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Abstract

Building a representation of space and estimating a robot’s location within that space is a fundamental

task in robotics known as simultaneous localization and mapping (SLAM). This work examines the problem

of solving SLAM in aquatic environments using an unmanned surface vessel under conditions that restrict

global knowledge of the robot’s pose. These conditions refer specifically to the absence of a global positioning

system to estimate position, a poor vehicle motion model, and the lack of a strong stable magnetic field to

estimate absolute heading. These conditions can be found in terrestrial environments where the line of sight

to GPS satellites is occluded by surrounding structures and local magnetic inference affects reliable compass

measurements. Similar conditions are anticipated in extra-terrestrial environments such as on Titan where

the lack of a global satellite network inhibits the use of traditional positioning sensors and the lack of a stable

magnetic core limits the applicability of a compass. This work develops a solution to the SLAM problem

that utilizes shore features coupled with information about the depth of the water column. The approach

is validated experimentally using an autonomous surface vehicle utilizing omnidirectional video and a depth

sounder. Solutions are compared to ground truth obtained using GPS and to solutions found when the

restriction of a poor magnetic field is lifted.
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Chapter 1

Introduction

The ability of a robot to build an accurate map of its environment and to localize itself within that map is

an important step in creating fully autonomous robotic agents. In the literature and academic community

this task is commonly referred to as the simultaneous localization and mapping (SLAM) problem [1]. For

sufficiently well behaved environments, sensors, and vehicles SLAM is generally considered solved [2]. Stan-

dard implementations of SLAM exist for numerous structured domains and sensors; however, many aspects

of the SLAM problem remain unexplored or unsolved for more complex environments, vehicle models and

sensors. Moving forward, the challenge for SLAM algorithms and their implementation is on expanding the

capabilities of existing approaches to cope with larger and more unstructured environments. Many difficult

environments exist for SLAM algorithms. Demonstrating the consistent ability to navigate vast outdoor en-

vironments without aid from a global position estimation system such as a global positioning system (GPS)

[3] is a problem of particular interest. Terrestrial environments such as forests, mountainous regions, and

urban canyons are challenging SLAM environments, and of course GPS is completely unavailable under-

ground, underwater and for non-terrestrial exploration. In such GPS denied environments SLAM solutions

1



(a) The Fra Mauro world map created in the mid 15th
century showing Europe, Asia and Africa.

(b) Modern day world map of Europe, Asia and Africa
overlaid with temperature and wind.
GFS / NCEP / US National Weather Service.

Figure 1.1: Antiquated and modern world maps.
A side by side comparison of the Fra Mauro map to a modern world map generated from satellite
data.

must rely on locally sensed landmarks and odometry models rather than relying on GPS signals.

Humans have used maps for centuries. Early human maps can be traced back to Babylon, Greece and

Asia, and by the time of the Greek and Roman empires, maps were ubiquitous navigational aides. By the mid

15th century, humans had built maps that represented most of the known world. Figure 1.1a, for example,

shows the Fra Mauro map, which depicts the known world – at least as known to Europeans – around 1450.

Today, of course, we have access to more sophisticated sensing technologies and maps such as the one shown

in Figure 1.1b which depicts weather information in a global reference frame are common.

Given the usefulness of maps for humans, it is perhaps not surprising then that maps can be equally useful

for robots. In addition to providing a similar representation for spatial information and tasks for machines,

maps can also provide a common framework for human-robot communication. Maps provide a workable

definition of ’here’ and ’there’. They provide a useful representation for information crucial for navigation –



(a) 3-dimensional point cloud of our office building at
York University.

(b) 2-dimensional occupancy grid of an office space.

Figure 1.2: Typical SLAM maps
Examples of maps obtained with SLAM algorithms. (a) shows a 3D map of the ground floor of
the Sherman Health Sciences building at York University obtained using a ground contact robot
and LIDAR sensor. (b) shows a 2D map of the same space. In both cases the map is actually
represented as a collection of sensor readings, here laser sensor measurements, embedded in a
Cartesian space.

how to get from here to there. And they provide a useful framework within which events, locations, tasks and

similar things can be embedded. Knowing the structure of the surrounding environment aids in navigation

from one point to another within the environment. Maps that can be translated into a format that can

be interpreted by a human operator and a machine can be used as the basis of communication between

human and robot: In their simplest form such maps can be used to communicate location and trajectory

through space. These basic maps can be annotated with additional information and used as a context for

much more powerful and effective communication. Beyond providing a common framework for human-robot

communication, maps provide an essential resource for a wide range of robot applications.

Maps are almost ubiquitous for humans in the present day. Terrestrial maps generated a priori are

common in today’s society with Google Maps [4], OpenStreetMap [5], and others providing nearly complete

global coverage of the world. These massive cartographic undertakings focus on providing information to

drivers and pedestrians travelling on public roadways and transit systems and build upon centuries of earlier

work with paper-based maps. Other projects like OpenSeaMap [6] provide similarly relevant information to

boat operators and commercial transport ships. The highest detailed civilian maps typically only include



(a) aerial photograph of a tailing pond. (b) land-based view of a tailing pond.

Figure 1.3: Tailing pond
Photographs of tailing ponds in Elko, Nevada.

topographical information at a resolution of tens of meters. Although these maps are very useful for a range

of human activities these maps are mostly unsuited on their own for robotic navigation because they do

not provide data that is crucial to robot operations. Knowing where the nearest coffee shop is on a map

may be very useful for humans. It is less useful for today’s robots. Similarly robot maps typically include

representations of events – often sensor events – of particular interest to robots but of less utility for humans.

Terrestrial maps typically encode information about the ground. Although most robots operate on

the ground plane, a range of interesting environments exist beyond this domain. To take but just one non-

ground-plane application, consider the problem of navigating and representing the surface of bodies of water.

Localization and mapping of bodies of liquids (primarily water terrestrially) finds a wide range of applications.

Terrestrially, reservoir, lakes, ponds, rivers and the like provide a range of interesting environments for robot

operations. Furthermore, many of these environments are GPS denied (e.g., underground reservoirs, surface

water bodies in mountainous regions, etc.) preventing the use of a global localization solution. For example,

Figure 6.1 shows a mining mail pond in Elko, Nevada. Understanding the current contents and scale of

the water surface of such ponds is a critical day-to-day requirement of mining operation. Off-earth lakes,

(not necessarily of water) on the surface of non-terrestrial planets and natural satellites are of particular

importance to the future of space exploration. Titan, one of Saturn’s moons, is the only known celestial body



(a) Multi spectral image of Titan. (b) Artist rendering of a Titan lake.
NASA/JPL/Space Science Institute. NASA/JPL-Caltech/USGS.

Figure 1.4: Titan

within our solar system with hydrocarbon lakes on its surface [7]. Other celestial bodies such as Europa and

Enceladus may have interior bodies of water [8][9]; however, this makes them less accessible to exploration

by an autonomous robot. Titan, shown in Figure 1.4 is of particular interest for space exploration because

of its geological environment and its potential to support pre-biotic chemistry [10]. Titan’s size and thus

curvature presents additional problems for SLAM, being that even moderately sized lakes on Titan can have

large sections in which lake shores are either not visible, or not discernible due to limitations on the resolution

of standard cameras. Titan does not support a constant magnetosphere [11], limiting the usefulness of a

compass in navigation and mapping. As a result, SLAM on but near the shore of the lakes of Titan must rely

on local sensors, including visual sensors of shoreline features, a sun compass and information concerning

the local depth of the “water” column. Terrestrial regions with poor compass performance also exist, with

large metal bodies and electromagnetic fields generated by motors and the like typically lead to substantive

failures in terms of compass performance. Although the work in this thesis is intended to be applicable to

the SLAM task on bodies of liquid generally, one goal of this work is to investigate how the limits of Titan’s

sensing environment constrains SLAM algorithms operating in the environment found on Titan.



This research explores the viability of mapping bodies of water in a GPS denied and geo-magnetic absent

environment using local measurements of environmental features, specifically shore/skyline features and

the depth of the water column. Beyond the potential off-world application of such a solution to the SLAM

problem under these circumstances facilitates autonomous navigation of terrestrial water bodies. Addressing

the SLAM problem for an autonomous surface vehicle (ASV) operating in a GPS-denied environment involves

developing appropriate sensor and locomotion models for such a device. This research utilizes a combination

of sensors to address the sensing side of this problem. An omnidirectional camera is used to obtain visual

information about the horizon structure and this information is integrated with information of the depth of

the water column to estimate position/orientation information for the vehicle while simultaneously obtaining

a map of the robot’s environment. Experimental validation of the algorithm shows both the functionality of

the basic approach, but also evaluates the importance of a compass and depth sensor in performing SLAM

on the surface of bodies of water within sight of the shoreline.

1.1 What is SLAM and why is it hard?

Navigation without a map has been known to be a hard problem for a long time. Stories from ancient

mythology and fairy tales such as “Theseus and the Minotaur” [12] and “Hansel and Gretel” [13] anecdotally

demonstrate that it is easy to get lost without a map. In both of these stories the protagonists avoid getting

lost by leaving a trail of breadcrumbs/string behind them to mark their path in order to find their way back.

That is, they utilize landmarks – here artificial – to help solve the problem of building a representation of

their space and navigating out of it. Given the difficulty of navigating without a map and the usefulness

of maps for a variety of different tasks, humans have spent considerable effort in developing technologies

to support map construction. The human task of building maps is known as cartography. Historically,

cartography is a well studied and practiced art that relies heavily on mathematics. Over its long history new

technological developments such as the compass, sextant and chronograph have allowed for the creation of

more accurate maps by helping mapmakers to more accurately determine their location and the location of



features (landmarks). Some may point to old maps such as the Fra-Mauro map shown in Fig 1.1a and laugh

at how ‘poorly’ they represent the environment by modern standards. This just helps to illustrate that map

creation is a difficult task.

In general, robots do not have the luxury of being able to leave a trail of breadcrumbs to mark the path

they have travelled. Although there are robot algorithms that solve SLAM in exactly this way, see [14], for

example. If one could use breadcrumbs – and leaving aside the issue of other agents manipulating those

markers – the map could be constructed incrementally by tracing the robot’s position back through time.

But what can an autonomous agent do if breadcrumbs are not available, or not appropriate for the specifics

of the mapping task? In this case the agent might rely on an accurate odometry/motion model to solve the

problem. If the robot’s measured odometry was 100% reliable, map creation would be trivial. If the robot

can remember exactly how far it moved, and exactly the order of these motions, then individual positions

can be easily localized within some global coordinate system. The problem with this approach is that the

motion of the robot is not 100% accurate and predictable. Every command motion of the agent is corrupted

by noise and the motion error at each time step contributes to the error at the next time step. Furthermore,

for many robots external forces acting on the vehicle can result in unintended un-commanded motion. This

causes the estimate of the robots position to become less and less accurate over time, and eventually the

agent’s estimate of its current position is essentially meaningless. The most common source of odometry

error for ground contact vehicles is wheel slippage, which happens when a wheel loses traction with the

ground and turns without moving the robot. Aerial and aquatic vehicles are subject to a more severe form

of odometry error caused by drag which is due to unknown motion of the environment (wind, wave, surge

and the like).

Given the error associated with the robot’s motion model it becomes necessary for the robot to rely

on other sources of information to solve the SLAM problem. One option here would be to take advantage

of naturally occurring landmarks or features in the environment to help solve the problem. Consider the

case of a person (you) solving the problem. Although your estimate of your motion may be error prone,



if you encounter a unique landmark in the environment – a specific shop or building that is unique in the

environment – then this landmark can anchor your representation of the space. Given enough such landmarks

it then becomes possible to map the world even if the motion estimation process is noisy. This observation

is the fundamental theory behind most modern SLAM algorithms. Rather than assuming unique features in

space, a probabilisitic representation of these features is used enabling a probabilistic solution to both the

mapping and localization problem.

1.2 Motivation

The motivation for the sensor restrictions considered in this work is to increase the generality of SLAM to

mapping more eclectic environments. Although the specific restrictions considered here are motivated by the

environment associated with Titan, these restrictions also have wide application in terrestrial environments

– underground/indoor liquid bodies, and surface bodies for which GPS satellite visibility and a constant

external magnetic field is not guaranteed. The terrestrial applications of this research are arguably more

important given that missions to Titan [15] are still in the draft/proposal stage of development. The

most interesting terrestrial environments to explore are underground rivers/lakes and reservoirs. For such

environments there exists no line of sight to any GPS satellites, so they are by definition GPS denied

environments. The presence of metallic deposits in the surrounding earth as well as ferrous material in the

vessel itself – especially electric motors – can interfere with the local magnetic field rendering a compass

useless. This work also asks the question, how important is a compass in terms of enabling SLAM to be

solved? Access to a global directional signal can be very powerful, but how necessary is it in terms of solving

SLAM?



1.3 Structure of this document

This thesis is organized into six chapters, this section is the culmination of the chapter entitled “Introduc-

tion”. This chapter introduced the key aspects of the problems associated with this research as well as the

motivations behind conducting this research. The second chapter entitled “Background” explores aspects

of related fields of research with a primary focus on the simultaneous localization and mapping problem.

The third chapter entitled “Eddy : an autonomous aquatic surface vessel” details the hardware and software

tools that were leveraged in order to collect the data required to conduct this research. The fourth chapter

entitled “Implementation” describes the mathematical and algorithmic framework that is used to integrate

information from the robots sensors and measured odometery into an continuous estimate of its state and

environment. The fifth chapter entitled “Experimental validation” describes the process of deploying the

robot, collecting data and comparing the mapped environment against ground truth data. The final chapter

entitled “Summary and future work” contains concluding remarks about the research and suggests possible

avenues for further enhancements.



Chapter 2

Background

SLAM (Simultaneous Localization and Mapping) is a well studied problem which can be traced back to [16].

The modern Bayesian formulation of the problem finds its roots in [2]. Recent tutorial and survey papers

(e.g., [1] and [17]) provide a good introduction to the problem although an abbreviated introduction to the

problem is included in this chapter. A wide range of SLAM algorithms exist, although most have been devel-

oped/implemented with terrestrial ground-contact robots in mind. Such solutions typically assume a robot

operating on a two dimensional ground plane having three degrees of freedom (x, y, θ), and a set of station-

ary features or landmarks that can be exploited to solve the SLAM problem. Well known implementations

of SLAM such as GMAPPING[18], GridSlam[19] and DP-SLAM[20] are well suited to mapping large-scale

indoor environments using laser range data (LiDAR). The maps generated by these algorithms typically

come in the form of two dimensional occupancy grids depicting both the free space within the environments

as well as its boundaries along with the localization of features (landmarks) that were used to build the

representation. In concert with developing this map such algorithms estimate a sequence of robot waypoints

within this map that are the hypothesized locations of the robot as the map was constructed. These im-
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plementations struggle on rougher terrain when the assumption that the environment is well represented

using a two dimensional grid is violated. In these situations more comprehensive approaches are necessary

to properly map the surrounding environment. For 3D environments, RGB-D SLAM[21], SLAM6D[22] and

PTAM[23] represent the environment as a three dimensional point cloud and track the robot’s pose in 6

degrees-of-freedom (DOF).

Although terrestrial and aerial based visual SLAM algorithms can be effective, as is evidenced by their

wide application both indoors and out, they are not ideal for the aquatic surface domain. The aquatic domain

introduces two complexities for SLAM algorithms that are typically not encountered for ground contact or

aerial robots. The first is that is the complex nature of the plant model for aquatic robots. For a terrestrial

robot – especially wheeled terrestrial robots – the robot plant model is a particularly strong cue as to the

relative motion of the robot. If the robot is not commanded to move, then it probably doesn’t move, and if it

is commanded to move a certain amount in a certain direction then it does with only a small and predictable

error. A second issue for aquatic robots is the nature of the landmarks available to SLAM. The surface of

the water is typically devoid of useful visual landmarks that can be used to aid mapping and localization.

In general, visual landmarks are shore-based. This means that landmarks are typically not found in close

proximity the robot nor are they distributed uniformly around the robot. Furthermore, the water surface

itself acts as a reflector. The reflection of visual landmarks off the surface of the water is detrimental, causing

the appearance of false landmarks below the water’s surface. As the robot travels further away from shore

the amount of visual real estate taken up by the sky and water increases. This presents a problem because

overhead clouds and the geometry and reflection within waves can lead to the detection of false, non-static

environmental features. Visual landmarks found within these regions need to be identified and removed so

that they are not confused with real landmarks that can be measured repeatedly over time.

