48,634 research outputs found

    HReMAS: Hybrid Real-time Musical Alignment System

    Get PDF
    [EN] This paper presents a real-time audio-to-score alignment system for musical applications. The aim of these systems is to synchronize a live musical performance with its symbolic representation in a music sheet. We have used as a base our previous real-time alignment system by enhancing it with a traceback stage, a stage used in offline alignment to improve the accuracy of the aligned note. This stage introduces some delay, what forces to assume a trade-off between output delay and alignment accuracy that must be considered in the design of this type of hybrid techniques. We have also improved our former system to execute faster in order to minimize this delay. Other interesting improvements, like identification of silence frames, have also been incorporated to our proposed system.This work has been supported by the "Ministerio de Economia y Competitividad" of Spain and FEDER under Projects TEC2015-67387-C4-{1,2,3}-R.Cabañas-Molero, P.; Cortina-ParajĂłn, R.; Combarro, EF.; Alonso-JordĂĄ, P.; Bris-Peñalver, FJ. (2019). HReMAS: Hybrid Real-time Musical Alignment System. The Journal of Supercomputing. 75(3):1001-1013. https://doi.org/10.1007/s11227-018-2265-1S10011013753Alonso P, Cortina R, RodrĂ­guez-Serrano FJ, Vera-Candeas P, Alonso-GonzĂĄlez M, Ranilla J (2017) Parallel online time warping for real-time audio-to-score alignment in multi-core systems. J Supercomput 73(1):126–138Alonso P, Vera-Candeas P, Cortina R, Ranilla J (2017) An efficient musical accompaniment parallel system for mobile devices. J Supercomput 73(1):343–353Arzt A (2016) Flexible and robust music tracking. Ph.D. thesis, Johannes Kepler University Linz, Linz, ÖsterreichArzt A, Widmer G, Dixon S (2008) Automatic page turning for musicians via real-time machine listening. In: Proceedings of the 18th European Conference on Artificial Intelligence (ECAI), Amsterdam, pp 241–245Carabias-Orti J, RodrĂ­guez-Serrano F, Vera-Candeas P, Ruiz-Reyes N, Cañadas-Quesada F (2015) An audio to score alignment framework using spectral factorization and dynamic time warping. In: Proceedings of ISMIR, pp 742–748Cont A (2006) Realtime audio to score alignment for polyphonic music instruments, using sparse non-negative constraints and hierarchical HMMs. In: 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol 5. pp V–VCont A, Schwarz D, Schnell N, Raphael C (2007) Evaluation of real-time audio-to-score alignment. In: International Symposium on Music Information Retrieval (ISMIR), ViennaDannenberg RB, Raphael C (2006) Music score alignment and computer accompaniment. Commun ACM 49(8):38–43Devaney J, Ellis D (2009) Handling asynchrony in audio-score alignment. In: Proceedings of the International Computer Music Conference Computer Music Association. pp 29–32Dixon S (2005) An on-line time warping algorithm for tracking musical performances. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). pp 1727–1728Duan Z, Pardo B (2011) Soundprism: an online system for score-informed source separation of music audio. IEEE J Sel Top Signal Process 5(6):1205–1215Ewert S, Muller M, Grosche P (2009) High resolution audio synchronization using chroma onset features. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2009 (ICASSP 2009). pp 1869–1872Hu N, Dannenberg R, Tzanetakis G (2003) Polyphonic audio matching and alignment for music retrieval. In: 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. pp 185–188Kaprykowsky H, Rodet X (2006) Globally optimal short-time dynamic time warping, application to score to audio alignment. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing, vol 5. pp. V–VLi B, Duan Z (2016) An approach to score following for piano performances with the sustained effect. IEEE/ACM Trans Audio Speech Lang Process 24(12):2425–2438Miron M, Carabias-Orti JJ, Bosch JJ, GĂłmez E, Janer J (2016) Score-informed source separation for multichannel orchestral recordings. J Electr Comput Eng 2016(8363507):1–19Muñoz-Montoro A, Cabañas-Molero P, Bris-Peñalver F, Combarro E, Cortina R, Alonso P (2017) Discovering the composition of audio files by audio-to-midi alignment. In: Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering. pp 1522–1529Orio N, Schwarz D (2001) Alignment of monophonic and polyphonic music to a score. In: Proceedings of the International Computer Music Conference (ICMC), pp 155–158PĂ€tynen J, Pulkki V, Lokki T (2008) Anechoic recording system for symphony orchestra. Acta Acust United Acust 94(6):856–865Raphael C (2010) Music plus one and machine learning. In: Proceedings of the 27th International Conference on Machine Learning (ICML), pp 21–28Rodriguez-Serrano FJ, Carabias-Orti JJ, Vera-Candeas P, Martinez-Munoz D (2016) Tempo driven audio-to-score alignment using spectral decomposition and online dynamic time warping. ACM Trans Intell Syst Technol 8(2):22:1–22:2

