8 research outputs found

    ATP and Presentation Service for Mizar Formalizations

    Get PDF
    This paper describes the Automated Reasoning for Mizar (MizAR) service, which integrates several automated reasoning, artificial intelligence, and presentation tools with Mizar and its authoring environment. The service provides ATP assistance to Mizar authors in finding and explaining proofs, and offers generation of Mizar problems as challenges to ATP systems. The service is based on a sound translation from the Mizar language to that of first-order ATP systems, and relies on the recent progress in application of ATP systems in large theories containing tens of thousands of available facts. We present the main features of MizAR services, followed by an account of initial experiments in finding proofs with the ATP assistance. Our initial experience indicates that the tool offers substantial help in exploring the Mizar library and in preparing new Mizar articles

    Dependencies in Formal Mathematics: Applications and Extraction for Coq and Mizar

    Full text link
    Two methods for extracting detailed formal dependencies from the Coq and Mizar system are presented and compared. The methods are used for dependency extraction from two large mathematical repositories: the Coq Repository at Nijmegen and the Mizar Mathematical Library. Several applications of the detailed dependency analysis are described and proposed. Motivated by the different applications, we discuss the various kinds of dependencies that we are interested in,and the suitability of various dependency extraction methods

    Premise Selection for Mathematics by Corpus Analysis and Kernel Methods

    Get PDF
    Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. A good method for premise selection in complex mathematical libraries is the application of machine learning to large corpora of proofs. This work develops learning-based premise selection in two ways. First, a newly available minimal dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed,extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50% improvement on the benchmark over the Vampire/SInE state-of-the-art system for automated reasoning in large theories.Comment: 26 page

    Evaluation of Automated Theorem Proving on the Mizar Mathematical Library

    No full text
    Contains fulltext : 83733.pdf (publisher's version ) (Closed access

    Automated Theorem Proving with Extensions of First-Order Logic

    Get PDF
    Automated theorem provers are computer programs that check whether a logical conjecture follows from a set of logical statements. The conjecture and the statements are expressed in the language of some formal logic, such as first-order logic. Theorem provers for first-order logic have been used for automation in proof assistants, verification of programs, static analysis of networks, and other purposes. However, the efficient usage of these provers remains challenging. One of the challenges is the complexity of translating domain problems to first-order logic. Not only can such translation be cumbersome due to semantic differences between the domain and the logic, but it might inadvertently result in problems that provers cannot easily handle.The work presented in the thesis addresses this challenge by developing an extension of first-order logic named FOOL. FOOL contains syntactical features of programming languages and more expressive logics, is friendly for translation of problems from various domains, and can be efficiently supported by existing theorem provers. We describe the syntax and semantics of FOOL and present a simple translation from FOOL to plain first-order logic. We describe an efficient clausal normal form transformation algorithm for FOOL and based on it implement a support for FOOL in the Vampire theorem prover. We illustrate the efficient use of FOOL for program verification by describing a concise encoding of next state relations of imperative programs in FOOL. We show a usage of features of FOOL in problems of static analysis of networks. We demonstrate the efficiency of automated theorem proving in FOOL with an extensive set of experiments. In these experiments we compare the performance of Vampire on a large collection of problems from various sources translated to FOOL and ordinary first-order logic. Finally, we fix the syntax for FOOL in TPTP, the standard language of first-order theorem provers
    corecore