In the aerial domain, SLAM algorithms have also been developed for unmanned aerial vehicles (UAV).

For such devices equipped with single camera a number of algorithms such as PTAM[23] have been developed

for 6DOF pose estimation and environment mapping. MCPTAM[24][25] is an extension of PTAM to multiple



cameras that also supports cameras with a wide field of view. MCPTAM is well suited to UAVs equipped

with any number of cameras. For UAV’s, these approaches have many advantages over traditional ground-

contact robot SLAM algorithms including real-time capabilities and efficiencies in terms of estimating pose in

high dimensionality spaces. Furthermore they do not rely on a good motion model of the vehicle. However,

in order to maintain accuracy they require an environment with a high number of stable visual features

distributed over space. The limitation that most precludes the adoption of PTAM like algorithms is their

inability to accommodate measurements from non-visual sensors.

SLAM has also been applied to autonomous underwater vehicles (AUV’s). Underwater robots can use

side scan SONAR to measure the distance to structures on the sea/ocean floor and this, coupled with an

appropriate IMU, can be a very effective sensor combination. SLAM algorithms for the underwater domain

need to be capable of fully estimating 6DOF motion and are usually designed to use SONAR rather than

visual features due to particulate matter in the water column and refraction effects that obscure sight and

reduce the availability of light. Although there are exceptions to this general rule, see [26] for example.

Although there is a large SLAM literature (see [1][17] for recent reviews of the field), the SLAM algo-

rithms that are the most relevant to this research are those that operate on or map the surface of aquatic

environments. In this domain there have been a number of efforts to solve the SLAM problem. For exam-

ple, [27] describes the process of mapping large riverine environments with intermittent GPS data with an

unmanned aerial vehicle (UAV). This system produces a mixed 2D and 3D map of the river using vision

and LIDAR sensors, the 2D portion of the map depicts the extent of the river using an occupancy grid

whereas the 3D map depicts objects above water level using a point cloud. The work in [28] describes an

extension to the standard SLAM approach that models dynamic marine environments using RADAR. This

approach tracks both stationary landmarks and moving objects using both as aids in the mapping process.

This framework is quite desirable for applications where other aquatic vehicles are present or in the study

of marine wildlife.



In the area of planetary exploration a number of marine robotics systems have been proposed (e.g., [29]

and [30]). These systems include approaches that include autonomous aerial vehicles or geostationary satel-

lites to aid in the process of localizing the robotic vehicle within the targeted environment.

Both the underwater and aerial domains share a commonality with the aquatic surface domain. Robots

operating in these environments are subject external forces that can significantly alter their overall motion.

This is in contrast with the operational domain of ground-contact robots. Ground-contact robots maintain

a significant amount of friction between the robot and the ground which prevents all but severe weather

conditions or ground tremors having any significant effect on their motion. For robots operating underwater

or free-flying such un-commanded motion is a full 6DOF disturbance. Robots that operate on the surface

of liquid bodies are not subject to fully 6DOF motion, unless capsized. The motion of a robotic boat can,

in most circumstances be modelled using a 3DOF space using only its (x, y) position and θ orientation.

Although it is important to note that the pose of a robot moving on a liquid surface is also subject to small

variations in roll, pitch and heave as well.

The remainder of this chapter provides a formal definition of SLAM and a brief description of SLAM

algorithms that have been applied to vehicles operating on the surface of, and underwater. This chapter also

provides a review of the kinematics of differential drive vehicles and defines the coordinate frames used to

describe the motion of a vehicle operating on the surface of a liquid.

2.1 Formal definition of SLAM

The formal definition and notation of the SLAM problem described here follows that presented in [1].

Consider a mobile robot beginning to explore an unknown environment starting from a known state x0,

comprised of a point in Cartesian space and orientation. The robot is equipped with sensors to perceive its

environment and some mechanism to control its motion within the environment. The effect of commanded

motion of the vehicle is subject to noise, thus the robot’s known position within the environment becomes



Figure 2.1: Graphical representation of the SLAM problem
At time t, the SLAM algorithm integrates state estimates with control inputs along with mea-
surements of landmarks to update both the estimate of the robot’s state and an estimate of a
map of the environment. True measurements are shown in white, while estimated measures are
shown in grey.

more uncertain as the robot moves. As the robot travels within the environment it takes measurements of its

surroundings to localize recognizable and fixed landmarks repeatedly. These sensor measurements are also

corrupted with noise. The goal of the SLAM problem is to establish, at each time t, the best representation

of the world and a best estimation of the motion of the robot from time 0:t. The system has access to the

commanded control inputs to the robot, an appropriate model of how the inputs impact the robot’s state,

and some set of measurements of visible landmarks. At time t the following variables are defined.

• xt : state vector describing the robot’s location and orientation at time t.

• ut : control vector describing the robot’s motion from time t− 1 to t.

• zt : sensor measurement observed from the robot at time t.

• mi : vector describing the location of i-th landmark.



Additionally the following ordered and unordered collections are defined to the describe the experience of

the robot throughout its exploration of the environment.

• X0:t = (x0,x1, . . . ,xt) : sequence of vehicle states.

• U0:t = (u0,u1, . . . ,ut) : sequence of vehicle controls.

• Z0:t = (z0, z1, . . . , zt) : sequence of sensor measurements.

• M = {m0,m1, . . . ,mn} : the set of all landmarks.

Solving SLAM involves integrating measurements of the environment’s features with commanded motion

through the environment to estimate both robot state and the environment itself. Figure 2.1 represents

the SLAM problem as a graph. Using this representation SLAM can be more easily viewed as a non-linear

optimization process looking for the sequence of states X0:t and set of landmarks M that best describe the

controls U0:t, and measurements Z0:t along with their associated error models.

2.2 SLAM within a Bayesian framework

Given the stochastic nature of measurements and motion estimates, a Bayesian probabilistic framework is

typically adopted to solve the SLAM problem. Expressed in probabilistic form, the following probability

distribution represents the essence of the SLAM problem.

p(xt,M|U0:t,Z0:t,x0) (2.1)

This is the joint probability of position and map, given the sequence of motion control signals, measurement

inputs, and assuming some initial state. Solving the SLAM problem can be thought of as developing

a representation of the posterior distribution and then collapsing this distribution to obtain an estimate



of the world M and the motion of the robot through it (X0:t). The posterior p(xt,M|U0:t,Z0:t,x0) is

typically decomposed into simpler probability terms. A typical decomposition of the posterior is in terms of

a measurement model and a motion model. The measurement model describes the probability of making an

observation zt at time t from a given pose xt within a known landmark map mi.

p(zt|xt,mi) (2.2)

The motion model describes the motion of the vehicle and the uncertainty of this information. The motion

model can be expressed as a probability distribution which describes the effect a control ut has on the state

xt−1 of the robot. This model represents the probability of the robot being in a new pose xt given a previous

pose xt−1 and a control ut applied to the robot at time t−1. A first-order Markovian assumption is typically

applied.

p(xt|xt−1,ut) (2.3)

Using probabilistic formulations for both the motion and measurement models the SLAM algorithm can

proceed using a two-step recursive process consisting of a time-update (prediction) and measurement (cor-

rection) computation.

p(xt,M|U0:t,Z0:t−1,x0) =

∫
p(xt|xt−1,ut) p(xt−1,M|U0:t−1,Z0:t−1,x0)dxt−1 (2.4)

p(xt,M|U0:t,Z0:t,x0) =
p(zt|xt,M) p(xt,M|U0:t,Z0:t−1,x0)

p(zt|Z0:t,U0:t)
(2.5)



Given this Bayesian formulation, the remaining task is one of implementing these probabilistic represen-

tations, performing the necessary optimization to determine p(zt,xt|M), and collapsing this representation

to a local ‘best’ estimate of the state of the robot and the map. The majority of SLAM implementations in

the literature fall under one of three main categories in terms of addressing these issues: They can typically

be categorized as either Extended Kalman (EKF) Filtering (e.g., [31]), Graph Optimization (e.g., [32]) or

Particle Filtering (e.g., [33]) based on the mathematical representation used for the distribution functions.

This work utilizes the particle filtering approach because of its efficiency in low dimensional state space, its

ability to deal with non-Gaussian distributions of the various probability distributions and its ability to deal

with unknown feature correspondences.

2.2.1 Representing distributions

(a) Gaussian function with mean µ and variance σ2

used to estimate the posterior.
(b) set of particles used to approximate the posterior
distribution.

Figure 2.2: Approximating the SLAM posterior distribution
Graphical depictions of two distinct models that are commonly used to represent the SLAM
posterior distribution. (a) show the 1-dimensional analog of the Gaussian model. (b) shows the
1-dimensioanl analog of the particle filter model.



A key issue in SLAM algorithms is the mechanism used to represent the various distributions that are

required by the algorithm. For some applications (e.g., underwater, flying) it may be necessary to represent

the robot’s pose as a full 6DOF parameter, and similar representations may be required for landmarks.

Fortunately here only 3DOF parameters are required for the robot’s pose. But for simplicity here, consider

the problem of representing some 1D distribution.

A common approach – and the approach utilized by Kalman-filter based approaches – is to represent

this distribution as a Gaussian distribution. Here, the distribution is fully modelled by its mean and stan-

dard deviation. Although this can be effective, it is also quite limiting and unfortunately for many of the

distributions in SLAM algorithms it is insufficient. The problem is that the underlying distribution is not

unimodal, or that it is not symmetric, both of which are properties assumed by a Gaussian distribution. The

most likely value in the distribution is not well modelled by the mean of the Gaussian fit, nor is the spread

of the distribution well modelled by its variance. An alternative approach is to utilize Sequential Importance

Sampling (SIS) also known as a particle filter. The basic approach here is to represent the distribution by

a collection of weighted samples, (xi, wi) then the distribution p(x) is approximated by Σi widelta(xi − x).

A critical issue using sequential importance sample (SIS) particle filters and sequential importance resample

(SIR) particle filters is ensuring that the distribution is not under- or over- represented.

To make this abstract difference more concrete, imagine representing a 6DOF distribution with a Gaus-

sian filter. EKF-style SLAM variants represent this distribution using a multivariate normal distribution

with mean µ and covariance Σ. The dimensionality of this normal distribution represents the collective state

space of the robot’s pose and all discovered landmarks k. A 3DOF robot representing a two-dimensional

environment requires a covariance matrix Σ that is 2k+ 3 by 2k+ 3. Particle filter-based approaches such as

FastSLAM approximate the distribution through a set of weighted particles. A straightforward implementa-

tion would be to model the distribution as a collection of weighted particles of the same dimensionality as the

underlying distribution, although more efficient options exist. One such efficiency used in SLAM algorithms

involves separating parts of the representation that can be well modelled using a Gaussian representation



from parts that can not. For example the Rao-Blackwell theorem [34] is often used to factor the SLAM

posterior into a path posterior and map posterior. This factorization is possible due to the observation that

if the location of the robot was known with absolute certainty the map can be represented using a set of

independent EKF-style landmarks. The particle filter directly represents the path posterior as each particle

is a hypothesized trajectory of the robot through the environment. Indirectly the full posterior is represented

because each particle contains its own map with a set of EKF-style landmarks.

2.2.2 Collapsing a distribution

Eventually every SLAM implementation must collapse the posterior probability distribution down to a small

covariance, thus confidently rendering a map that conforms to all obtained measurements of the environment.

In the literature this is commonly referred to as convergence. When the SLAM implementation is improperly

formulated to model the explored environment the covariance never collapses and diverges from a solution.

For EKF-SLAM implementations the posterior distribution must meet a number of requirements in order

for convergence to occur. The first condition is that there are numerous landmarks spread throughout the

environment that can be used to aid in the localization process. The second condition requires that the

motion model (see Eqn. 2.3) accurately represents the kinematics of the robots motion and the associated

error. The third condition requires the same of the measurement model (see Eqn. 2.2) for all sensors

used within the SLAM implementation. The last condition requires that the data association algorithm is

accurate enough to ensure sufficient correct matches. This is especially important because EKF-style SLAM

algorithms only accept a single hypothesis for data association. Any significant deviation from any of these

conditions can result in divergence from a solution to the problem.

FastSLAM implementations also require that the first three conditions described above are met. The

final condition only needs to be met by a single particle. This is due to the fact that each particle can

have its own hypothesis as to the association between landmarks and measurements. FastSLAM employs



a sequential-importance-resample (SIR) particle filter to ensure that the posterior distribution is properly

represented by the set of particles. After each time step the importance weighting of each particle is re-

evaluated (using the inverse of the distance from the expected mean), a new set of particles is randomly

selected with replacement from the current set, resulting in a set of particles that more accurately represent

the new posterior.

2.3 Adapting terrestrial SLAM algorithms to the aquatic domain

There are a wide variety SLAM implementations in the literature that might be adapted to the aquatic

surface domain, some of which have been touched on briefly above. Potential algorithms should be easily

adapted, and it is worthwhile examining the desirable properties of potential SLAM algorithm candidates.

Given that natural landmarks will occur at or near the shore, and at different elevations it is critical that the

algorithm be well suited to representing 3D features at a distance. Thus the map must be representable as a

three-dimensional point cloud. An AUV also has access to information about the depth of the water column.

Such information should allow an agent to differentiate different locations based on depth, potentially an

extremely useful source of information. Thus, a second requirement is the ability to integrate measurements

from both a SONAR sensor and camera. The first requirement rules out occupancy grid based SLAM

implementations such as GMAPPING[18], DP-SLAM[20] and, GridSLAM[19]. Other implementations such

as PTAM[23] and MCPTAM[24][25] satisfy the first requirement; however, they rely on keyframes from image

features to describe landmarks and require measurements from camera-like sensors (bearing). The most

recent innovative SLAM implementations such as DTAM[35] and KinectFusions[36] are capable of mapping

environments in astonishing detail as 3D models which can be considered equivalent to 3D point clouds.

These state of the art algorithms produce excellent results using a single visual sensor. Mathematically it

is difficult to incorporate non-visual sensors as these algorithms rely on being able to compute some form

of optical-flow from one frame to another. These modern and state of the art SLAM implementation show

immense promise in situations where GPUs can be exploited to employ the foundations of computer vision,



but they are not ideal candidates for the task here.

As the SLAM problem has become a major area of research in the academic literature most new imple-

mentations have become more restrictive in their specification in order to increase their efficiency and/or

accuracy. The older and more generalized approaches to the SLAM problem actually provide a more flexible

framework for incorporating novel sensors. EKF-SLAM[31] was one of the first SLAM algorithms. EKF-

SLAM represents the posterior distribution as a single state variable that is a contiguous array of the robot’s

state followed by the position of all known landmarks. This state variable is continually estimated using an

Extended Kalman Filter by maintaining a covariance matrix that describes the uncertainty between all com-

ponents of the robot’s state every observed landmark, this requires the Jacobian of a number of relationships

to be defined mathematically. The largest problem with this approach is that it is highly volatile to incorrect

data associations. FastSLAM[33] take a different approach that is conceptually simpler, by representing the

posterior distribution as a set of particles or possible paths (based on motion model noise) that the robot has

taken. Different paths generate different maps with separate data associations. The landmarks within the

maps are then estimated using the EKF approach. At every time-step, particles are resampled based on their

likelihood/importance. FastSLAM 2.0 improves upon the original version of the algorithm by incorporating

the most recent sensor measurements to more precisely estimate the robot’s position. Given its generality,

the work presented here is developed within the context of the FastSLAM 2.0 framework. The specifics of

FastSLAM 2.0 are detailed in the following section.

2.4 FastSLAM 2.0

Although there are many particle-filter based approaches to Bayesian SLAM (e.g., [18] and [37]) this work

utilizes the approach described in FastSLAM 2.0 [38]. FastSLAM 2.0 is based on the observation that if

the path of the robot can be measured with absolute certainty, the position of landmarks can be estimated

independently of each other. This is represented in Eqn. 2.6 showing the factorization of the posterior



distribution: using a process known as Rao-Blackwellization. Applying the Rao-Blackwell theorem [34] to this

problem using a single particle as an improved state estimator, the posterior distribution (Eqn. 2.1) can be

factored into a path posterior p(xt|U0:t,Z0:t,x0) and numerous landmark posteriors p(Mn|xt,U0:t,Z0:t,x0).

p(xt,M|U0:t,Z0:t,x0) = p(xt|U0:t,Z0:t,x0)
∏
n

p(Mn|xt,U0:t,Z0:t,x0) (2.6)

Mn = {(µ,Σ)0, (µ,Σ)1, ...} (2.7)

The Rao-Blackwell theorem states that any estimator of the posterior p(xt,M|U0:t,Z0:t,x0) is inferior

to the factorized estimate shown in Eqn. 2.6 given that the estimate of the path posterior p(xt|U0:t,Z0:t,x0)

is a sufficient statistic. In FastSLAM 2.0 each particle can be considered a sufficient statistic because it is

an oracle that has absolute knowledge of the robot’s position.

