4 research outputs found

    Optimal-Location-Selection Query Processing in Spatial Databases

    Get PDF
    Abstract—This paper introduces and solves a novel type of spatial queries, namely, Optimal-Location-Selection (OLS) search, which has many applications in real life. Given a data object set DA, a target object set DB, a spatial region R, and a critical distance dc in a multidimensional space, an OLS query retrieves those target objects in DB that are outside R but have maximal optimality. Here, the optimality of a target object b 2 DB located outside R is defined as the number of the data objects from DA that are inside R and meanwhile have their distances to b not exceeding dc. When there is a tie, the accumulated distance from the data objects to b serves as the tie breaker, and the one with smaller distance has the better optimality. In this paper, we present the optimality metric, formalize the OLS query, and propose several algorithms for processing OLS queries efficiently. A comprehensive experimental evaluation has been conducted using both real and synthetic data sets to demonstrate the efficiency and effectiveness of the proposed algorithms. Index Terms—Query processing, optimal-location-selection, spatial database, algorithm. Ç

    New Plane-Sweep Algorithms for Distance-Based Join Queries in Spatial Databases

    Get PDF
    Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied DJQs are the K Closest Pairs Query (KCPQ) and εDistance Join Query (εDJQ). These spatial queries involve two spatial data sets and a distance function to measure the degree of closeness, along with a given number of pairs in the final result (K) or a distance threshold (ε). In this paper, we propose four new plane-sweep-based algorithms for KCPQs and their extensions for εDJQs in the context of spatial databases, without the use of an index for any of the two disk-resident data sets (since, building and using indexes is not always in favor of processing performance). They employ a combination of plane-sweep algorithms and space partitioning techniques to join the data sets. Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the proposed algorithms for KCPQs and εDJQs. This performance study, conducted on medium and big spatial data sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method), for KCPQs and εDJQs, using the same data sets. This comparison shows that the new algorithms outperform R-tree based algorithms, in most cases

    Efficient Distance Join Query Processing in Distributed Spatial Data Management Systems

    Get PDF
    Due to the ubiquitous use of spatial data applications and the large amounts of such data these applications use, the processing of large-scale distance joins in distributed systems is becoming increasingly popular. Distance Join Queries (DJQs) are important and frequently used operations in numerous applications, including data mining, multimedia and spatial databases. DJQs (e.g., k Nearest Neighbor Join Query, k Closest Pair Query, ε Distance Join Query, etc.) are costly operations, since they involve both the join and distance-based search, and performing DJQs efficiently is a challenging task. Recent Big Data developments have motivated the emergence of novel technologies for distributed processing of large-scale spatial data in clusters of computers, leading to Distributed Spatial Data Management Systems (DSDMSs). Distributed cluster-based computing systems can be classified as Hadoop-based or Spark-based systems. Based on this classification, in this paper, we compare two of the most recent and leading DSDMSs, SpatialHadoop and LocationSpark, by evaluating the performance of several existing and newly proposed parallel and distributed DJQ algorithms under various settings with large spatial real-world datasets. A general conclusion arising from the execution of the distributed DJQ algorithms studied is that, while SpatialHadoop is a robust and efficient system when large spatial datasets are joined (since it is built on top of the mature Hadoop platform), LocationSpark is the clear winner in total execution time efficiency when medium spatial datasets are combined (due to in-memory processing provided by Spark). However, LocationSpark requires higher memory allocation when large spatial datasets are involved in DJQs (even more so when k and ε are large). Finally, this detailed performance study has demonstrated that the new distributed DJQ algorithms we have proposed are efficient, robust and scalable with respect to different parameters, such as dataset sizes, k, ε and number of computing nodes

    Evaluation of Iceberg Distance Joins

    No full text
    The iceberg distance join returns object pairs within some distance from each other, provided that the first object appears at least a number of times in the result, e.g., "find hotels which are within 1km to at least 10 restaurants". The output of this query is the subset of the corresponding distance join (e.g., "find hotels which are within 1km to some restaurant") that satisfies the additional cardinality constraint. Therefore, it could be processed by using a conventional spatial join algorithm and then filtering-out the non-qualifying pairs. This approach, however, is expensive, especially when the cardinality constraint is highly selective. In this paper, we propose output-sensitive algorithms that prune the search space by integrating the cardinality with the distance constraint. We deal with cases of indexed/non-indexed datasets and evaluate the performance of the proposed techniques with extensive experimental evaluation covering a wide range of problem parameters. © Springer-Verlag Berlin Heidelberg 2003.link_to_subscribed_fulltex
    corecore