    An efficient musical accompaniment parallel system for mobile devices

    Full text link
    [EN] This work presents a software system designed to track the reproduction of a musical piece with the aim to match the score position into its symbolic representation on a digital sheet. Into this system, known as automated musical accompaniment system, the process of score alignment can be carried out real-time. A real-time score alignment, also known as score following, poses an important challenge due to the large amount of computation needed to process each digital frame and the very small time slot to process it. Moreover, the challenge is even greater since we are interested on handheld devices, i.e. devices characterized by both low power consumption and mobility. The results presented here show that it is possible to exploit efficiently several cores of an ARM(A (R)) processor, or a GPU accelerator (presented in some SoCs from NVIDIA) reducing the processing time per frame under 10 ms in most of the cases.This work was supported by the Ministry of Economy and Competitiveness from Spain (FEDER) under projects TEC2015-67387-C4-1-R, TEC2015-67387-C4-2-R and TEC2015-67387-C4-3-R, the Andalusian Business, Science and Innovation Council under project P2010-TIC-6762 (FEDER), and the Generalitat Valenciana PROMETEOII/2014/003Alonso-JordĂĄ, P.; Vera-Candeas, P.; Cortina, R.; Ranilla, J. (2017). An efficient musical accompaniment parallel system for mobile devices. The Journal of Supercomputing. 73(1):343-353. https://doi.org/10.1007/s11227-016-1865-xS343353731Cont A, Schwarz D, Schnell N, Raphael C (2007) Evaluation of real- time audio-to-score alignment. In: Proc. of the International Conference on Music Information Retrieval (ISMIR) 2007, ViennaArzt A (2008) Score following with dynamic time warping. An automatic page-turner. Master’s Thesis, Vienna University of Technology, ViennaRaphael C (2010) Music plus one and machine learning. In: Proc. of the 27 th International Conference on Machine Learning, Haifa, pp 21–28Carabias-OrtĂ­ JJ, RodrĂ­guez-Serrano FJ, Vera-Candeas P, Ruiz-Reyes N, Cañadas-Quesada FJ (2015) An audio to score alignment framework using spectral factorization and dynamic time warping. In: Proc. of the International Conference on Music Information Retrieval (ISMIR), MĂĄlaga, pp 742–748Cont A (2010) A coupled duration-focused architecture for real-time music-to-score alignment. IEEE Trans. Pattern Anal. Mach. Intell. 32(6):974–987Montecchio N, Orio N (2009) A discrete filterbank approach to audio to score matching for score following. In: Proc. of the International Conference on Music Information Retrieval (ISMIR), pp 495–500Puckette M (1995) Score following using the sung voice. In: Proc. of the International Computer Music Conference (ICMC), pp 175–178Duan Z, Pardo B (2011) Soundprism: an online system for score-informed source separation of music audio. IEEE J. Sel. Top. Signal Process. 5(6):1205–1215Cont A (2006) Realtime audio to score alignment for polyphonic music instruments using sparse non-negative constraints and hierarchical hmms. In: Proc. of IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), ToulouseCuvillier P, Cont A (2014) Coherent time modeling of Semi-Markov models with application to realtime audio-to-score alignment. In Proc. of the 2014 IEEE International Workshop on Machine Learning for Signal Processing, p 16Joder C, Essid S, Richard G (2013) Learning optimal features for polyphonic audio-to-score alignment. IEEE Trans. Audio Speech Lang. Process. 21(10):2118–2128Dixon S (2005) Live tracking of musical performances using on-line time warping. In: Proc. International Conference on Digital Audio Effects (DAFx), Madrid, pp 92–97Hu N, Dannenberg RB, Tzanetakis G (2009) Polyphonic audio matching and alignment for music retrieval. In: Proc. of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp 185–188Orio N, Schwarz D (2001) Alignment of monophonic and polyphonic music to a score. In: Proc. International Computer Music Conference (ICMC)Alonso P, Cortina R, RodrĂ­guez-Serrano FJ, Vera-Candeas P, Alonso-Gonzalez M, Ranilla J (2016) Parallel online time warping for real-time audio-to-score alignment in multi-core systems. J. Supercomput. doi: 10.1007/s11227-016-1647-5 (published online)Carabias-OrtĂ­ JJ, RodrĂ­guez-Serrano FJ, Vera-Candeas P, Cañadas-Quesada FJ, Ruiz-Reyes N (2013) Constrained non-negative sparse coding using learnt instrument templates for realtime music transcription, Eng. Appl. Artif. Intell. 26(7):1671–1680Carabias-OrtĂ­ JJ, RodrĂ­guez-Serrano FJ, Vera-Candeas P, MartĂ­nez-Muñoz D (2016) Tempo driven audio-to-score alignment using spectral decomposition and online dynamic time warping. ACM Trans. Intell. Syst. Technol. (accepted)FFTW (2016) http://www.fftw.org . Accessed July 2016NVIDIA CUDA Fast Fourier Transform library (cuFFT) (2016) http://developer.nvidia.com/cufft . Accessed July 2016The OpenMP API specification for parallel programming (2016) http://openmp.org . Accessed July 201