In FastSLAM the path posterior p(xt|U0:t,Z0:t,x0) is estimated using a Rao-Blackwellized sample im-

portance resample (SIR) particle filter. Each particle represents a hypothesized trajectory of the robot and

maintains its own map of the environment. Each map consists of n landmarks with position represented as

a Gaussian distribution described by a mean µ and covariance Σ updated using an extended Kalman filter.

As with many SLAM algorithms FastSLAM 2.0 represents both the measurement and motion models

using non-linear functions with additive Gaussian white noise. Here the noise variables εt and δt have

covariances Rt and Pt respectively.

p(zt|xt,mi) = g(xt,mi) + εt (2.8)



p(xt|xt−1,ut) = h(ut,xt−1) + δt (2.9)

In accordance with the sample importance resample (SIR) particle filter employed by the FastSLAM 2.0

algorithm, the first step generates a new location for each particle by sampling from a proposal distribution.

Normally the motion model is used as the proposal distribution; however, taking into account the most

recent measurement zt and observed landmarks M in addition to the motion of the robot ut renders a

more accurate distribution. This ensures that a newly sampled pose is less likely to position the current

measurement zt somewhere that conflicts with the current knowledge of the surrounding environment.

p(xt|xt−1,ut, zt,M) (2.10)

After a new pose has been sampled from the proposal distribution the observed landmark can be updated

using a standard EKF-style measurement update to obtain a new landmark mean µi and covariance Σi. The

next step involves calculating an importance weighting for each of the current set of particles. The importance

weight associated with each particle indicates the amount of confidence that the particle represents the true

path and thus an accurate map. The resample step samples a new set of particles from the current set of

particles with replacement. The probability of drawing a particle depends on its normalized importance

weight. The resampling step removes particles that represent an unlikely state with particles that represent

a more likely state. Some SLAM implementations (e.g., GMAPPING[18]) utilize an adaptive resampling

heuristic so that resampling is postponed until the importance weights exhibit a high variance or increasing

entropy. This allows the algorithm to explore hypotheses until it is clear that major discrepancies exists

between the particles. The SIR particle filter can be continually updated with new measurements and robotic

motions throughout its exploration of the environment and halted at any time. A final map can be obtained



by selecting the particle with the highest importance weight. A number of reference implementations of

SLAM exist in the literature. This research adapts the implementations described in [18] and [38] to the

described problem.

2.4.1 The assignment problem

Visual sensors can produce multiple features in a single time step, and this presents a problem to basic SLAM

algorithms. Features discovered in an image represent a single landmark within the environment, associating

these features with an existing landmark in an optimal fashion is known as the assignment problem. The

assignment problem is related to the field of operations research in mathematics and more specifically the

subfield of combinatorial optimization. Given two sets of equal size (agents and tasks) and a cost associated

with each agent-task assignment, the goal is to assign all agents to a single task while minimizing the total

cost of all assignments. At first this definition may seems rather strict and limiting given that the number of

agents and tasks must be equal. However, the assignment problem can be manipulated to obtain the desired

flexibility. In the event that the number of agents and task are not equal the smaller set can be padded

to include dummy objects. Padding the agent set with “ignore task” objects also requires that the cost of

ignoring each task be known. Padding the task set with “do nothing” objects requires that the cost of an

idling agent be known. Furthermore the cost matrix can be manipulated to find a maximum global cost

instead of minimum.

The Hungarian algorithm [39] is a combinatorial optimization process that can solve the assignment

problem in polynomial time O(n3). The algorithm consists of repetitive matrix row operations on the cost

matrix that subtracts the least non-zero cost in the row from all its elements. This process ends when all

columns have at least one zero, which signifies that an optimal assignment has been found.



Plant and sensor models

A key issue in adapting a SLAM algorithm to a USV is the development of appropriate plant and sensor

models. As discussed previously, the nature of the aquatic domain limits the power of the plant model.

Nevertheless, some information can be exploited from the plant model. The following section provides a

brief review of the plant model for a differential drive vehicle. Details of the sensors and their corresponding

model are described in later chapters.

2.5 Differential drive mechanics

A mature literature exists on the kinematics and dynamics of autonomous vehicles (see [40] for a review).

Given the vagaries associated with ground (or water) contact systems, such models are generally implemented

within a probabilistic framework providing an expected motion given a control input and some measure of

the variance in this estimate. Ground-contact mobile robots typically use wheel encoders to inform the

odometry model. Such sensors provide an accurate estimate of wheel rotation, but the resulting model

of vehicle motion is subject to errors due to wheel spin caused by a loss of traction. If these models

were noise free than mobile robots would be 100% certain as to their location within their surrounding

environment. With this information the task of mapping the surrounding environment becomes a trivial

problem of independently estimating the position of each landmark[33].

A common drive mechanism used by ground contact robots is “differential drive” which consists of two

independently controlled motors mounted on the same axis. Ground contact mobile robots use these motors

to turn wheels that maintain friction with the ground allowing the robot to be driven along a curved arc.

Fig. 2.3 shows all the variables involved in a differential drive system. The inputs to this system are the

velocities of the left and right motors, by varying these velocities the rate of rotation and speed of the robot

can be manipulated. Mathematically the motion of a ground contact vehicle can be described in terms of its



(a) ground contact differential drive using wheels (b) aquatic differential drive using propellers

Figure 2.3: Kinematic variables pertaining to differential drive

ICC. The ICC is the instantaneous center of curvature which represents the point that the robot is currently

rotating around and ω represents the rate of rotation around the ICC. From the definition of ω its value

holds for both wheels. Assuming that the wheels remain in contact with the ground, then:

Vr = ω(R + l/2) Vl = ω(R− l/2) (2.11)

This can be re-arranged to solve for both R and ω given the velocities Vl and Vr.

R =
l

2

Vl + Vr
Vr − Vl

ω =
Vr − Vl

l
(2.12)

Although it is possible to drive a differential drive vehicle using complex curved trajectories, a common

simplification is to develop a small language of simple motions and to decompose more complex motion

trajectories in terms of sequences of these simple motions. To see this, observe the following special cases:

• Vr = Vl : When both motors are set to the same speed the robot travels in a straight line. The rate of

rotation ω becomes 0 and the ICC extends out to infinity on either side and in turn R become infinite.



• Vr = −Vl : If both motors are set to opposing speeds the robot then rotates around the midpoint

between both motors. The rate of rotation ω = 2Vr/l, the ICC equals (x, y) and R becomes 0.

• Vr = 0⊕Vl = 0 : If only a single motor’s speed is set to zero then the robot rotates about the position

of this motor. The ICC is located at the position of the opposing motor, R = ± l
2 .

The mechanics of differential drive imposes non-holonomic constraints on the motion of the vehicle. This

means that the controllable degrees are less that the total degrees of freedom. A differential drive vehicle

has only two degrees of freedom. Changes in position are not fully decoupled from changes in orientation.

The vehicle cannot, for example move along the line defined by the wheel axis without first changing the

orientation of the vehicle. This implies that the vehicle may have to execute complex maneuvers in order to

move from state to state. Eqns.2.11 and 2.12 can be used to develop a formal plant model for a differential

drive vehicle. Suppose that the vehicle is embedded in a 2D cartesian space such that the vehicle has position

(x,y) and orientation θ relative to the x axis. Then given Vl and Vr at some time t, we can identify the ICC

of the vehicle in the cartesian space.

ICC = [x−Rsin(θ), y +Rcos(θ)] (2.13)

This can be used to develop an expression for the updated state of the robot after a period of time dt.


x′

y′

θ′

 =


cos(ωdt) −sin(ωdt) 0

sin(ωdt) cos(ωdt) 0

0 0 1




x− ICCx

y − ICCy

θ

+


ICCx

ICCy

ωdt

 (2.14)

Eqn. 2.14 can be used to obtain an instantaneous update of the state of the robot and describes an agent

rotating about the ICC at a rotational speed ω for a period of time dt. This equation can be simplified in the



event the conditions for either of the first two special cases described above are met. The first special case,

when Vr = Vl and travelling in a straight line renders the simplification shown in Eqns. 2.15. The second

special case, when Vr = −Vl and rotating about the midpoint between its two motors.


x′

y′

θ′

 =


x+ vcos(θ)dt

y + vsin(θ)dt

θ

 (2.15)


x′

y′

θ′

 =


x

y

θ + 2vdt/l

 (2.16)

The simplified forward kinematic model shown in Eqns. 2.15 and 2.16 motivates the use of a simple

navigation strategy. The requirement that the robot move from one waypoint (x, y, θ) to another (x′, y′, θ′),

can be decomposed in terms of combinations of motions give by the plant models given in Eqns. 2.15 and

2.16. The robot first rotates in place until it is pointed in the direction of the intended target and then

travels straight towards the target. Once it gets there it rotates in place until it has the necessary final

orientation. This can be an effective strategy with ground-contact robots that operate in office spaces with

narrow hallways. The most optimal use of energy to travel to multiple waypoints uses more that a single

degree of freedom at a time.

2.5.1 Differential drive kinematics for aquatic environments

A wide range of different power/control surfaces exist in the aquatic domain (see [41] for a review). Different

combinations of control surfaces and thrusters meet different task-related constraints. For example, rear

thruster/rudder control surfaces are well suited for vehicles that move long distances with little requirements

for maneuvering, while vehicles with multiple thrusters are better suited for maneuvering but less well suited

for long distance travel. Differential drive kinematic systems offer a good compromise for vehicles engaged

in survey/sensing tasks as they still provide a high level of maneuverability although they are not fully



Figure 2.4: Separation of drag forces
The figure shows the waterline which separates the two different forms of drag that have a large
effect of the robot’s motion: aerial drag and fluidic drag.

holonomic, as described above. Fig. 2.3b illustrates a differential drive-like control system for an aquatic

surface vehicle. The drive mechanism can be considered equivalent to ground-contact differential drive as

long as drag is not taken into account. Ground-contact robots maintain a significant amount of friction on

each ground contact point. This prevents most weather conditions from having a significant on the robot’s

motion. The situation is somewhat different for aquatic surface vehicles. Wind and wave action introduce

aerodynamic drag (air resistance, fluid resistance) that act on an USV, both of which have a number of

detrimental effects on the motion of the robot. To take but one example, the stopping distance of the vehicle

is drastically increased compared to ground-contact vehicles and is affected by the drag created from robotic

components under the waterline.

Modulo the issue of vehicle drag and wind/wave action, the kinematics of a differential drive system in

an aquatic environment differs only slightly from one operating in a terrestrial environment. The kinematic

model shown in Fig. 2.3 is sufficient to describe the motion of ground contact robots because very few com-

monly occurring natural forces can overcome either the static of kinetic friction maintained the robots wheels.

Given that the ground-contract robot differential drive model will only provide a rough approximation to

the motion of a differential drive USV, it is worth exploring the potential of developing a more sophisticated



hydrodynamic model for a differential drive USV. Integrating both air resistance and fluid resistance using

the drag equation (shown in Eqn. 2.17) into a model for aquatic differential drive has numerous pitfalls.

Calculating the drag force Fdrag requires estimating values for all the dependant variables [42]: flow velocity

u, fluid/gas density ρ, drag coefficient Cdrag and, specific area A.

Fdrag =
1

2
ρu2CdragA (2.17)

Flow velocity uwind of the wind relative to the robot can be measured using a vane anemometer which

can measure both the direction and speed of the prevailing winds. Vane anemometers are also appropriate

for measuring flow velocity ufluid of a fluid. Measuring the density of a fluid/gas is simple if its volume and

mass can be obtained. However, commercial off-the-self sensors that can effectively and efficiently measure

density are not available. This value can be estimated beforehand; however, there exist variances in the

chemical composition of both any fluidic body and atmosphere.

The drag coefficient Cdrag is a ratio that combines both skin friction and form drag. Skin friction describes

the friction between a fluid and the surface of a object moving through that fluid. The caveat here is that

the chemical composition and location of particulate matter are unknown and not constant. Form drag

describes the friction created from an object‘s resistance to movement through a fluid, this type of drag

depends highly on the geometry of the object and its orientation with respect to the direction of motion.

The problem presented here is that traditionally these friction coefficients are measured in highly controlled

environments in order to obtain accurate values.

The specific area A refers to the cross-sectional area that is perpendicular to the relative flow velocity

u. In stagnate waters and calm weather only an accurate three-dimensional model of the robot, its moment

of inertia and fluid density ρwater are needed to calculate the volume of the robot submerged within the

fluid. This calculation can be done by using cameras that observe the waterline contacting the robot frame



by frame; however, this would require 360 deg observation of any portion of the robot that is partially

submerged.

Even though estimating and/or measuring these values is possible, each has an associated error. These

values and their associated uncertainty are compounded twice over due to the relationship between force

and position when integrated into the forward kinematics of a standard differential drive. This presents a

major problem as these errors are further compounded over time to produce substantial odometry errors.

Given the above, and the difficulty of even this more sophisticated treatment to properly incorporate wind,

wave and current action on the vehicle, this work uses the simple differential drive model given in Eqn. 2.14

under the assumption that errors will be large.

2.6 Summary

This chapter provided a review of SLAM algorithms in general and their applicability to USV more specifi-

cally. As more recent SLAM algorithms are typically highly targeted to specific domains far removed from

the USV domain, the work here utilizes FastSLAM 2.0 as a framework for SLAM for USV’s, and thus Fast-

SLAM 2.0 is described in some detail. This chapter has also provided a review of the notation associated

with USV and a simple plant model for a differential drive USV that is the straightforward adoption of the

differential drive vehicle from ground contact robotics.



Chapter 3

Eddy : an autonomous aquatic surface vessel

The previous chapter reviewed the theoretical underpinnings of the work described here. This chapter reviews

the practical underpinnings of this work. More specifically, this chapter describes the hardware and software

infrastructure upon which the work was performed and the development/modifications required to provide

sensor systems that can obtain visual and water column features to support the SLAM algorithm described

in the following chapter.

3.1 Robotic platform

The work conducted in this thesis utilizes the Kingfisher M100 robot [43]. Shown in Figure 3.1, the Kingfisher

M100 is a ROS-based unmanned surface vessel manufactured by Clearpath RoboticsTM for the purpose

of marine autonomy and surveillance research. As shipped, the Kingfisher comes equipped with a motor

controller, a digital compass and differential GPS enabled by a land locked GPS base station. This equipment

facilitates basic operation of the vessel through tele-operation and accurate localization of the robot’s pose
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(a) Kingfisher M100 USV with mounted
SONAR and omnidirectional sensors.

(b) GPS Base Station and Monitoring Com-
puter.

Figure 3.1: Clearpath Kingfisher
(a) The Kingfisher robot deployed on lake Okanagan with the omnidirectional sensor and the
depth sensor described in this work. The original Kingfisher robot has been modified through
the addition of sensors, buoyancy and computational resources. (b) The GPS base station that
is used to provide off-robot command and communications infrastructure as well as differential
GPS signals to the robot.

and acquired sensor data. In order to conduct this research, the stock vehicle has been reconfigured (as shown

in Fig. 3.2) and outfitted with a range of different sensor systems and upgraded onboard computing power.

Additions relevant to the work described in the thesis are as follows: (1) An ultrasonic transducer or depth

sensor, (2) an omnidirectional camera and (3) a number of software packages to integrate and process sensor

data. The process of augmenting the Kingfisher robot is described elsewhere (see [44][45]) and includes the

introduction of substantive additional mass to the vehicle and the addition of extra pontoons to enhance

vehicle buoyancy to compensate for the additional mass.

