fall activities are dif-

ferent and this sound information is helpful to distinguish fall activities and

non-fall activities when poor results of posture features are obtained (such

as the elderly person wearing clothes whose colour is very similar to the

background thus generating bad posture segmentation results). The sound

and posture information together can be used to compose a more robust

multimodal (audio and video) fall detection system, which is a possible next

step for the research.



Chapter 6

CONCLUSIONS AND

FUTURE WORK

6.1 Conclusions

This thesis proposes different types of computer vision based fall detection

technique for detecting fall activities of an elderly person living alone at

home. 2D and 3D features are extracted from video sequences recorded

by one or multiple cameras, and an analytical algorithm (Chapter 3) or

machine learning algorithms (Chapter 4 and Chapter 5) were then exploited

to process the extracted features for detecting fall activities. Evaluations

were performed in both a lab and real home environments.

Chapter 3 proposed a simple and robust fall detection system by using

three cues: head velocity, shape and movement amplitude cues. The head

was tracked by a particle filter using gradient and colour information; the

velocity of the head between consecutive frames was then estimated from

the head tracking results. The codebook background subtraction method

and moment-based ellipse fitting were applied to fit the human body region

to an ellipse. Shape change was reflected by the velocities of the orientation

angle and the ratio of the lengths of the two axes of an ellipse. Finally, the

movement amplitude of a person was estimated by a Cmotion value obtained

from the MHI for a further confirmation of a fall when both the head velocity

159
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and shape change exceed certain threshold values. Experiments on a six

person dataset in the lab environment showed that by combining these three

cues–head velocity, shape change and movement amplitude, a simple but

robust fall detection system can be achieved which can distinguish 12 falls

performed in two directions from 24 different types of non-fall activities when

the optimal threshold values, found empirically, were used.

Chapter 4 proposed a fall detection scheme based on 3D features and a

data fitting model scheme. Cameras were firstly calibrated by the popular

Tsai camera calibration method and a 3D person was then constructed from

the obtained codebook background subtraction results from two calibrated

cameras. 3D features, including the 3D position, velocity and orientation in-

formation corresponding to fall activities were extracted to build the model

for distinguishing fall activities and non-fall activities. Three types of mod-

els: single Gaussian model, mixture of Gaussians model and OCSVM model

were constructed from a training dataset including 40 short video clips of

different fall activities simulated by four people, from which the 3D features

features were extracted for model construction. The comparison results on a

test dataset including 40 fall activities and 40 non-fall activities simulated by

another four people showed that the OCSVM model achieves the best per-

formance with 100% fall detection rate and 0% false detection rate with the

optimal threshold; moreover, by introducing different weights to samples in

the training dataset, a fuzzy OCSVM was obtained which achieved a better

performance if the training dataset was contaminated by some outliers.

Chapter 5 presented two fall detection systems based on supervised

and unsupervised learning methods. The codebook background subtrac-

tion approach was used to extract the postures and certain post-processing

techniques were applied to solve the background subtraction errors caused

by some environmental changes in a real home environment. Some fea-

tures (projection histogram and shape-structure features) which can describe
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postures in detail were extracted and used to construct the corresponding

DAGSVM classifier or online OCSVM with some simple features (ellipse

features and position features). The classification results of DAGSVM or

online OCSVM, together with certain rules were used to distinguish falls

from non-falls. Experimental results in a real home environment showed

that acceptable fall detection results can be obtained, with 97.08% fall de-

tection rate and 0.8% false detection rate for a 15 person dataset using the

supervised fall detection system, and 100% fall detection rate with no false

detection for a single monitored person using the unsupervised method.

In summary, this thesis has proposed effective schemes for solving the

problems listed at the end of Chapter 2: 1. Instead of using only one partic-

ular feature for distinguishing falls, different types of features were exploited

and a decision of fall or non-fall was made by comparing the features with

proper thresholds in an organized way. 2. Directional invariant 3D fea-

tures were extracted from the reconstructed 3D person, which was obtained

from the background subtraction results from video sequences recorded by

calibrated cameras, and the 3D features were used to train a particular

data fitting model to distinguish fall and non-fall activities by using only

one threshold. 3. Supervised and unsupervised classifiers based on posture

features, together with certain types of information (floor information and

movement amplitude information) were applied to construct more robust fall

detection systems, which were thoroughly evaluated on datasets recorded in

a real home environment representative of an assisted living application.

6.2 Future work

The research can be extended from algorithm aspects, information aspects

and hardware equipment aspects:

1. From algorithm aspects, elegant computer vision algorithms can be
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applied as the components of the proposed fall detection system. A more

efficient background subtraction method as proposed in [82] can be applied

for better human body segmentation, with online self-adaptive mechanism to

update model parameters. In this way, the change of the illumination, which

is a common phenomenon in the indoor environment, could be compensated;

for head tracking, an improvement of the SIR filter as proposed in [83] could

be used to obtain a more accurate head tracking result even in a cluttered

home environment. Besides, considering sometimes there will be more than

one moving object at home (such as the elderly person with a pet), some

object classification algorithms in [84] and [85] could be applied to determine

the moving blob corresponding to the human region. These algorithms can

be added into the current fall detection system as new modules, which is

helpful in enhancing the performance of the proposed fall detection systems.

2. From information aspects, instead of using only the video information,

more types of information (such as acoustic information) could be extracted

to compensate for the limitations of video information (such as poor video

information will be obtained when an elderly person wears clothes whose

colour is similar to the background). A more robust multimodal fall detec-

tion system could be constructed by fusing different types of information

(video information and audio information) for improving the performance.

The limitation of the audio information is that it can easily be affected by

background noises, especially TV; however, this problem can be ameliorated

by using the modern blind source separation (BSS) technique [86] to reduce

this type of interference.

3. Instead of using only ordinary cameras, more advanced hardware

equipment could be used. As presented in [87], a new-emerging Kinect sensor

could be applied, which can obtain additional depth information for better

human body segmentation when an elderly person wears clothes whose colour

is similar to the background.
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