    Real-time Soundprism

    Full text link
    [EN] This paper presents a parallel real-time sound source separation system for decomposing an audio signal captured with a single microphone in so many audio signals as the number of instruments that are really playing. This approach is usually known as Soundprism. The application scenario of the system is for a concert hall in which users, instead of listening to the mixed audio, want to receive the audio of just an instrument, focusing on a particular performance. The challenge is even greater since we are interested in a real-time system on handheld devices, i.e., devices characterized by both low power consumption and mobility. The results presented show that it is possible to obtain real-time results in the tested scenarios using an ARM processor aided by a GPU, when this one is present.This work has been supported by the "Ministerio de Economia y Competitividad" of Spain and FEDER under projects TEC2015-67387-C4-{1,2,3}-R.Muñoz-Montoro, AJ.; Ranilla, J.; Vera-Candeas, P.; Combarro, EF.; Alonso-JordĂĄ, P. (2019). Real-time Soundprism. The Journal of Supercomputing. 75(3):1594-1609. https://doi.org/10.1007/s11227-018-2703-0S15941609753Alonso P, Cortina R, RodrĂ­guez-Serrano FJ, Vera-Candeas P, Alonso-GonzĂĄlez M, Ranilla J (2017) Parallel online time warping for real-time audio-to-score alignment in multi-core systems. J Supercomput 73:126. https://doi.org/10.1007/s11227-016-1647-5Carabias-Orti JJ, Cobos M, Vera-Candeas P, RodrĂ­guez-Serrano FJ (2013) Nonnegative signal factorization with learnt instrument models for sound source separation in close-microphone recordings. EURASIP J Adv Signal Process 2013:184. https://doi.org/10.1186/1687-6180-2013-184Carabias-Orti JJ, Rodriguez-Serrano FJ, Vera-Candeas P, Canadas-Quesada FJ, Ruiz-Reyes N (2015) An audio to score alignment framework using spectral factorization and dynamic time warping. In: 16th International Society for Music Information Retrieval Conference, pp 742–748DĂ­az-Gracia N, Cocaña-FernĂĄndez A, Alonso-GonzĂĄlez M, MartĂ­nez-ZaldĂ­var FJ, Cortina R, GarcĂ­a-MollĂĄ VM, Alonso P, Ranilla J (2014) NNMFPACK: a versatile approach to an NNMF parallel library. In: Proceedings of the 2014 International Conference on Computational and Mathematical Methods in Science and Engineering, pp 456–465DĂ­az-Gracia N, Cocaña-FernĂĄndez A, Alonso-GonzĂĄlez M, MartĂ­nez-ZaldĂ­var FJ, Cortina R, GarcĂ­a-MollĂĄ VM, Vidal AM (2015) Improving NNMFPACK with heterogeneous and efficient kernels for ÎČ\beta ÎČ -divergence metrics. J Supercomput 71:1846–1856. https://doi.org/10.1007/s11227-014-1363-yDriedger J, Grohganz H, PrĂ€tzlich T, Ewert S, MĂŒller M (2013) Score-informed audio decomposition and applications. In: Proceedings of the 21st ACM International Conference on Multimedia, pp 541–544Duan Z, Pardo B (2011) Soundprism: an online system for score-informed source separation of music audio. IEEE J Sel Top Signal Process 5(6):1205–1215Duong NQ, Vincent E, Gribonval R (2010) Under-determined reverberant audio source separation using a full-rank spatial covariance model. IEEE Trans Audio Speech 18(7):1830–1840. https://doi.org/10.1109/TASL.2010.2050716Ewert S, MĂŒller M (2011) Estimating note intensities in music recordings. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp 385–388Ewert S, Pardo B, Mueller M, Plumbley MD (2014) Score-informed source separation for musical audio recordings: an overview. IEEE Signal Process Mag 31:116–124. https://doi.org/10.1109/MSP.2013.2296076Fastl H, Zwicker E (2007) Psychoacoustics. Springer, BerlinGanseman J, Scheunders P, Mysore GJ, Abel JS (2010) Source separation by score synthesis. Int Comput Music Conf 2010:1–4Goto M, Hashiguchi H, Nishimura T, Oka R (2002) RWC music database: popular, classical and jazz music databases. In: ISMIR, vol 2, pp 287–288Goto M (2004) Development of the RWC music database. In: Proceedings of the 18th International Congress on Acoustics (ICA 2004), ppp 553–556Hennequin R, David B, Badeau R (2011) Score informed audio source separation using a parametric model of non-negative spectrogram. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp 45–48. https://doi.org/10.1109/ICASSP.2011.5946324Itoyama K, Goto M, Komatani K et al (2008) Instrument equalizer for query-by-example retrieval: improving sound source separation based on integrated harmonic and inharmonic models. In: ISMIR. https://doi.org/10.1136/bmj.324.7341.827Marxer R, Janer J, Bonada J (2012) Low-latency instrument separation in polyphonic audio using timbre models. In: International Conference on Latent Variable Analysis and Signal Separation, pp 314–321Miron M, Carabias-Orti JJ, Janer J (2015) Improving score-informed source separation for classical music through note refinement. In: ISMIR, pp 448–454Ozerov A, FĂ©votte C (2010) Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. IEEE Trans Audio Speech Lang Process 18:550–563. https://doi.org/10.1109/TASL.2009.2031510Ozerov A, Vincent E, Bimbot F (2012) A general flexible framework for the handling of prior information in audio source separation. IEEE Trans Audio Speech Lang Process 20:1118–1133. https://doi.org/10.1109/TASL.2011.2172425PĂ€tynen J, Pulkki V, Lokki T (2008) Anechoic recording system for symphony orchestra. Acta Acust United Acust 94:856–865. https://doi.org/10.3813/AAA.918104Raphael C (2008) A classifier-based approach to score-guided source separation of musical audio. Comput Music J 32:51–59. https://doi.org/10.1162/comj.2008.32.1.51Rodriguez-Serrano FJ, Duan Z, Vera-Candeas P, Pardo B, Carabias-Orti JJ (2015) Online score-informed source separation with adaptive instrument models. J New Music Res 44:83–96. https://doi.org/10.1080/09298215.2014.989174Rodriguez-Serrano FJ, Carabias-Orti JJ, Vera-Candeas P, Martinez-Munoz D (2016) Tempo driven audio-to-score alignment using spectral decomposition and online dynamic time warping. ACM Trans Intell Syst Technol 8:1–20. https://doi.org/10.1145/2926717Sawada H, Araki S, Makino S (2011) Underdetermined convolutive blind source separation via frequency bin-wise clustering and permutation alignment. IEEE Trans Audio Speech Lang Process 19(3):516–527. https://doi.org/10.1109/TASL.2010.2051355Vincent E, Araki S, Theis F et al (2012) The signal separation evaluation campaign (2007–2010): achievements and remaining challenges. Signal Process 92:1928–1936. https://doi.org/10.1016/j.sigpro.2011.10.007Vincent E, Bertin N, Gribonval R, Bimbot F (2014) From blind to guided audio source separation: how models and side information can improve the separation of sound. IEEE Signal Process Mag 31:107–115. https://doi.org/10.1109/MSP.2013.229744