3.2 Depth sensor

The SLAM algorithm developed in this work relies on water column depth and visual targets associated with

the shore. This section describes the depth sensor, while the following section describes the omnidirectional

visual sensor. A custom depth sensor was developed in order to outfit the Kingfisher with the necessary

sensing capabilities to conduct this research (see Fig. 3.3). The RECHOS [45] (ROS Echo Sounder sensor)



Figure 3.2: Kingfisher hardware
Standard peripherals such as the compass, GPS and motors control unit connect to the primary
computer via usb. The onboard omnidirectional camera hosts its own wireless network which
the robot connects to via its wlan0 network interface. The onboard wireless radio creates a local
area network (LAN) that facilitates communication between the depth sensor, primary computer
and finally the onshore command computer used for controlling the robot.

was designed to be a low cost fully self-contained system that can operate independently of the target robotic

platform and costs approximately $500. If the sensor is connected via ethernet to a LAN it scans all local

hosts for an instance of ROS to connect to, otherwise a local instance is started. This behaviour allows the

sensor to operate on a network utilizing DCHP to assign IP addresses. The sensor is comprised of three

major components:

• An echo sounder. The CruzPro-ATU120AT [46] is an active depth and temperature transducer with

a 0.1m resolution requiring 9.5-16.0 VDC at 350 mA that transmits data at 1Hz using the NMEA 0183

communications protocol. This device provides the necessary acoustic emitter/receiver hardware.

• Signal transducing computer. The RECHOS uses a Raspberry Pi Model-B Rev-01 [47] for signal

processing. This computer is a small single-board computer requiring 5VDC at 700 mA.

• ADXL345 Accelerometer. A triple-axis accelerometer [48] with digital I2C interface provides tilt



(a) Disassembled sensor showing: environ-
mental housing, internal hardware structure,
status LEDs and power/data ports.

(b) Sensor mounted on the
robot. The lower end of the sensor protrudes
below the surface of the water. The inter-
net connection to the onboard ROS infras-
tructure can be seen at the top of the sensor

Figure 3.3: The RECHOS Sensor

information which is used to correct depth readings due to pitch and roll of the device due to wave

action.

Apart from these major components the RECHOS also includes separate and isolated power to cope with the

incompatible power requirements of the Raspberry Pi and NMEA depth and temperature transducer. The

RECHOS performs the task of converting messages from the transducer and accelerometer and presenting

them as custom ROS messages. In addition to acting as a signal transducer, data from both sensors are

combined to produce corrected depth readings less subject to error due to device tilt. A more detailed

description of the design and construction of this sensor can be found in [45].

3.2.1 Calibration

SONAR measures distance using time of flight by sending out ultrasonic pulses and measuring the time it

takes for the sound to return. Calculating the distance traveled requires knowledge of the speed in which

sound propagates within the target medium, on earth this medium is usually fresh or salt water. The speed



at which sound propagates through fresh water is slower then in salt water and this speed is further affected

by the temperature. Both the salinity and temperature of the water vary as a function of depth, location

and time. The temperature sensor on the CruzPro-ATU120AT only measures the water temperature at the

surface which can be drastically different from the temperature at the lake or sea bed. The speed, s, of

sound in water can be expressed as a function of temperature, t, in celsius, depth, m, in meters and salinity,

sl, in parts per thousand [49].

swater = 1337.462 + (3.429× (
9

5
t+ 32)) + (0.00554736× m

3.28
) + 0.3048sl (3.1)

The CruzPro-ATU120AT comes calibrated with a predetermined and constant salinity value. In shallow

waters (less than 20m) the overall effect of salinity on the time of flight and thus measured depth is consid-

erably smaller than the sensor’s 0.1m resolution. Only at greater depths do large changes in salinity begin

to have an effect on measured depths greater than the sensors resolution.

3.3 Omnidirectional camera

The second primary sensor for the SLAM algorithm developed here is an omnidirectional visual sensor. An

omnidirectional camera is a visual sensor that has 360 degree horizontal field of view and a large vertical field

of view. Normally standard dioptric cameras can be converted into omnidirectional catadioptric cameras

using curved mirrors. The Kodak Pixpro SP360[50] shown in Fig. 3.4 is a compact dioptric omnidirectional

camera with a 214 degree field of view. This camera is capable of capturing video at 30 FPS with a resolution

of 1072x1072 and is equipped with electronic image stabilization and a water resistant housing [51]. Images

can be extracted by connecting to the camera’s wifi network and scrapping image data from the onboard

web server.



(a) 360 degree omnidirectional water
resistant camera.

(b) Camera in a standard housing
mounted to the robot using a ball and
socket joint.

Figure 3.4: Kodak Pixpro SP360 Camera
(a) shows a vanity picture of the Pixpro SP360. (b) shows the Pixpro SP360 in the standard
housing mounted on top of the robot’s central pelican case.

3.3.1 Calibration

It is often useful to calibrate visual sensors in order to map pixel locations on the image sensor to directions

in the real world. That is, to define a mapping from a sensor pixel location to a ray in the global coordinate

system. A large calibration literature exists for traditional ‘pin hole’ cameras (see [52], for example). The

literature for wide field ‘fisheye’ lens cameras is also quite mature, although techniques differ somewhat from

those used with pinhole cameras. The fisheye lens on this camera cannot be accurately modelled using the

standard plumb bob camera model [52] used by computer vision libraries like OpenCV[53]. This is due to

the large field of view and high levels of radial distortion (see Fig. 3.5b). The plumb bob camera model is

rendered ineffective when dealing with FOVs larger than 180 degrees due to the physical limitations of the

mathematical model. Large radial distortion negatively effects standard techniques for reliably detecting

standard checkerboard pattern calibration targets (as shown in Fig. 3.5a). Fisheye lenses can also increase

visual blur close to the image border. The standard process for calibrating fisheye omnidirectional cameras

still uses the same checkerboard pattern used in traditional camera calibration, with some major behind the



(a) Standard 9x6 black and white chessboard image
used as a visual calibration target. The fisheye dis-
tortion of this target is readily apparent in (b).

(b) Fisheye camera in a standard hous-
ing mounted to the robot using a ball
and socket joint.

Figure 3.5: Omnidirectional Camera Calibration

scene changes. Techniques for detecting calibration targets in images with large radial distortion and large

FOVs are described in [54]. [55][56] describe an alternative camera model that uses a Taylor polynomial

series to represent the geometry of the lens. The mathematical modelling of the wide FOV sensor described

below follows that presented in [55].

Let X be a point in the world space. Then u’ = [u′, v′]T is the projection of X onto the sensor plane

in metric coordinates, and u = [u, v]T is the mapping of u’ onto the camera’s image plane in pixel coordi-

nates. Both u’ and u are related by an affine transformation which incorporates pixilation errors and axial

misalignment, thus u = Au’ + t. The image projection function g, defines the relationship between a point

u’ in the sensor plane and a vector x stemming from the camera’s viewpoint O.

λ · p = λ · g(u, v, f(u, v)) = λ · g(Au + t) = PX, λ > 0 (3.2)

The above equation defines the complete omnidirectional camera model, where X ∈ R4 is expressed in



(a) Geometric projec-
tion model of a dioptric
omnidirectional camera.

(b) Dioptric projection of a
scene onto the camera’s sen-
sor.

(c) Image plane after an
affine transformation.

Figure 3.6: Wide FOV camera model

homogeneous coordinates and P ∈ R3x4 is a perspective projection matrix. The geometric properties of the

camera’s lens are modelled by Eqn. 3.3.

f(u, v) = a0 + a1ρ+ a2ρ
2 + · · ·+ aNρ

N (3.3)

The lens geometry is assumed to be radially symmetric with respect to the sensor axis. The modelling

function f is a Taylor series approximation of the more complex true nature of the function where ρ is the

metric distance of (u, v) from the sensor axis, thus ρ =
√
u2 + v2. The calibration of an omnidirectional

camera using this model involves the estimation of the variables of [A, t, a0, . . . , aN ] so as to satisfy Eq 3.2.

These variables can be solved for using a similar process to that used by the standard plumb bob camera

calibration process. This process requires a collection of pictures taken of a planar surface with known

geometric properties (such as, a checkerboard or asymmetric grid of circles).

This function defined by the camera model does not have an inverse but can be used to define the inverse

projection of a pixel in the camera’s image plane onto a point on the unit sphere, from which a bearing and

elevation can be computed.



ROS packages Description

clearpath base contains the logic for monitoring power levels and applying voltage to each motors
inorder to produce the desired command velocity.

clearpath bringup manages the announcement and presence of robots within the ROS environment.

clearpath sensors contains ROS nodes for reading data from both the GPS sensor and compass and
publishing this data to ROS. Also includes .launch files for starting each node in
its standard configuration.

clearpath teleop contains a simple ROS node that translates joystick messages from ROS into
velocity commands to the robots motor controller logic.

kingfisher bringup this meta-package contains .launch files for starting the nodes necessary to read
data from the sensors and drive the onboard motors.

kingfisher teleop this meta-package contains a .launch file that starts all nodes required to teleop-
erate the kingfisher.

joy translates joystick input data from linux into standard ROS messages for use as
a controller.

pixpro connects to an video stream from a Kodak Pixpro SP360 omnidirectional camera
and publishes images to ROS while running a camera info server for dynamic
configuration of the camera’s intrinsic and extrinsic parameters.

Table 3.1: ROS software packages

3.4 Software

ROS [57] has become a de-facto standard for much of the autonomous robot community and its use is

especially prevalent in the research community. Within ROS, processes are represented as nodes that com-

municate through messages within a publisher/subscriber framework. Nodes may also advertise services

that act as remote procedure calls using a request/reply framework. Apart from this flexible architecture

ROS also provides powerful tools for the purpose of data collection, management and visualization. Due to

the popularity of ROS within the robotics community numerous open source software packages that provide

high-level features common to the majority of robotics applications have been developed.

The Kingfisher comes with a number of software packages that are used to implement the robot’s basic

functions including sensor monitoring and teleoperation. The basic functionally of the robot is provided



(a) Transformation Tree
(b) Visual representation of all

coordinate frames

Figure 3.7: Kingfisher transformations frames
(a) An abstract representation of the robots tree of transformation frames and the relationship
between those frames. (b) A geometric representation of the robots transformation frames.

by the ROS packages detailed in Table. 3.1. The majority of these packages were provided by Clearpath

RoboticsTMand later modified to operate on the replacement computer. These packages provide the ability

to drive the motors and to monitor the output of the onboard compass, GPS sensor and motors. These

packages were modified to include a heartbeat sensor that requires constant input to ensure the robot does

not move unless continually connected to the base station, upon the restablishment of a connection the

heartbeat must be reset to enable control. The joy package is a standard ROS package that translates input

from a joystick device into ROS messages. The final package pixpro was developed to grab images from the

omnidirectional directional camera’s web server that streams images from the camera at 30 FPS.

Most robotic platforms utilize a wide variety sensors each with their own inherent local coordinate sys-

tems. In order for measurements from these sensors to be entirely useful there needs to be common coordinate

frame into which all measurements can be transformed. Following the normal ROS standard, the unified

coordinate frame is named base link and is positioned at the rotational center of the robot. For convenience

sake a companion frame name footprint is defined as the projection of the origin of base link onto the ground

plane, in this case the ground plane is synonymous with the surface of the water. The transformation from

base link to footprint encompasses all extraneous pose variables that are too computationally expensive to



be modelled within FastSLAM.

The tf library [58] bundled within ROS provides a variety of tools for defining both static and dynamic

transformations between coordinate frames as well as viewing these relationships. The sensors on the King-

fisher are rigidly attached to the robot so only static transformations from the base link frame are required

to fully define a tree of transformations connecting all relevant coordinate frames. As previously described

the transformation from base link to footprint includes information about extra pose parameters: roll, pitch

and heave. This information is calculated dynamically based on incoming sensor data and thus the base link

to footprint transformation also needs to be dynamically defined using the appropriate tools provided by the

tf library.



Chapter 4

PyFSlam

This chapter describes the theoretical underpinnings of PyFSlam, a SLAM implementation for unmanned

surface vessels relying on shore features and depth measurements. PyFSlam utilizes the framework intro-

duced in FastSLAM 2.0[38] and utilizes the multiple landmark extension introduced in [59]. The system

relies on ROS and the bulk of the code above the sensor conditioning level is implemented in Python.

4.1 Adapting FastSLAM 2.0

Adapting FastSLAM 2.0 to the mapping problem considered here requires generalizing its model of sensor

data to deal with the omnidirectional camera data, depth and (optionally) compass data that are available

to the robot. It also involves providing explicit models for the vehicle plant and sensors including estimating

noise properties for same. Each of these issues are addressed in this chapter. One particular issue here

is that as originally developed, FastSLAM assumes only a single landmark measurement in each iteration

of the algorithm. The omnidirectional camera used here typically provides many measurements at once.
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The FastSLAM 2.0 algorithm addresses the SLAM problem to processing of a single measurement zt with a

known landmark association mi at each time step. A single incoming measurement zt can be associated with

a mapped landmark mi using a maximum likelihood algorithm; however, this strategy does not scale well

to multiple measurements at the same time time step for a number of reasons. Perhaps the most important

of these relates to the data association process. Consider two measurements, where the first measurement

has only slightly more likelihood of association with a landmark A than the other while only the second

measurement has a high likelihood of association with a second landmark B. Using a maximum likelihood

algorithm for each landmark/measurement association separately could lead to a non-optimal solution to

this problem. With multiple measurements the goal is to maximize the overall likelihood for the entire set of

measurement associations. This data association problem can be solved in O(n3) time using the Hungarian

algorithm[39]. Without additional information both the Hungarian algorithm and the maximum likelihood

algorithm do not allow for the observation of new landmarks as every measurement must be assigned to

a landmark. The introduction of a threshold likelihood for the association of a measurement with a new

landmark is essential to overcome this limitation. Choosing an optimal value for this threshold is a common

problem for SLAM algorithms. For this work a threshold value(approximately 72%) was chosen through

careful tuning. Likelihood thresholds not within ±5% of this value began to rapidly degrade PySLAM’s

effectiveness.

A second problem associated with incorporating simultaneous sensor measurements per step of FastSLAM

2.0 involves the usage of only a single control variable. Dealing with this problem under the basic FastSLAM

2.0 formulation involves choosing a single measurement to process alongside a given control variable and

processing the rest of the measurements with a control variable that produces no motion. However, this

approach does not solve the initial problem as the proposal distribution that is used to sample a new pose is

then highly dependant on the order in which measurements are processed. Obviously the original FastSLAM

2.0 algorithm needs to be reformulated to deal with simultaneous measurements. The multiple measurement

modification of FastSLAM 2.0 used here follows the approach presented by Gamallo et al. in [59] but refines



this approach as described below.

In order to properly represent this modification to the FastSLAM algorithm it is necessary to generalize

slightly the notation used in the original algorithm to account for multiple measurements at a given time t.

(The initial description of FastSLAM 2.0 assumed only a single scalar measurement at each time step.) Let

• Z0:t = (Z0,Z1, . . . ,Zt) represent the sequence of sets of sensor measurements. (Note that unlike the

formulation of FastSLAM given in [38] and described earlier, now each measurement is an unordered

collection of sensor measurements.)

• Zt = z0,t, z1,t, . . . , zl,t represent the set of sensor measurement observed from the robot at time t.

• zl,t represent the l-th sensor measurement observed from the robot at time t.

The FastSLAM 2.0 algorithm estimates the posterior distribution p(xt,M|U0:t,Z0:t,x0) using particles that

represent a single hypothesis. To properly refer to variables in each particle the following definitions are

required.

• Y0:t = (Y0,Y1, . . . ,Yt) : the sequence of sets of particles (shows particle evolution over time).

• Yt = {y0
t ,y

1
t , . . . ,y

t
t} : the set of particles at time t.

• ykt = {xkt ,Mk} : the k-th particle at time t, containing the current estimated state xkt and set of

hypothesized landmarks Mk.

In the scalar FastSLAM 2.0 formulation, a measurement can be matched to at most one landmark. As

measurements become simultaneous, the assignment process becomes one of determining possible matches

from the collection of measurements to the collection of landmarks. Given this state of affairs, the non-

scalar FastSLAM algorithm was generalized in [59] to deal with non-scalar values. These generalizations

are detailed in Algorithm 4.1. This algorithm relies on a number of complex operations as described in

Algorithms 4.2-4.4.



Culling non-useful landmarks

Given the large number of possible landmarks and the cost associated with processing them, it is necessary

to prune landmarks that are not used in the map. In order to do this the algorithm keeps track of the

number of times each landmark has been sighted and the number of steps between sightings. This is done

so that landmarks that are unlikely to be be seen again or have a large uncertainty can be culled from the

map. This helps to reduce the number of landmarks and improve the computational efficiency of the data

association process.

