1,300 research outputs found

    Addressing the Challenges in Federating Edge Resources

    Full text link
    This book chapter considers how Edge deployments can be brought to bear in a global context by federating them across multiple geographic regions to create a global Edge-based fabric that decentralizes data center computation. This is currently impractical, not only because of technical challenges, but is also shrouded by social, legal and geopolitical issues. In this chapter, we discuss two key challenges - networking and management in federating Edge deployments. Additionally, we consider resource and modeling challenges that will need to be addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and Paradigms; Editors Buyya, Sriram

    Isolating SDN Control Traffic with Layer-2 Slicing in 6TiSCH Industrial IoT Networks

    Get PDF
    Recent standardization efforts in IEEE 802.15.4-2015 Time Scheduled Channel Hopping (TSCH) and the IETF 6TiSCH Working Group (WG), aim to provide deterministic communications and efficient allocation of resources across constrained Internet of Things (IoT) networks, particularly in Industrial IoT (IIoT) scenarios. Within 6TiSCH, Software Defined Networking (SDN) has been identified as means of providing centralized control in a number of key situations. However, implementing a centralized SDN architecture in a Low Power and Lossy Network (LLN) faces considerable challenges: not only is controller traffic subject to jitter due to unreliable links and network contention, but the overhead generated by SDN can severely affect the performance of other traffic. This paper proposes using 6TiSCH tracks, a Layer-2 slicing mechanism for creating dedicated forwarding paths across TSCH networks, in order to isolate the SDN control overhead. Not only does this prevent control traffic from affecting the performance of other data flows, but the properties of 6TiSCH tracks allows deterministic, low-latency SDN controller communication. Using our own lightweight SDN implementation for Contiki OS, we firstly demonstrate the effect of SDN control traffic on application data flows across a 6TiSCH network. We then show that by slicing the network through the allocation of dedicated resources along a SDN control path, tracks provide an effective means of mitigating the cost of SDN control overhead in IEEE 802.15.4-2015 TSCH networks

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    Software-Defined Networks for Future Networks and Services: Main Technical Challenges and Business Implications

    Get PDF
    In 2013, the IEEE Future Directions Committee (FDC) formed an SDN work group to explore the amount of interest in forming an IEEE Software-Defined Network (SDN) Community. To this end, a Workshop on "SDN for Future Networks and Services" (SDN4FNS'13) was organized in Trento, Italy (Nov. 11th-13th 2013). Following the results of the workshop, in this paper, we have further analyzed scenarios, prior-art, state of standardization, and further discussed the main technical challenges and socio-economic aspects of SDN and virtualization in future networks and services. A number of research and development directions have been identified in this white paper, along with a comprehensive analysis of the technical feasibility and business availability of those fundamental technologies. A radical industry transition towards the "economy of information through softwarization" is expected in the near future

    A trustworthy mobile agent infrastructure for network management

    Get PDF
    Despite several advantages inherent in mobile-agent-based approaches to network management as compared to traditional SNMP-based approaches, industry is reluctant to adopt the mobile agent paradigm as a replacement for the existing manager-agent model; the management community requires an evolutionary, rather than a revolutionary, use of mobile agents. Furthermore, security for distributed management is a major concern; agent-based management systems inherit the security risks of mobile agents. We have developed a Java-based mobile agent infrastructure for network management that enables the safe integration of mobile agents with the SNMP protocol. The security of the system has been evaluated under agent to agent-platform and agent to agent attacks and has proved trustworthy in the performance of network management tasks

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin
    corecore