    Performance Following: Real-Time Prediction of Musical Sequences Without a Score

    Get PDF
    (c)2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Metric Learning for Temporal Sequence Alignment

    Get PDF
    In this paper, we propose to learn a Mahalanobis distance to perform alignment of multivariate time series. The learning examples for this task are time series for which the true alignment is known. We cast the alignment problem as a structured prediction task, and propose realistic losses between alignments for which the optimization is tractable. We provide experiments on real data in the audio to audio context, where we show that the learning of a similarity measure leads to improvements in the performance of the alignment task. We also propose to use this metric learning framework to perform feature selection and, from basic audio features, build a combination of these with better performance for the alignment

    Real-Time Audio-to-Score Alignment of Music Performances Containing Errors and Arbitrary Repeats and Skips

    Full text link
    This paper discusses real-time alignment of audio signals of music performance to the corresponding score (a.k.a. score following) which can handle tempo changes, errors and arbitrary repeats and/or skips (repeats/skips) in performances. This type of score following is particularly useful in automatic accompaniment for practices and rehearsals, where errors and repeats/skips are often made. Simple extensions of the algorithms previously proposed in the literature are not applicable in these situations for scores of practical length due to the problem of large computational complexity. To cope with this problem, we present two hidden Markov models of monophonic performance with errors and arbitrary repeats/skips, and derive efficient score-following algorithms with an assumption that the prior probability distributions of score positions before and after repeats/skips are independent from each other. We confirmed real-time operation of the algorithms with music scores of practical length (around 10000 notes) on a modern laptop and their tracking ability to the input performance within 0.7 s on average after repeats/skips in clarinet performance data. Further improvements and extension for polyphonic signals are also discussed.Comment: 12 pages, 8 figures, version accepted in IEEE/ACM Transactions on Audio, Speech, and Language Processin
    • 

    corecore