• ikmj ,t : number of times the landmark mj of the k-th particle has been sighted within the environment

at time t.

• TTLkmj ,t : A value that represents the liveliness of a given landmark mj of a given particle k at time

t. When this value falls below a given threshold the marker is removed. Liveliness is a integer value

that represents the number of consecutive steps a landmark can go unseen before it is removed.

• vol(Σmj ,tmj
) : volume of the landmark mj ’s uncertainty at time tmj

(the time when the landmark

was created).

We wish to prune landmarks that have not be ‘seen’ by any particle recently. To do this, we define three

constants that define how each landmark’s time to live TTLkmj ,t value is modified by specific events. These

constants are specific to the measurement type of zt,l

• αzt,l : multiplier to apply to an existing landmark’s TTLkmi,t value in the event that it has been sighted

again within the environment.

• βzt,l : number of sightings ikmj ,t before a landmark of the measurement type zt,l is eligible to become

a permanent fixture of the current particle’s map.



Algorithm 4.1 FastSLAM 2.0

1: procedure FastSLAM

2: for each yk ∈ Yt−1 do

3: x̂kt = g(xkt−1,ut)

4: Φ = measurementsLikelihood(x̂kt ,M
k,Zt)

5: Ψ = dataAssociation(Φ)

6: robotPoseUpdate()

7: landmarksUpdate()

8: end for

9: Yt = sampling(Ŷt)

10: end procedure

• γzt,l : numerical value used to initialize the the liveliness value TTLkmj ,t of a landmark created from

the measurement zt,l.

This algorithm also incorporates landmark/measurement descriptions that are used to further discriminate

between measurements and landmarks. The inclusion of these descriptors helps to rule out measurements

that might otherwise be associated with a landmark given different criteria, mainly proximity.

• Dzl,t : quantitative description of the l-th measurement observed at time t.

• Dmk
i

: quantitative description of the i-th landmark in the k-th particle.

4.1.1 Measurement likelihood

The measurement likelihood algorithm from [59] shown in Algorithm 4.2 calculates a two dimensional matrix

φ which encapsulates the probability that a landmark mk
j corresponds to a measurement zl (φj,l). Unknown

data associations in traditional scalar FastSLAM 2.0 implementations use a maximal likelihood approach to

solve for the correspondence nt between a landmark mi and an incoming measurement zt. Generalizing this



approach to multiple simultaneous measurements uses the matrix φ in order to determine a globally optimal

solution to the data association problem.

Calculating Φ requires the evaluation of each new measurement against all known landmarks, rendering

a likelihood Φj,l. Lines 2 to 12 iterate through the entire set of landmarks Mk in the current particle and all

measurements Zt taken at time t to calculate Φj,l. The proximal likelihood φj,l is calculated using a Gaussian

distribution with mean ẑj,l (predicted measurement) and Qj,l (innovation covariance). The proximal likeli-

hood φj,l is further augmented using a weighting function w(φj,l) which adjusts its influence on the overall

likelihood Φj,l based on the certainty of the landmark mk
j . The measurement innovation (or residual) co-

variance matrix Qj,l takes into account the measurement uncertainty Pzl , the previous landmark covariance

Σmk
j

and the Jacobian of the measurement model ∇xth. The predicted measurement ẑj,l of landmark mk
j is

calculated using the measurement model h at the predicted robot pose µxt,j,l based on the assignment of the

measurement zl to the landmark mk
j . The predicted robot pose and accompanying covariance are calculated

using Eqns. 13-15 given in the introductory paper on FastSLAM 2.0[38] and reprinted in Algorithm 4.3.

Finally the likelihood is multiplied by λj,l which represents the probability that the landmark description

Dmk
j

corresponds to the measurement description Dzl,t .

4.1.2 Data association

The Data association performed in line 5 of Algorithm 4.1 assigns each incoming measurement to either

an existing landmark or identifies it as a new landmark. This is a simple assignment problem and can be

solved using the Hungarian Method in polynomial time (see Chapter 2). The Hungarian Method takes a

cost matrix Φ and seeks to minimize/maximize the overall cost of all assignments. In order to incorporate

new landmarks, Φ is expanded to include the probability of observing a new landmark. This requires Φ

to be a (
∣∣Mk

∣∣ + |Zt|) × |Zt| matrix. Each value Φj,l such that j ≤
∣∣Mk

∣∣, represents the probability that



Algorithm 4.2 Measurement Likelihood

1: procedure Measurement Likelihood(x̂kt ,M
k,Zt)

2: for each mk
j ∈ Mk do

3: ẑj = h(x̂t,m
k
j ) . Predicted measurement

4: Hxt = ∇xth(x̂t,m
k
j ) . Measurement model Jacobian wrt. landmark

5: Hmj
= ∇mj

h(x̂t,m
k
j ) . Measurement model Jacobian wrt. state

6: for each zl ∈ Zt do

7: Qj,l = Pzl +Hmk
j
Σmk

j
HT

mk
j

. Measurement innovation covariance

8: Σxkt ,j,l
= [HT

xkt
Q−1j,l Hxkt

+R−1t ]−1 . Predicted landmark covariance

9: µxkt ,j,l
= Σxkt ,j,l

HT
xkt
Q−1j,l (zj − ẑj) + x̂kt . Predicted landmark mean

10: ẑj,l = h(µxkt ,j,l
,mk

j ) . Updated measurement prediction

11: φj,l = 1√
(2π)d|Qj,l|

exp(− 1
2 (zl − ẑj,l)TQ−1j,l (zl − ẑj,l)) . Likelihood of the measurement ẑj,l

12: Φj,l = φ
w(φj,l)
j,l · λj,l . Likelihood of the measurement descriptor λj,l

13: end for

14: end for

15: end procedure

the measurement zl corresponds to the landmark mk
j . Each value Φj,l such that j >

∣∣Mk
∣∣, represents the

probability that the measurement zl corresponds to a new landmark.

4.1.3 Pose update

Line 6 in Algorithm 4.1 updates the robot’s pose based on the data association performed. A new pose

for the robot is calculated by sampling a new value from the proposal distribution p(xt|xt−1,ut,Zt,M)

that considers both the motion of the robot ut and all measurements Zt taken at time t. The proposal

distribution is modelled as a Gaussian with mean µxt and covariance Σxt . The proposal distribution is

calculated successively using Eqns. 13-15 as outlined in the paper on FastSLAM[38] and reprinted within

Algorithm 4.3 in lines 9-10. This iterative process continually shrinks the proposal distribution giving

greater weight to landmark/measurement pairs that are processed first; thus, it is important that landmarks

are processed in order of increasing uncertainty. An individual landmark’s uncertainty is quantized using

the volume of the ellipsoid described by the eigenvectors and eigenvalues of the landmark’s covariance



Algorithm 4.3 Pose update algorithm

1: procedure PoseUpdate

2: if Σ
|Mk|
j=1 == 0 then . If there were no known landmarks observed

3: xkt ∼ p(xt|xt−1,ut) . Calculated new location used the measurement model

4: else

5: Σxt,0 = Rt . Initial state covariance

6: µxt,0 = x̂t . Initial state mean

7: for each mj ∈ Mk do

8: if ψj > 0 then

9: Σxt,j = [HT
mj
Q−1j,ψjHmjΣ

−1
xt,j−1]−1 . Updated prediction of state covariance

10: µxt,j = µxt,j−1 + Σxt,jH
T
xt,j

Q−1j,ψj (zt,ψj − ẑj) . Updated prediction of state mean

11: end if

12: end for

13: Σxt = Σxt,j . Final prediction of state covariance

14: µxt = µxt,j . Final prediction of state mean

15: xkt ∼ N(µxt ,Σxt) . Sample new pose from the predicted distribution

16: end if

17: end procedure

matrix. If no measurements have been associated with a known landmark then one is calculated by directly

sampling a pose from the motion models’s probability distribution.

4.1.4 Map update

The state and covariance of each landmark is updated in lines 9-10 of Algorithm 4.4. The landmark update

process calculates a new mean µmj ,t and covariance Σmj ,t for all known landmarks with an associated

measurement. Landmarks that have not been observed during this iteration of the algorithm have their

liveliness TTLkmj ,t value reduced by 1. If a landmark’s liveliness value falls to zero the landmark must meet

two condition or it is deleted from the map. The first condition is that the landmark must have been observed

at least βzt,l times, the second condition is that its certainty (not uncertainty) improve by Kcertainty (the



value of 60% has proven to be an effective threshold) over its initial value. The update process for an observed

landmark the standard EKF update method from FastSLAM and FastSLAM 2.0. The first step in this EKF

update process calculates a new predicted measurement z̄j for each landmark mj in using the robot’s updated

pose xkt . Then the Jacobian of the measurement model with respect to the landmark ∇mj
h is computed

using the updated robot pose xkt . Next, a new measurement innovation covariance Qj is calculated using

the measurement noise Pψj ,t, the previous landmark covariance Σmj ,t−1 and the measurement Jacobian

∇mj
h. The Kalman gain, K, which represents the perceived confidence in the new measurement relative to

the current estimate and can be calculated using: the measurement innovation covariance Qj , the previous

landmark covariance Σmj ,t−1 and the measurement Jacobian ∇mj
h. The Kalman gain is used to identify in

what proportion should the difference between the actual measurement zt,ψj and the predicted measurement

z̄j be added to landmarks mean µmj ,t. Next the previous landmark covariance Σmj ,t−1 is scaled using the

Kalman gain K and the measurement model jacobian ∇mj
h to obtain an updated covariance Σmj ,t. Finally,

the landmark TTLkmj ,t−1 is multiplied by αzt,ψj
.

At this point the contribution of all landmark/measurement pairs that contribute to the weight of the

particle needs to be calculated. This is accomplished by separating landmarks into two categories. The

first category contains landmarks that should contribute to the weight of the particle, the other contains

landmarks that are not sufficiently reliable to contribute. Criteria must be established in order for a land-

mark/measurement pair to contribute to this updating processes. Typically, the most important criteria is

that the landmark must been a permanent fixture of the map. This method prevents new and unreliable

landmarks from having an effect of the particles weight possibly preventing the particle from progressing to

the next iteration.

Once all existing landmarks have been updated, the remaining positive associations within ψ correspond

to newly discovered landmarks within the environment. For each of these positive associations a new land-

mark mi is created and added to the map and its sighting ikmi,t and liveliness TTLkmi,t values are set to 1

and γzt,ψi respectively.



Algorithm 4.4 Map update algorithm

1: procedure MapUpdate

2: wk = 1

3: for each mj ∈ Mk do . update existing landmarks

4: if ψj > 0 then . update sighted landmark

5: z̄j = h(xkt ,mj) . predicted measurement

6: Hmj
= ∇mj

h(xkt ,mj) . measurement model Jacobian wrt. landmark

7: Qj = Pψj ,t +Hmj
Σmj ,t−1H

T
mj

. measurement innovation covariance

8: K = Σmj ,t−1H
T
mj
Q−1j . Kalman gain

9: µmj ,t = µmj ,t−1 +K(zt,ψj − z̄j) . updated landmark position

10: Σmj ,t = (I −KHmj )Σmj ,t−1 . updated landmark covariance

11: if ikj,t ≥ βzt,ψj then

12: Hxt = ∇xth(x̂t,mj) . measurement model Jacobian wrt. state

13: L = HxtRtH
T
xt +Qj . predicted covariance of z̄j

14: ŵ = 1√
(2π)r|L|

exp(− 1
2 (zl − ẑj,l)TL−1(zl − ẑj,l)) . weighting of the measurement ẑj,l

15: else

16: ŵ = 1

17: end if

18: ikmj ,t = ikmj ,t−1 + 1 . update landmark’s sightings

19: TTLkmj ,t = TTLkmj ,t−1 ∗ αzt,ψj
. update landmark’s TTL

20: else . update unsighted landmark

21: TTLkmj ,t = TTLkmj ,t−1 − 1 . update time to live

22: if TTLkmj ,t = 0 and ikmj ,t < βzt,ψj and vol(Σmj ,t) > 0.4vol(Σmj ,tmj
) then

23: delete mj . delete landmark

24: end if

25: ŵ = 1

26: end if

27: wk = wk · ŵ . update particle weight

28: end for

29: for i =
∣∣Mk

∣∣, i < |ψ|, i++ do

30: if ψi > 0 then . add new landmarks

31: mi = createLandmark(xkt , zt,ψi) . initialize landmark mean and covariance

32: ikmi,t = 1 . initialize landmark sight count

33: TTLkmi,t = γzt,ψi . initialize landmark time to live

34: end if

35: end for

36: end procedure



4.2 Plant model

The Clearpath Kingfisher is modelled as a differential drive aquatic surface vehicle whose motion is controlled

by the vehicle’s linear velocity vx, it’s angular velocity vθ and the time step delta dt. Using these parameters

we can define the motion model h(ut,xt−1). The motion model computes the expected pose of the robot xt

given the previous pose xt−1 of the robot and a control vector ut.

h(ut,xt−1) =


x

y

θ

 =


xt−1

yt−1

θt−1

+ dt ∗


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 ∗


vx

vy

vθ

 (4.1)

4.2.1 Error model

The plant model of the vehicle is corrupted by noise. This presents a significant problem as the errors in

overall motion of the robot are not only proportional to the controls but also carry an overhead. Simply put,

even with a lack of intended motion by the robot, over time, wind and wave action can move the robot from

one pose to another. Obtaining an accurate measurement of the error or covariance in the control variables

is essential to properly integrating motion commands into a SLAM algorithm. Underestimating this noise

narrows the space in which measurements are deemed possible to be taken from, and this can result in

the algorithm not finding a solution. Overestimating noise in the motion model expands the search space

and increases the possibility some particles will stray from the true distribution. Increasing the number of

particles tracked by the filter can compensate for this, at the expense of increased memory and computation

resources.



Figure 4.1: Visualization of Robot Odometry and Ground Truth
Computed pose of the robot using the above plant model (blue) composed with the computed
ground truth odometry using onboard GPS (teal). Both tracks start at the common point in the
centre of the superimposed grid marked in green. The end points of both tracks are marked with
a red dot.

So how bad can we expect the plant noise process to be? In order to investigate this a control experiment

was performed with the Kingfisher robot on Stong Pond at York University. The motion of the robot from a

given starting pose was computed using the hand-tuned plant model and this was compared with estimates

obtained using a differential GPS receiver and compass mounted on board the robot (see Figure 4.1). These

sensors generate measurements at 1HZ, a much slower rate than odometry can be calculated on the robot.

The plant model trajectory is shown in red. There is clearly a discrepancy between the two trajectories,

and some mechanism is required to inject this noise into the state estimate measurement process. The

standard method of modelling this error is state estimation algorithms involves modelling this error as an

error proportional to the commanded motion. Unfortunately, such a model does not fully encapsulate the

motion model error for an aquatic surface robot. Observe that in the traditional estimation approach, should

no commanded motion be received, no error is introduced into the state estimate. A more sophisticated error

model is required for autonomous surface vehicles that includes both a term proportional to the control inputs



and also includes a term to represent the stationary error. This approach is followed here. Specifically, it

is assumed that the state is corrupted by the sum of two zero-mean Gaussian noise processes. One that is

proportional to commanded motion, the other that is proportional to time spent stationary.

To calculate the stationary error of the robot there are two options. The first involves running a calibration

step at the beginning of each set of data collection where the robot is commanded to remain stationary for

a set amount of time and the actual motion of the robot is measured. This method has the benefit of more

accurately incorporating the effects of current weather patterns on the robot. The second method involves

conducting an independent test where the robot is left to float in the water while measuring the effects on

the robot’s motion and then using this estimate – properly adjusted for changes in the test weather and

sea conditions relative to the calibration conditions. For the work described here, the first of these two

approaches was followed. The second approach is an interesting direction for further research.

In order to compute the covariance Σh of the error in the odometry model the covariance Σu of error in

control variable must first be estimated. This is done by calculating the control variable between matching

time segments of both the ground truth odometry and the estimated odometry and calculating the covariance

of the absolute difference over a large sample. This renders an error covariance Σu for the inputs of the

odometry model. Using this covariance, the covariance Σh of the error in the odometry model can be

calculated using the Jacobian of the odometry model (shown in Eqn. 4.2) via Eqn. 4.3.

