11 research outputs found

    Observer design for position and velocity bias estimation from a single direction output

    Get PDF
    This paper addresses the problem of estimating the position of an object moving in RnR^n from direction and velocity measurements. After addressing observability issues associated with this problem, a nonlinear observer is designed so as to encompass the case where the measured velocity is corrupted by a constant bias. Global exponential convergence of the estimation error is proved under a condition of persistent excitation upon the direction measurements. Simulation results illustrate the performance of the observer.Comment: 6 pages, 6 figure

    A nonlinear observer for 6 DOF pose estimation from inertial and bearing measurements

    Full text link
    Abstract — This paper considers the problem of estimating pose from inertial and bearing-only vision measurements. We present a non-linear observer that evolves directly on the special Euclidean group SE(3) from inertial measurements and bearing measurements, such as provided by a visual system tracking known landmarks. Local asymptotic convergence of the observer is proved. The observer is computationally simple and its gains are easy to tune. Simulation results demonstrate robustness to measurement noise and initial conditions

    Localization and Mapping from Shore Contours and Depth

    Get PDF
    This work examines the problem of solving SLAM in aquatic environments using an unmanned surface vessel under conditions that restrict global knowledge of the robot's pose. These conditions refer specifically to the absence of a global positioning system to estimate position, a poor vehicle motion model, and absence of magnetic field to estimate absolute heading. These conditions are present in terrestrial environments where GPS satellite reception is occluded by surrounding structures and magnetic inference affects compass measurements. Similar conditions are anticipated in extra-terrestrial environments such as on Titan which lacks the infrastructure necessary for traditional positioning sensors and the unstable magnetic core renders compasses useless. This work develops a solution to the SLAM problem that utilizes shore features coupled with information about the depth of the water column. The approach is validated experimentally using an autonomous surface vehicle utilizing omnidirectional video and SONAR, results are compared to GPS ground truth

    Robust and efficient robotic mapping

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 123-129).Mobile robots are dependent upon a model of the environment for many of their basic functions. Locally accurate maps are critical to collision avoidance, while large-scale maps (accurate both metrically and topologically) are necessary for efficient route planning. Solutions to these problems have immediate and important applications to autonomous vehicles, precision surveying, and domestic robots. Building accurate maps can be cast as an optimization problem: find the map that is most probable given the set of observations of the environment. However, the problem rapidly becomes difficult when dealing with large maps or large numbers of observations. Sensor noise and non-linearities make the problem even more difficult especially when using inexpensive (and therefore preferable) sensors. This thesis describes an optimization algorithm that can rapidly estimate the maximum likelihood map given a set of observations. The algorithm, which iteratively reduces map error by considering a single observation at a time, scales well to large environments with many observations. The approach is particularly robust to noise and non-linearities, quickly escaping local minima that trap current methods. Both batch and online versions of the algorithm are described. In order to build a map, however, a robot must first be able to recognize places that it has previously seen. Limitations in sensor processing algorithms, coupled with environmental ambiguity, make this difficult. Incorrect place recognitions can rapidly lead to divergence of the map. This thesis describes a place recognition algorithm that can robustly handle ambiguous data. We evaluate these algorithms on a number of challenging datasets and provide quantitative comparisons to other state-of-the-art methods, illustrating the advantages of our methods.by Edwin B. Olson.Ph.D

    Leader-assisted localization approach for a heterogeneous multi-robot system

    Get PDF
    This thesis presents the design, implementation, and validation of a novel leader assisted localization framework for a heterogeneous multi-robot system (MRS) with sensing and communication range constraints. It is assumed that the given heterogeneous MRS has a more powerful robot (or group of robots) with accurate self localization capabilities (leader robots) while the rest of the team (child robots), i.e. less powerful robots, is localized with the assistance of leader robots and inter-robot observation between teammates. This will eventually pose a condition that the child robots should be operated within the sensing and communication range of leader robots. The bounded navigation space therefore may require added algorithms to avoid inter-robot collisions and limit robots’ maneuverability. To address this limitation, first, the thesis introduces a novel distributed graph search and global pose composition algorithm to virtually enhance the leader robots’ sensing and communication range while avoiding possible double counting of common information. This allows child robots to navigate beyond the sensing and communication range of the leader robot, yet receive localization services from the leader robots. A time-delayed measurement update algorithm and a memory optimization approach are then integrated into the proposed localization framework. This eventually improves the robustness of the algorithm against the unknown processing and communication time-delays associated with the inter-robot data exchange network. Finally, a novel hierarchical sensor fusion architecture is introduced so that the proposed localization scheme can be implemented using inter-robot relative range and bearing measurements. The performance of the proposed localization framework is evaluated through a series of indoor experiments, a publicly available multi-robot localization and mapping data-set and a set of numerical simulations. The results illustrate that the proposed leader-assisted localization framework is capable of establishing accurate and nonoverconfident localization for the child robots even when the child robots operate beyond the sensing and communication boundaries of the leader robots

    Simultaneous localisation and mapping with prior information

    Get PDF
    This thesis is concerned with Simultaneous Localisation and Mapping (SLAM), a technique by which a platform can estimate its trajectory with greater accuracy than odometry alone, especially when the trajectory incorporates loops. We discuss some of the shortcomings of the "classical" SLAM approach (in particular EKF-SLAM), which assumes that no information is known about the environment a priori. We argue that in general this assumption is needlessly stringent; for most environments, such as cities some prior information is known. We introduce an initial Bayesian probabilistic framework which considers the world as a hierarchy of structures, and maps (such as those produced by SLAM systems) as consisting of features derived from them. Common underlying structure between features in maps allows one to express and thus exploit geometric relations between them to improve their estimates. We apply the framework to EKF-SLAM for the case of a vehicle equipped with a range-bearing sensor operating in an urban environment, building up a metric map of point features, and using a prior map consisting of line segments representing building footprints. We develop a novel method called the Dual Representation, which allows us to use information from the prior map to not only improve the SLAM estimate, but also reduce the severity of errors associated with the EKF. Using the Dual Representation, we investigate the effect of varying the accuracy of the prior map for the case where the underlying structures and thus relations between the SLAM map and prior map are known. We then generalise to the more realistic case, where there is "clutter" - features in the environment that do not relate with the prior map. This involves forming a hypothesis for whether a pair of features in the SLAMstate and prior map were derived from the same structure, and evaluating this based on a geometric likelihood model. Initially we try an incrementalMultiple Hypothesis SLAM(MHSLAM) approach to resolve hypotheses, developing a novel method called the Common State Filter (CSF) to reduce the exponential growth in computational complexity inherent in this approach. This allows us to use information from the prior map immediately, thus reducing linearisation and EKF errors. However we find that MHSLAM is still too inefficient, even with the CSF, so we use a strategy that delays applying relations until we can infer whether they apply; we defer applying information from structure hypotheses until their probability of holding exceeds a threshold. Using this method we investigate the effect of varying degrees of "clutter" on the performance of SLAM
    corecore