2 research outputs found

    Comparative analysis of computer-vision and BLE technology based indoor navigation systems for people with visual impairments

    Get PDF
    Background: Considerable number of indoor navigation systems has been proposed to augment people with visual impairments (VI) about their surroundings. These systems leverage several technologies, such as computer-vision, Bluetooth low energy (BLE), and other techniques to estimate the position of a user in indoor areas. Computer-vision based systems use several techniques including matching pictures, classifying captured images, recognizing visual objects or visual markers. BLE based system utilizes BLE beacons attached in the indoor areas as the source of the radio frequency signal to localize the position of the user. Methods: In this paper, we examine the performance and usability of two computer-vision based systems and BLE-based system. The first system is computer-vision based system, called CamNav that uses a trained deep learning model to recognize locations, and the second system, called QRNav, that utilizes visual markers (QR codes) to determine locations. A field test with 10 blindfolded users has been conducted while using the three navigation systems. Results: The obtained results from navigation experiment and feedback from blindfolded users show that QRNav and CamNav system is more efficient than BLE based system in terms of accuracy and usability. The error occurred in BLE based application is more than 30% compared to computer vision based systems including CamNav and QRNav. Conclusions: The developed navigation systems are able to provide reliable assistance for the participants during real time experiments. Some of the participants took minimal external assistance while moving through the junctions in the corridor areas. Computer vision technology demonstrated its superiority over BLE technology in assistive systems for people with visual impairments. - 2019 The Author(s).Scopu

    Paralelização do algoritmo de indexação de dados multimídia baseado em quantização

    Get PDF
    Trabalho de Conclusão de Curso (graduação)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2019.A busca por similaridade em espaços de alta dimensionalidade é uma operação fundamental em diversas aplicações de recuperação de dados multimídia, no entanto essa operação é tipicamente uma das mais computacionalmente caras. Alguns métodos propõem a busca aproximada para minimizar esse problema, uma alternativa que tenta fazer um compromisso entre o custo computacional e a precisão da busca. Um dos métodos baseados em busca aproximada é o Product Quantization for Approximate Nearest Neighbor Search (PQANNS), que propõe a decomposição do espaço de busca em um produto cartesiano de subespaços de baixa dimensionalidade e a quantização de cada um deles separadamente. Para tanto, é utilizada uma estrutura de lista invertida para fazer a indexação dos dados, o que permite a realização de buscas não-exaustivas. A redução da dimensionalidade dos dados aliada à busca não-exaustiva faz com que o PQANNS responda consultas de forma eficiente e com baixa demanda de memória, no entanto sua execução sequencial ainda é limitada a trabalhar com bases que caibam na memória RAM de apenas uma máquina. Nosso objetivo é propor uma paralelização em memória distribuída do PQANNS, sendo assim capaz de lidar com grandes bases de dados. Também propomos uma paralelização em máquina multicore, visando reduzir o tempo de resposta às consultas e utilizar toda a capacidade de processamento disponível. Nossa paralelização em memória distribuída foi avaliada utilizando 128 nós/3584 núcleos de CPU, obtendo uma eficiência de 0.97 e foi capaz de realizar a indexação e busca em uma base de dados contendo 256 bilhões de vetores Scale Invariant Feature Transform (SIFT). Além disso, a execução da nossa paralelização em máquina multicore obteve um excelente ganho em desempenho com até 28 núcleos, obtendo um speedup médio de 26, 36x utilizando todos os núcleos.The search for similarity in high dimensional spaces is a core operation found in several multimedia retrieval applications. However this operation is typically one of the most computationally expensive. Some methods propose an approximate search to minimize this problem, trying to make a trade-off between computational cost and search precision. One of these methods is the Product Quantization for Approximate Nearest Neighbor Search (PQANNS), which proposes the decomposition of the search space into a Cartesian product of low-dimensional subspaces and the quantization of each of them separately. In order to do so, an inverted file structure is used to index the data, which allows non-exhaustive searches. The reduction of data dimensionality coupled with the non-exhaustive search causes the PQANNS to respond efficiently and with low memory requirements, however its sequential execution is still limited to working with bases that fit into the RAM memory of a single machine. Our goal is to propose a parallelization strategy that works on distributed memory plataforms of PQANNS, thus being able to handle large databases. We also propose a multicore machine parallelization, in order to reduce the response time to the queries and to use all available processing capacity. Our distributed memory parallelization was evaluated using 128 nodes/3584 CPU cores, obtaining an efficiency of 0.97 and was able to perform the index and search in a database containing 256 billion Scale Invariant Feature Transform (SIFT) vectors. In addition, the execution of our parallelization in a multicore machine obtained a performance gain with up to 28 cores, obtaining an average speedup of 26.36x using all the cores
    corecore