∆Hu =


∂x
∂vx

∂x
∂vy

∂x
∂vθ

∂y
∂vx

∂y
∂vy

∂y
∂vθ

∂θ
∂vx

∂θ
∂vy

∂θ
∂vθ

 =


−dt ∗ sin(θ) −dt ∗ cos(θ) 0

dt ∗ cos(θ) −dt ∗ sin(θ) 0

0 0 dt

 (4.2)

Σh = ∆HuΣu∆HT
u (4.3)



4.3 Measurement model

Incorporating measurements from a sensor into the FastSLAM 2.0 framework requires a number of math-

ematical definitions. Among these are how sensor measurements are generated with respect to the robot’s

state and known landmarks. This behaviour is more formally known as the sensor’s measurement model.

How the measurement model reacts to changes in the robot’s state as well as changes in location of the

landmark is also important to integrating new measurements into the FastSLAM framework. These are

represented in terms of Jacobians of the measurement model.

4.3.1 Omnidirectional sensor

The Kodiak Pixpro SP360[50] omnidirectional camera onboard the robot produces a single 1024x1024 image

at a rate of approximately 30Hz. Multiple keypoints can be extracted from each image using an appropriate

keypoint detection algorithm such as SIFT[60]. Using the Taylor camera model described is Subsection 3.3.1

each keypoint can be converted into a bearing and elevation measurement.

Bearing elevation measurements

The omnidirectional camera maps points from a 3-dimensional world frame into a 2-dimensional image frame

(see Figure 4.2), this process strips away depth cues from the measurement. Without such information the

function transforming points from the world frame to the image frame cannot be used to obtain an exact

location of the landmark mi. The basic sensor model for a measurement mi and landmark xt is given in

Eqns. 4.4. This takes a landmark m and a known robot state xt and computes the appropriate elevation

and azimuth from these values. Let r =
√

(mix − xtx)2 + (miy − xty )2 then



(a) Diagram depicting the relevant variables in the
camera’s measurement model

(b) A single measurement/image retrieved from the
camera showing the cropping of image by the CMOS
sensor

Figure 4.2: Omnidirectional camera: model and measurement

g(xt,mi) =

θ
φ

 =

tan−1(miy−xty
mix−xtx

)− xtθ

tan−1(miz

r
)

 (4.4)

Given these definitions, one can obtain the Jacobian relating changes in landmark position ∆Gx and land-

mark position ∆Gm as shown in Eqns. 4.5 and 4.6.

∆Gx =

 ∂θ
∂xtx

∂θ
∂xty

∂θ
∂xtθ

∂φ
∂xtx

∂φ
∂xty

∂φ
∂xtθ

 =

 miy−xty
r2

xtz−mix

r2
−1

miz (mix−xtx )

r3(1+
m2
iz
r2

)

miz (miy−xty )

r3(1+
m2
iz
r2

)

r
r2+m2

iz

 (4.5)

∆Gm =

 ∂θ
∂mix

∂θ
∂miy

∂θ
∂miz

∂φ
∂mix

∂φ
∂miy

∂φ
∂miz

 =

 xty−miy

r2
mix−xtx

r2
0

−miz (mix−xtx )

r3(1+
m2
iz
r2

)

−miz (miy−xty )

r3(1+
m2
iz
r2

)

r
r2+m2

iz

 (4.6)

Error model The error associated with respect to the bearing and elevation measurements produced by

this sensor can be approximated by the Taylor camera model described previously in Section 3.3.1. Using



the calibration parameters obtained for the camera model, each pixel (ux, uy) in the image is back-projected

onto the unit sphere. Eqn. 4.7 describes the relationship between the bearing and elevation (θ, φ) associated

with a point (x, y, z) on the unit sphere.

θ
φ

 =

tan−1(y/x)

sin−1(z)

 (4.7)

Determining the covariance matrix that describes the error associated with the bearing and elevation

measurements can be simplified somewhat by observing that the Taylor camera model assumes that the

refractive and reflective properties of the camera’s optics are radially symmetrical. Using this model the

bearing-elevation error associated with any given pixel is dependant only on the pixel’s elevation. As these

values will be used repeatedly a lookup-table could be used to store the covariance matrix of all possible

values indexed by elevation. Unfortunately, the assumption of radial symmetry is slightly invalidated when

considering the discretization and misalignment of the sensor plane. To accommodate this minor asymmetry

the simple lookup table is generalized to represent the covariance matrix from different bearings. The

covariance matrix for pixels not in the lookup table can be interpolated using the nearest covariance from

each opposing axis.

Although not a perfect solution this approximation is preferable to the alternative of creating a lookup-

table for every possible bearing and elevation. The pixels situated along the image diagonal and vertical are

ideal candidates for this lookup table because they cover the largest range of both bearing and elevation due

to their orientation with respect to the polar coordinate system.

Landmark initialization and update



(a) diagram depicting the pixels in the
lookup table as well as the pixels in-
volved in calculating the uncertainty.

(b) shows how a pixel’s covariance is determined
using the range of both bearing and elevation cal-
culated using diagonally adjacent pixels.

Figure 4.3: Pixel covariance estimation

Given the location and orientation of the camera and a single bearing measurement, the 3D location of a

landmark cannot be fully determined. The problem of initializing new landmarks from ’bearing-only’ data

is a common problem with visual SLAM and is widely addressed in the literature and many solutions have

arisen. These solutions can be categorized broadly into two groups: delayed initialization (see, e.g., [59]) and

un-delayed initialization (see, e.g., [61][62][63][64]). Delayed approaches keep track of bearing measurements

of a single landmark and these bearing measurements are aggregated over small motions of the robot until

a realistic estimate of the full state of the landmark can be obtained. Determining the criteria for landmark

initialization is complex and many solutions can be described as ad hoc.

Un-delayed initialization approaches take a somewhat different tack. Rather than waiting until enough

bearing measurements have been taken to obtain a good estimate of the full state of the landmark, initial-

ization proceeds immediately using only the bearing data. In the un-delayed approach a new landmark is

initialized immediately at some distance ρc from the robot. The uncertainty of the distance of the landmark

from the robot is set so that the uncertainty covers the entire distance range from ρmax to ρmin, while the



(a) 2-dimensional diagram depicting multi-
ple landmarks being initialized from a single
camera image containing multiple bearing
and elevation measurements.

(b) 2-dimensional representation of a
3-dimensional ellipsoid(not to scale) that

depicts the initial error of a new landmark.
The variance associated with the range is
huge in comparison to all other variables.

Figure 4.4: Initialization of landmark covariance
Initialization of landmark covariance. This figure depicts graphically the initialization of both
the position and covariance of the landmark. (a) shows the 2-dimensional case and (b) depicted
the 3-dimensional case.

variance in bearing and elevation is set from the known sensor error properties. A covariance representation

in Cartesian space is then constructed from these values.

One problem with the immediate initialization of landmarks in this manner is that it can introduce

spurious, or at least very noisy landmarks into the map. Rather than entering landmarks into the map

immediately, a common approach is the use of a meta phase during which landmark positions as additional

measurements are made, but the landmark is not inserted into the map immediately. A common mechanism

for performing this update is through the EKF update process [61][62] shown in Figure 4.4b. Figure 4.4

illustrates the process of landmark initialization. In Figure 4.4a the process is shown in Cartesian space with

three new landmarks being initialized at a given bearing and elevation with an assumed target distance.

The uncertainty in range is set to encompass all likely target distances while the uncertainty in bearing and

elevation is set from the predicted uncertainty in these values. Figure 4.4b illustrates the error ellipsoids.



(a) Ideal angular separation between
measurements, reducing uncertainty of
a landmarks position.

(b) Inadequate angular separating be-
tween measurements, resulting in a
minimal or increased uncertainty of a
landmarks position.

Figure 4.5: Landmark update
The local motion of the robot causes updates to the landmark estimate as shown above. Ideally
the robot moves in such a way to reduce the error ellipse as shown in (a). Motion orthogonal
to the bearing results in very small changes in the error ellipse as shown in (b).

The initial landmark uncertainty is represented with a single covariance matrix and uses a standard EKF

style landmark update procedure (shown in Figure 4.5). The Gaussian Sum Filter [63][64] method represents

the initial landmark uncertainty using a Gaussian sum filter. Landmarks go through a meta phase where

they receive measurement updates but are not included in the map. Upon exiting this meta phase the

distribution with the highest likelihood is selected and added to the map. A comprehensive evaluation of

these methods and their use in different SLAM algorithms is presented in [65]. This work shows that the

EKF landmark initialization approach is prone to error in environments with a high landmark density, a

problem that we are unlikely to encounter given the nature of the SIFT descriptors associated with each

landmark (see below).

This research uses the un-delayed approach and avoids the density issue by including an additional

likelihood ratio that is able to differentiate between locally similar measurements using its visual description.



Landmark association FastSLAM 2.0[38] provides a framework that incorporates per particle data asso-

ciation. Rather than using the entire image or image patches as potential features, here we follow a similar

approach to that of [59] and reduce the image into a smaller number of potential feature points. Many such

feature selection algorithms exist (see[66][67] for a review). The SIFT feature detector is used in this work.

SIFT features were chosen because of their stability relatively to other popular image features. SIFT[60]

features provide a 128 dimensional descriptor that describes their local neighbourhood in a scale invariant

fashion which simplifies feature-to-feature matching. The recommended way for comparing SIFT features

is through the use of the distance ratio of the best match against the next best match. This ratio should

be less than 0.6-0.75 of the distance to the closest keypoint in order to signify a match [60]. One issue with

using this approach in our application is that there exist a large number of visual landmarks that can be

discounted using their estimated location within the environment. Although this simplifies the problem of

matching features, the number of visual landmarks that remain within the possible neighbourhood of an

incoming measurement can then become too few for a proper ratio test. Performing a ratio test against

the entire set of landmarks introduces the possibility that a similar feature elsewhere in the environment

may interfere with the results. A solution to this problem is to devise a mapping function that maps the

distance between two features in SIFT space to the likelihood of these two features representing a correct

visual match. Note that this mapping will be environment dependent, and it will be necessary to adapt this

mapping for different operating environments.

When matching SIFT features there is a need to map from SIFT feature descriptor value distance to match

likelihood. In the basic SIFT implementation this is done by seeking local minima that are substantively lower

than other SIFT values in some local neighbourhood. Lacking such dense local features, it is necessary to

estimate this mapping more directly. Here we sample typical images from the sensor for a given environment

and construct our own model of SIFT feature distance and match probability. In order collect the amount

data necessary to properly estimate a mapping function a custom application was created to facilitate the

process of manually matching SIFT features between pairs of images. On startup a ratio test is performed



Figure 4.6: SIFT feature matching application
Matches coloured in green were labeled as correct by the user, Matches coloured in blue are
possible matches that have yet to be labeled as correct or incorrect. Incorrect matches are
coloured on a scale from yellow to red based on ratio on their difference with respect to the
distance between the largest correct match.

on the key-points between both images to identify the first set of possible matches. The user can either select

existing matching or create a new one and then delete them or classify them as either incorrect (yellow-red)

or correct (green). A step in this process is shown in Figure 4.7. After at least one correct match has been

identified a set of possible matches is generated automatically. This set is a globally optimum matching

of features that are less than the maximum distance between all positive matches. When all the correct

matches have been identified remaining key-point pairings are labelled as incorrect and a list of all matches

both positive and negative and their distance are saved.

The Likelihood function shown in Fig. 4.7 was created using data collected from 18 image pairs across

three different scenes. In total there were 191,873 potential matches, 629 of those matches were labelled as

being correct, the other 191,244 were incorrect matches. The raw likelihood data was calculated by counting

the number of correct and incorrect matches within ranges of width 20 units in SIFT space to determine the

probability of a match. There is a sudden dip in likelihood values between (120,180]. This is possibly due to



Figure 4.7: SIFT likelihood function
The red data points represents the ratio of correct matches to all N matches within a given
range where N is sufficiently large. This ratio corresponds to the likelihood of a match within
that range. The function drawn in blue is the curve that best fits the available data. The function
drawn in green is the finalized likelihood function.

a lack of data and a higher number of false-negatives which can be attributed to the difficulty of identifying

matches with such dissimilarity in their descriptors. This hypothesis was factored into the final likelihood

so at to not disqualify this possibility. An arctangent function was fit to the data by finding the best-fit

polynomial to the data and then using this fit to seed the non-linear arctangent fit (Figure 4.7).

4.3.2 SONAR sensor

The RECHOS depth sensor [45] produces a single range measurement (see Figure 4.8) at a rate of 1Hz. This

range measurement is dependant on the distance from the landmark mi to the location (x, y, z) of the depth

sensor, which is fixed relative to the state of the robot.



(a) Diagram depicting the relevant
variables in the camera’s measurement
model (b) A series of depth measurements.

Figure 4.8: Echo sounder: model and measurements
The RECHOS sounder is mounted on the Kingfisher as illustrated in (a). (b) shows a typical
sensor run as the robot follows a path through its environment.

Range measurements

Whereas distinct visual features can be identified using some appropriate feature descriptor such as SIFT

given the continuous nature of the visual sensor the same is not true for the depth sensor. Landmarks

discovered by this sensor have no inherit descriptor and can only be identified by their location within the

environment. Here measurement density is quite low and an alternative approach is desirable.

Before considering this challenge; however, it is important to observe that the measurement (Figure

4.8b) returned from the depth sensor is impacted by its placement on the robot (its relative position and

orientation) as well as the pitch, roll and yaw of the vehicle itself. Eqn. 4.8 below relates the returned

depth measurement to the robot’s state, assuming that the relative (x, y, z) offset (a, b, c) has already been

corrected. Note that this analysis incorporates vessel roll, pitch and yaw.



g(xt,mi) =
[
r
]

=

√√√√√√√√√√√
(mix − xx − acos(xθ) + asin(xθ))
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(miy − xy − bcos(xθ)− bsin(xθ))
2 +

(mz − c)2

(4.8)

As with the omnidirectional camera model, this model can be used to compute explicit forms for the

Jacobian of the measurement in terms of changes in robot state (4.9) and landmark (4.10).
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(4.10)

Error model Creating an error model for the CruzPro ATU120AT[46] is difficult because the sensor does

not provide open access to raw sensor data. Instead measurements from each pulse (beam width 38◦) are

passed through an exponential filter which is a type of infinite impulse response (IIR) filter within the

sensor returning only a single value. This value is an average of the depth measurements sampled from the

intersection of the beam and the lakebed. The area of the intersection is best represented by a conic section,

in this case an ellipse. The specifics of this exponential filter (shown in Eqn. 4.12) were provided by CruzPro

upon request. This equation is a simple exponential filter which is a form of low-pass filter. This filter gives



(a) geometry of the intersection of
the sensor beam with the lakebed.
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(4.11)

(b) Calculating the area of the beam’s intersection
with the lake bed.

Figure 4.9: SONAR sampling area
The intersection of the sensor’s beam with the lakebed can be approximated by an ellipse that
intersects the cone representing the sensor beam. The geometry of this intersection is depicted
in (a) and the Eqns. 4.11 in (b) detail the math needed to solve for the area of the sampling
ellipse.

a slight priority to shallow depths due to the time it takes for the sonar pulse to reach the bottom and return

back to the top.

filtered depthn+1 = λ× filtered depthn + (1− λ)× depth, λ =
6

7
(4.12)

Due to the effects of this filter any error model associated with this sensor in fact represents the assumed

variability in a patch of terrain. This is because the raw measurement error can be assumed to be zero

mean Gaussian white noise. Measurement noise is filtered out by the sensor and any variability indicates a

change in the position or orientation of the sensor. In keeping with this assessment an assumption about

the smoothness/variability of a patch (1m2) of lakebed must be made. The assumption made by this error

model assumes the lakebed does not have any drastic changes in topography. Under this assumption a patch

variability, σ2
patch = 0.04 was chosen. Using this information combined with the set of equations shown in

Eqn. 4.11 an error model/covariance can be constructed and rotated into the robots frame of reference (see



Eqn. 4.13).

Σ = Rz(θ)


a 0 0

0 b 0

0 0 Aσ2
patch

Rz(θ)
T (4.13)

Landmark initialization and update Range measurements from the onboard SONAR sensor can be

used to fully determine the location of any sensed landmark given that the position and orientation of the

sensor is fixed with respect to the robot. To determine the covariance matrix associated with a new landmark

the measurement variance σdepth must be combined with a positional covariance. The positional covariance

can be estimated using the intersection of the beam with the lake bed. If this ellipse is regarded as the

95% confidence interval of the positional covariance then the length of the semi-major and semi-minor axes

can be used to solve for the eigenvalues of the covariance [68]. The eigenvectors of the covariance can be

calculated using the projection of range vector on to the xy-plane.

λ1 = (
a

2
√

5.991
)2, λ2 = (

b

2
√

5.991
)2 (4.14)

The landmark update process is the same as that used in previous FastSLAM 2.0 implementations and

that used for visual landmarks previously described in this chapter.

4.3.3 Compass sensor

The Kingfisher M100 includes an onboard tilt-compensated compass that provides orientation data relative

to magnetic north at approximately 40Hz. Compass measurements are often corrupted by nearby elec-

tromagnetic interference(EMI) from ferrous metals or operating electronic equipment. Simple calibration



methods can be used to compensate for minor interference sources, but recalibration is needed when new

sources of EMI are introduced into the surrounding area. Shielding techniques can be used to cancel out

minor sources of interference but cannot shield against larger sources without affecting overall performance.

Orientation measurements

Orientation measurement can be interpreted in two different ways. The first method treats each measurement

as if it is observing a landmark within the environment. This landmark is the location of the magnetic north

pole relative to the map frame of reference. The caveat with this approach is that the pole is so far away that

even significant lateral motion would not result in a significant change in orientation. This makes estimating

the location of magnetic north practically infeasible. The second method views these measurements as

observing an unobservable landmark, thus they are not dependant on the known map. This motivates the

need for a new compass specific measurement mode that reflects this relationship (shown in Equation. 4.15).

p(z̃t|xt) = f(xt) + ζt (4.15)

This model is only valid in the FastSLAM framework because the pose of the robot is viewed as an oracle

representing the true pose of the robot. With this in mind the measured orientation only differs from the

true orientation of the robot by zero mean Gaussian white noise error.

Error model The mean and variance of the error ζt associated with the compass can be measured statically

by logging continuous measurements from the sensor while the robot remains stationary. This is a simple

estimate of the error but neglects the changes in the EMI pattern due to changes in the rotational speeds

of the propellers. This is negligible but may introduce a bias meaning that the error may no longer be

zero-mean.



4.4 Algorithm walkthrough

The following chapter provides experimental validation of the SLAM algorithm along with comparisons of

different sensor groups on overall algorithm performance. Here we provide a walkthrough of the algorithm in

order to illustrate the various aspects of the algorithm and their integration. Each iteration of this modified

FastSLAM 2.0 algorithm is agnostic to the mixture of measurements types (visual, SONAR, others) that

are captured at each time step. Although due to the timing of incoming measurements from the various

sensors, each sensor class is processed separately. This section will provide a step-by-step walkthrough of the

algorithm using measurement from the SONAR sensor and measurements from the omnidirectional camera.

4.4.1 Visual measurement walkthrough

The number of SIFT features that can be extracted from a single image numbers in the hundreds and beyond.

A large number of these features are weak and will likely not reappear in later images of the environment.

Matching a large number of measurements against a large number of landmarks becomes computationally

inefficient when the O(n3) complexity of the Hungarian algorithm is considered. This motivates the need for

a solution which limits the number of SIFT features collected at any given time step while still select features

that persist over time. This process selects a large number of initial keypoints from the current image and

tries to match these with those selected in the previously processed image, the set of keypoints that cannot

be matched are then sorted by their response values which indicates the feature’s strength. All matched

keypoints are selected as well as the N(typically 20) unmatched keypoints with the highest response. The

reason for selecting unmatched features is so that new environmental features can be introduced into the

map so that they may be re-measured at a later time. This process is able to consistently lower the number

of visual features down to a manageable quantity.



Figure 4.10: Feature selection
For every incoming image only matching features from the of the best map are chosen, those
that match features in the previous image (green) and a small set of new features (red) are
selected to become measurements in the SLAM process. This helps to decrease the number of
measurements while still choosing measurement that are likely to persist overtime. For a given
omnidirectional view, approximately 10-25 features are maintained.

The FastSLAM 2.0 implementation presented here does not account for the uncontrollable degrees of

freedom of the robot namely its roll, pitch and heave. There are number of different methods that can be

used to estimate the robot’s roll and pitch. Perhaps the most straightforward is to use an on-board IMU

to obtain an instantaneous estimate of the vehicle’s roll/pitch state. Unfortunately, this state estimation

process is limited by filtering within the IMU which integrates estimates over time in order to determine

gravity and remove gravity’ effect from the accelerometer. This delay can introduce errors into the estimation

process, especially in the presence of waves. An alternative approach is to use the visual scene to estimate

instantaneous pitch and roll. The two sets of matched keypoints from each image are back-projected onto

the unit sphere rendering two 3D point clouds related by an affine transformation under the assumption of a

static scene and no heave. This affine transformation can be estimated by use of the RANSAC[69] algorithm.

To improve the accuracy of the method multiple previous images are used to create a collection of relative

motion estimates. Using this collection of estimates any outliers are discarded and new mean is calculated for

use as the final motion estimate. The relative performance of the three explored methods are shown in Fig

4.11 in contrast to the absence of motion estimation. Once the instantaneous pitch and roll of the vehicle is

determined the elevation of each incoming measurement can be adjusted to account for the the vehicle’s tilt.

Estimating the robot’s tilt using image features was the most stable and accurate of the methods shown in

Fig. 4.11 and is the method utilized in this work. This method is not without its drawbacks, as it drastically



(a) (b)

(c)

Figure 4.11: Tilt estimation
Various methods used to estimate the roll and pitch of the vehicle, represented by their zero
elevation line. Camera model static motion (white). Tilt estimated using accelerometer (green).
Tilt estimation using gyroscope (yellow). Tilt estimation using image features (red).

increases the computational time required to compute the roll and tile of the robot.

Control values from the odometry model are not obtained synchronously with new measurements from

the camera. To account for this asynchronicity the ability to compute a control value for any point in time

is necessary. In order to compute the control at a given time two other values are needed depending on the



situation. If the queried time falls between two known states then the control value can be interpolated from

these states, If the queried time falls after the last known state then the control value can be extrapolated

using the last known control.

State update Once a control and set of image measurements are obtained they can be fed into the

FastSLAM 2.0 algorithm. The first step in each iteration of the algorithm calculates a new hypothesized

state for each particle in the filter using the given control as described in Eqn. 4.1.

Measurement likelihood Using this new state each measurement is compared to all existing landmarks,

generating a probability that the landmark could produce such a measurement in terms of proximity for each

comparison. Each probability is then augmented by the likelihood that such a measurement corresponds to

the landmark in terms of likeness (SIFT likelihood). This
∣∣Mk

∣∣ × |Zt| matrix is extended by a |Zt| × |Zt|

identity matrix multiplied by the probability of observing a new landmark. This new matrix is used so

that incoming measurements can be assigned a probability representing whether it corresponds to a new

landmarks.

Data association Given this probability matrix where each column i carries the probability that a par-

ticular measurement zi,t corresponds to the each landmark mj the Hungarian algorithm can be applied to

this matrix to determine a globally optimal assignment of measurements to landmarks. Any measurement

zi,t assigned to a landmark mj where j ≥
∣∣Mk

∣∣ represents the sighting of a new landmark.

Robot pose update Using new incoming measurements of existing landmarks a newly proposed state

of the robot and covariance (proposal distribution) is estimated. These landmark/measurement pairs help

to direct and shape the proposal distribution to more accurately represent the robot‘s motion within the

environment as described by these new measurements. A newly hypothesized state is randomly sampled



from this proposal distribution to introduce some variability into this model so that each particle ends up

exploring a different path.

Map update With this new hypothesized state and the set of landmark/measurement associations the

map is updated. The map update process can be conceptually divided in to three stages. The first stage

deals with landmarks that have not been observed within this time step. These landmarks are divided into

two categories; those that are permanent fixtures of the environment, and landmarks that are not permanent

fixtures of the environment and thus need their time to live counter decreased. Landmarks are deleted from

the map if this counter falls to zero. The second stage updates sighted landmarks using the standard EKF

update process and has their time to live counter and sightings counter updated. Measurements that have

not been associated with an existing landmark are used to initialize a new landmark that is added to the

map, this includes an initial time to live counter.

Resampling The previous five paragraphs have outlined the steps taken for each of k particles within the

Rao-Blackwellized particle filter used in this FastSLAM 2.0 variant. Once each particle and its weighting

has been updated, the weightings across all particles are then normalized. Then a resampling step takes

place that chooses a new set of k particles from the pervious set with replacement, where the probability of

choosing a landmark is dependant on the particle’s weight wk.

4.4.2 SONAR measurement walkthrough

Dealing with SONAR measurements is conceptually much simpler than dealing with visual measurements.

The previous walkthrough demonstrated the effectiveness of estimating the robots pitch and roll using

features in the image plane. The roll and pitch are updated at a much higher frequency; so, the latest

estimate can safely be used to adjust the range measurement from the SONAR sensor. The control value is

calculated in the same way as it is for visual measurements.



(a) no likely match with any known
landmark.

(b) minor similarity with one or
more landmarks.

(c) likely match with another land-
mark.

Figure 4.12: Range measurement likelihood
(a) depicts the observation of a new landmark. (b) depicts the observation of a new landmark
with similarity to other existing landmarks. (c) depicts the observation of an existing landmark.
See text for details.

Measurement likelihood When determining the likelihood that a range measurement corresponds to a

landmark there are three cases to consider all of which are illustrated in Figure 4.12. The first case involves a

measurement that is completely irrelevant to all existing measurements, the likelihood of a match in this case

is near zero and the measurement is treated as a new landmark. The second case deals with a measurement

that is proximally similar to one or more landmarks while still signifying a newly observed landmark, this

measurement is used to create a new landmark. The third and final case deals with a measurement that

corresponds to an existing landmark and is used to update the landmark in the landmark update process.

The particular likelihood value is calculated using the standard method used in the FastSLAM algorithms.

Data association Since only a single data point is received at a rate of 1Hz, there is no need to cull

measurements for the sake of increasing computation efficiency in the data association step. This is because

with only a single measurement the Hungarian algorithm reduces to a maximal likelihood search.

Robot pose update A newly hypothesized state is sampled using the method described in the visual

measurement walkthrough of this algorithm.



Map update The map update process is the same as previous described; however, the time to live and

sighting counters are irrelevant for these types of landmarks. Without these counters any landmarks gener-

ated from range measurements are never removed from the map.

Resampling The previous five paragraphs have detailed the steps taken for each of k particles within

the Rao-Blackwellized particle filter while dealing with range measurements within this FastSLAM 2.0 vari-

ant. The resampling stage here follows the same process described in the algorithm walkthrough for visual

measurements.

4.4.3 Compass sensor walkthrough

Although not used in the primary implementation of the algorithm, in the following chapter a compass

will be integrated in the SLAM solution in order to investigate the potential benefit of such a device. For

completeness, the process of integrating a tilt-compensated compass within FastSLAM 2.0 is included below.

Unlike standard measurement models, the measurement model of the compass can be factored out of the

posterior distribution and used solely as a state predictor in the path posterior. The new factorization of

the posterior distribution is shown in Eqn. 4.16.

p(xt,M|U0:t,Z0:t, Z̃0:t,x0) = p(xt|U0:t,Z0:t, Z̃0:t,x0)
∏
n

p(Mn|xt,U0:t,Z0:t,x0) (4.16)

In the interest of maintaining a common code base between all sensors, compass measurement were

integrated into the algorithm via the control(ut) variable’s angular velocity. This requires a rederivation of

both the covariance of the control error and the covariance of the odometry error. This is done using the



method previously described in Subsection 4.2.1. The new control variable is substituted in place of that

used in the processing of both SONAR and camera measurements. This method also has the benefit of not

resampling the robot’s pose for each incoming compass measurement which is sampled at a high frequency.

4.5 Summary

This chapter detailed the theory and implementation details of the modifications to the original FastSLAM

2.0 algorithm used to perform SLAM using visual and SONAR measurements. Details are provided on the

process of representing omnidirectional shorelines images, SONAR measurements, and compass measure-

ments within the FastSLAM 2.0 formalism. For shoreline measurements, a SIFT-matching function is used

to score potential matches over time, and a time to live process is used to prune potential matches that are

not stable over a number of frames. The sonar measurements are corrected for vehicle pitch, roll and tilt

and are integrated over the vehicle’s motion. Finally, compass values, if available, can be integrated into the

SLAM representation.



Chapter 5

Experimental validation

This chapter describes the procedure for deploying the robot, conducting data collection and evaluating the

results of SLAM algorithm developed during this research.

5.1 Hardware deployment

The Kingfisher M100 is a large robot that cannot be transported between bodies of water as easily as a

kayak or canoe. Transportation of this aquatic vehicle is aided by a wagon with an undercarriage to store

equipment and tools that are required on site. The equipment that is normally transported along with the

robot includes; a mooring line to tie the robot to the dock, a video camera to record experiments from an

additional advantageous viewpoint and a set of chest high waders to help retrieve the robot if it becomes

stuck in mud. Once all the equipment has been transported to a location on shore where the robot can

be deployed there are a number of steps that need to be followed to properly launch the robot into in its

new environment. If a dock is available the robot needs to be carefully slid off the dock into water, this
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Figure 5.1: Onshore equipment
Onshore equipment used to support the robot during field tests. Primary support equipment
includes: video camera and tripod, radio basestation and landlocked GPS antenna and other
miscellaneous equipment.

is easier if both left/right props are removed beforehand. After the robot is in the water both props need

to be mechanically and electronically reconnected. If no dock is available then the robot must be lifted

into the water sufficiently far from the shore so that the waterbed does not interfere with the rotation of

the propellers. Once the robot is safely in the water it can be switched on and the ROS processes that

initialize its core functionality started. The landlocked basestation governs the LAN via a wired router

which uses DHCP allowing connection to the robot’s local area network via a direct ethernet connection

to the basestation. Any laptop connected to the basestation can remotely initiate the ROS nodes or other

processes that are needed to control the robot using a standard joystick.

5.2 Exploration strategy

SLAM implementations are often volatile with respect to the path taken to explore the environment. Without

an effective exploration strategy many SLAM algorithms would fail to collect the information necessary to

properly map the surrounding environment. There exists a wide variety of exploration algorithms within

the literature, some of which are reviewed in [44]. The development of new algorithms for the exploration



(a) The Boustrophedon search path within a
simple environment.

(b) A spiral search path within a simple
environment.

Figure 5.2: Exploration strategy
Two common exploration and sensor coverage paths that can be used to collect data within
a simple environment. Both paths are effective in simple environments and exhibit different
properties when extrapolated to more complex environments.

of aquatic surface environments is beyond the scope of this research. The exploration strategy employed by

this SLAM implementation has be predetermined using a simple heuristic that can be described anecdotally.

Travelling parallel to the boundary of the environment where there exists a large number of identifiable

visual landmarks is an effective way to map the boundary of the environment. This is an effective way of

reducing the uncertainty associated with visual landmarks that can be repeatably observed. After creating

a reliable map of the boundary the rest of the environment is explored using an inward spiral (e.g. Fig. 5.2).

The spiral exploration path slowly increases the distance away from the mapped boundary while mapping

the depth of the lake bed. Actualization of this exploration process for three test environments is shown in

Fig. 5.3.

5.3 Test environments

A number of data sets were collected to evaluate the SLAM algorithm presented here. Datasets were

collected on Stong Pond (York University), on Okanagan Lake (Knox Mountain Park), near Kelona, British

Columbia, and on Ramsey Lake (Lake Laurentian Conservation Area), near Sudbury Ontario (see Fig. 5.3).



(a) Stong Pond test run (b) Okanagan Lake test run

(c) Ramsey Lake test run

Figure 5.3: Test environments
Ground truth trajectory of the robot measured using GPS overlaid on top of a map of the
environment. The green dot shows the initial state of the robot, whereas the red dot shows the
final state of robot (Background images appear courtesy of Google Earth).

These environments were not completely explored due to known limitations of the robot’s battery capacity,

radio signal reception and concerns of the safety for the robot’s components. These safety concerns include

damage to the propeller blades and loss of the robot. Propeller damage was minimized by keeping the robot

a safe distance from the shore to prevent contact with debris lying on the lake bed. The robot’s available

battery power limits the distance the robot can travel away from the shore and the launch site before a

return journey is necessary to prevent the robot becoming stranded. The reliability of the communication

between the land operator and the robot limits also limits the exploration range of the robot.



5.3.1 Stong Pond

Stong pond is a small body of water located on the York campus in Toronto (Fig. 5.3a). Stong pond is the

primary testing site for all aquatic surface vehicles from our robotics lab due to its proximity and floating

dock that aids in shore based deployment allowing the robot to be slid/placed in the water at a safe depth

and distance from shore.

5.3.2 Okanagan Lake

Okanagan Lake is a large lake located to the west of Kelowna, British Columbia and was the primary site

for a multi terrain robot field trail in June of 2015 (Fig. 5.3b). Deployment of the robot on lake Okanagan

from the available boat launch requires a submersible trailer that can used to partially submerge the vehicle

and float it out to a safe distance from shore.

5.3.3 Ramsey Lake

Ramsey Lake is a large lake situated near the downtown core of Sudbury, Ontario and served as one of the

sites for a multi terrain robot field trail in June of 2016 (Fig. 5.3c). The robot was deployed off a small rocky

outcropping piece by piece and assembled in the shallow water.

5.4 SLAM Representations

The maps and trajectories obtained with SLAM algorithms are probabilistic. As a consequence the resulting

maps shown in Figs. 5.5, 5.6, 5.7 are not visually intuitive, this is because the maps are not strictly geometric

representations of the surrounding environment but a set of individual visual landmarks. Maps that were



Valid Visual (Camera) Audio (SONAR) Magnetic (Compass)

X X X X

X X X x

X X x X

X X x x

x x X X

x x X x

x x x X

Table 5.1: SLAM sensor combinations

The different combinations of sensors that are used to perform SLAM in this work. Note that

combinations in which visual data is unavailable do not result in a valid combination of sensors.

generated with the help of a SONAR sensor have an additional set of geometric depth features of the lakebed.

All landmarks are depicted using an ellipse around the landmark’s mean representing the 99% confidence

region of its covariance matrix. Visual landmarks are coloured on a spectrum from red-yellow-green, to

represent the number of times the landmark has been sighted. Bright green landmarks are permanent

fixtures of the map, landmarks of other colours still play a minor role in localization but may be removed

from the map at a later time.

5.5 Experimental validation

Experiments are grouped around answering two basic questions about the approach developed in this

work (i) Particle-based SLAM algorithms are highly dependent on the number of particles used to represent

the underlying distribution. How many particles are appropriate to represent this distribution? (ii) How

effective are the visual, sonar and compass sensors in solving SLAM for an ASV? In particular, what can be

accomplished without a compass, or to put it another way, how useful is a compass? Each of these questions

are addressed in the following sections.



(a) Map sample (b) Path sample

Figure 5.4: Stong Pond SLAM - visual only (10 particles)
Shows a partial run of pyFSLAM with 10 particles using only measurements from the visual
sensor. (a) Shows the predicted motion in teal, ground truth in white and the robot odometry
in red along with the map. Map landmarks are depicted using a 99% error ellipse determined
from their associated covariance matrices. Landmarks are coloured on a spectrum from red-
green based on the number of times they have been sighted. All depth landmarks are added as
permanent fixtures of the map and appear as if they are green paths on the map. (b) Shows
the recovered motion paths; ground truth odometry calculated using onboard GPS and Compass
is shown in black, the SLAM estimate of the robot’s path is shown in teal and the estimated
odometry calculated using the odometry model alone is shown in red, which is the same across
all sensor configurations.

5.5.1 How many particles are enough?

Empirically, 2D ground-contact SLAM is normally solvable using a reasonably small number of particles,

upwards of ten (see [18][38][19]). The SLAM problem here is somewhat more complex given the lack of

a simple robust plant model for the vehicle. So a key question in actually running PyFSLAM is how

many particles are appropriate to represent the distribution, and does this number change when different

combinations of sensors are used?

Figs. 5.5a, 5.5b show the performance of PyFSLAM with vision-only sensing for a 10 particle repre-

sentation of the PDF incomparison to the data obtained from the raw odometry and GPS/Compass state

estimates. As shown by Figs. 5.5a, 5.5b 10 particles in PyFSLAM are insufficient to properly represent the

map-trajectory PDF sufficiently well to solve the problem. After a number of experiments it became clear



that at least 40 particles were required to properly represent the PDF.

5.5.2 How important are individual sensors and their combinations?

Theoretical results [14] have demonstrated that a compass is an extremely powerful device in terms of

solving the SLAM problem in a theoretical sense. But how important is a compass to being able to solve the

SLAM problem practically? In these experiments we compare PyFSLAM performance on vision alone versus

vision+compass, and vision+SONAR versus vision+SONAR+compass in order to address this question.

Experiments were run on three different lake surfaces, with the four sensor combinations shown in Table 5.1

Figs. 5.5-5.7 show the experimental results and Table. 5.2 summarize the findings. In all cases 40 particles

were used to approximate the map-trajectory probability distribution function. Some general observations

can be made from the data.

First, the plant model on its own is insufficient to solve the localization problem. The plant error is large.

This is not a particularly surprising result. If the plant was sufficiently accurate then there would be no need

for SLAM. The poor performance of the plant model on its own is perhaps best highlighted by performance

on Lake Okanagan and Lake Ramsey, where the final RMS deviation of the robot’s odometry is 293m. The

experimental run in Lake Ramsey was in a particularly unsheltered region of the lake and was subject to

strong wind and wave action.

Second, more sensors are generally more helpful, but this is not always the case. Again not a particularly

surprising result. Performance with vision and sonar is better than vision alone in two out of three of

the environments. Performance with vision and a compass was always better than performance with vision

alone, and performance with vision, sonar and a compass was aways better than performance with one or two

sensors. The degree to which additional sensors improves localization depends on the environment observed

by the additional sensor. Again, this is not that surprising. If one were operating the robot in a pool with

a flat bottom, SONAR depth would provide no additional information. This situation also presents itself



when the depth below the robot is less than the minimum sensing depth of the sensor, as was the case in

part of the Ramsey lake experiment. Although Ramsey Lake is quite deep (greater than 20m), portions of

the robot’s trajectory took it out over relatively shallow portions of the environment. The SONAR sensor

does not return an invalid value for depth shallower than its minimum operational depth, but rather returns

a minimum value. This issue is considered later in this thesis. That being said, it is rare to find a lake bed

with such little variability over its entire area, and SONAR can be expected to do two things (i) SONAR

data can be expected to provide data to help disambiguate one location from another if the depth of the

bottom is in disagreement. (ii) SONAR data helps to prevent underestimation of the robot’s motion. To

see this, observe that under the stationary world assumption, if the depth to the sea bed is changing then

the robot must have moved. This is a critical piece of information in the application for ASV’s as the plant

model is particularly poor.

Third, a compass is a powerful thing. In the experiments performed in this work, the addition of a compass

always improves the accuracy of the SLAM path relative to performance without one. For a number of the

environments considered in this work the addition of compass data was particularly significant (e.g., in the

Stong Pond experiments). For other cases the relative improvement associated with a compass is not as

significant. For example, in the experiments on lake Ramsey the impact of compass data on localization

is quite small relative to performance with the vision sensor alone. This is likely because the visual-only

SLAM approach performed well in this instance on its own, rather than a lack of useful information from

the compass.

5.5.3 SLAM paths and maps

This section shows the estimated paths and maps generated from different configurations and parameteri-

zations of the PyFSLAM algorithm. The main difference between these configuration are the combination

of sensors used to collect data. Obviously there are many combinations of the three sensors that cannot



(a) Path sample (b) Map overlay
Vision Only

(c) Path sample (d) Map overlay
Vision and Depth

Figure 5.5: Stong Pond SLAM (40 particles)
This figure is continued on the next page.

produce a viable map. Combinations that might produce a valid map are shown in Table 5.1. The combina-

tions marked as invalid can be excluded from our tests because they do not carry sufficient information to

determine the position and orientation of the robot through repeated measurements. Visual measurements

are needed as an aspect in all mapping attempts because of the plethora of potential landmarks and their

relative accuracy.

5.5.4 When SLAM fails

Although the results given in Table 5.2 suggests that the SLAM algorithms were more or less successful under

all conditions, there are clear deviations in the recovered robot paths, especially when only two sensors are



(e) Path sample (f) Map overlay
Vision and Compass

(g) Path sample (h) Map overlay
Vision, Compass and Depth

Figure 5.5: Stong Pond SLAM (40 particles) (cont.)
The final stage of the SLAM run for all sensor combinations shown in Table I. (a,c,e,g) Shows the
recovered motion paths; ground truth odometry calculated using onboard GPS and Compass is shown in
black, the SLAM estimate of the robots path is shown in teal and the estimated odometry calculated using
the odometry model is shown in red, which is the same across all sensor configurations. (b,d,f,h) Shows
the generated map (landmark means+height) and ground truth and SLAM estimated paths overlaid on a
satellite view of the environment (image courtesy of Google Earth). For the map overlay display ground
truth is shown in white and recovered trajectory is in teal. Landmarks are displayed using a coloured
sphere around their estimated mean on top a white line depicting their height above the robot’s ground
plane. Permanent landmarks are coloured green and temporary landmarks, red. The perspective view of
all map images are slightly different to better display all landmarks. Note: Terrain images shown for each
map overlay are satellite images courtesy of Google Earth and do not necessarily represent the terrain at
the time of data collection.

used. Exploring what effects lead to these deviations from ground truth provides insights into the weaknesses

of various sensors and how one might go about adapting to them.



(a) Path sample (b) Map overlay
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(c) Path sample (d) Map overlay
Vision and Depth

(e) Path sample (f) Map overlay
Vision and Compass

(g) Path sample (h) Map overlay
Vision, Compass and Depth

Figure 5.6: Okanagan Lake SLAM (40 particles)
Shows the final stage of the pyFSLAM for all sensor combinations. See Figure 5.5 for a description of
the elements within each image in this figure.
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Vision Only

(c) Path sample (d) Map overlay
Vision and Depth

(e) Path sample (f) Map overlay
Vision and Compass

(g) Path sample (h) Map overlay
Vision, Compass and Depth

Figure 5.7: Ramsey Lake SLAM (40 particles)
Shows the final stage of the pyFSLAM for all sensor combinations. See Figure 5.5 for a description of
the elements within each image in this figure.



Stong Pond Okanagan Lake Ramsey Lake

RMS MAX RMS% RMS MAX RMS% RMS MAX RMS%

Odometry 35.408 68.778 139.696 239.040 60.518 148.093

Visual 9.484 15.005 26.7% 10.144 26.700 7.2% 1.132 3.522 1.8%

Visual +
SONAR

6.648 10.707 18.7% 7.804 21.293 5.5% 1.618 4.056 2.6%

Visual +
Compass

4.984 8.133 14.0% 2.718 9.379 1.94% 0.835 2.085 1.3%

Visual +
SONAR +
Compass

3.213 5.979 9.0% 0.649 3.307 0.4% 0.724 1.868 1.1%

Table 5.2: SLAM error over the entire path.
Shows both the root mean squared error (RMS) and maximum deviation from ground truth for each

SLAM configuration’s (including Odometry) of the robot’s estimated path for each recovered data set.
Data gathered from the onboard DGPS sensor was taken as ground truth. RMS percentage(RMS%) is

reported as the percentage of RMS error relative to odometry.

(a) path

(b) map (c) image

Figure 5.8: SLAM visual failure
Series of image outlining the context behind a major failure in the visual aspects of the SLAM
algorithm. (a) SLAM path with section of deviation highlighted. (b) Google Map with area of
deviation highlighted. (c) Image with SIFT features sample from data during path deviation,
areas of the closest shore perpendicular and off-perpendicular to motion are highlighted.

Vision Sensor

Small deviations of the SLAM path from ground truth can be easily explained as a consequence of issues

related to the sensor (e..g, sensor noise) or issues related to failures in the particle-based representation of

the underlying PDF’s (e.g., proposal sampling error), or failures in the ground truth estimation process (e.g.,



(a) path
(b) map

Figure 5.9: SLAM depth failure
Images outlining the context behind a major failure in the SONAR(depth) aspects of the SLAM
algorithm. (a) SLAM path with area of depth deviation highlighted in yellow and path deviation
highlighted in red. (b) Google Map with depth deviation highlighted in yellow and path deviation
highlighted in red.

GPS failure). Larger deviations from ground truth represent failures in the SLAM algorithm that can be

caused by assumptions made about the environment that are violated, at least for short periods of time.

The largest deviation encountered between GPS-based ground truth and recovered SLAM trajectory was

seen during the Stong pond experiment (shown in Fig. 5.8). The section of the path associated with the

SLAM error (shown in Fig. 5.8a) occurs in a portion of the map (shown in Fig. 5.8b) where there are very

few strong SIFT features on the closest shore perpendicular to the robot’s motion (highlighted orange in

Fig. 5.8c). The off-perpendicular sections (highlighted yellow in Fig. 5.8c) would be the “next best” places

for strong SIFT features to be detected; however, these sections are also devoid of features. The algorithm

relies on SIFT features to produce measurable changes in bearing when moving perpendicular to them. In

practice this means that shore regions with few features are problematic.

SONAR(depth) sensor

This algorithm can also fail under circumstances involving the use of the depth sensor. In the case of the

Ramsey lake data set (see Fig. 5.7) the inclusion of the depth sensor without a compass actually degraded



the accuracy of the recovered motion. The majority of the readings from the depth sensor along the path

sections highlighted yellow in Fig. 5.9 were shallower than the sensor’s minimum operating depth. The

readings defaulted to the sensor’s minimum value. Without useful depth information the possibility of

underestimating the robot’s motion increases. Failure can be seen within the path sections highlighted red

in Fig. 5.9. The recovered motion (teal) is misidentified as intersecting the first loop within the environment.

This particular failure can be explained by three contributing factors; the motion underestimation in the

previous path segment, the relative proximity between the highlighted path segment, and the inability to

distinguish between similar depth readings. This problem could have be avoided by carefully planning a

path that did not traverse so closely to itself.

Compass

Compass failures were not encountered within these experiments. A high precision, tilt-compensated compass

proved to be an exceptionally reliable sensor in the experiments reported here.

5.6 Summary

The SLAM algorithm developed in the research is able to use visual measurements to drastically improve

location estimates despite an inaccurate motion model and a volatile environment whilst using a simplified

(2 dimensions) state space. Estimates of the robot’s location begins to fail in segments where there are no

sensed landmarks that are positioned approximately perpendicular to the robots trajectory. The addition

of depth measurements results in an improved path estimate relative to the GPS estimate (RMS 9.484 vs

RMS 6.648) with maximum deviation from the GPS path of 15.005 m for vision only and 10.707 m for

vision+SONAR sensors. Depth measurements help to prevent underestimation of the robot’s motion as long

as there is sufficient variability in the topology of the lakebed.



Chapter 6

Summary and future work

6.1 Summary

Simultaneous localization and mapping is a fundamental problem in autonomous robotics. Although consid-

ered solved for sufficiently well behaved versions of the problem, complex outdoor environments still present

challenges for SLAM algorithms. This work considered SLAM on the surface of lakes in GPS and compass

denied environments. In particular it investigated how visual omnidirectional bearing data could be com-

bined with local lake depth information in order to solve SLAM and the benefits of a compass under such

conditions.

This research has shown how the simultaneous measurement extension of the original FastSLAM 2.0

algorithm[38] described in [59] can be further extended to incorporate measurements from both a SONAR

sensor and omnidirectional camera. This extension includes a number of features that allow the algorithm to

be tuned in a variety of ways. The most notable difference between this implementation and its predecessor
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is the inclusion of a time to live counter associated with each landmark that is used as the primary method

for removing inconsequential landmarks from the map. This accounts for the assumption adopted in the

previous implementation that landmarks are visible throughout the environment. In this research landmarks

are considered weak until they have been observed at at least βzt,ψj times and have increased in certainty by

at least 50%. This puts less pressure on a landmark’s continual observance and instead puts more weight on

the amount of certainty associated with the landmark. This method helps to increase the number of weak

landmarks that are removed from the map over time. Another major change introduces a weighting function

augmenting the proximal likelihood of an association between a landmark and measurement. This weighting

function helps to lend more influence to the visual likelihood of a measurement association when a landmark

has a high uncertainty. This improves the effectiveness of the data association process. This weighting

function is also used to prioritize landmarks in the particle weighting process based on their certainty.

The SLAM approach presented in this work has shown its merits in mapping static marine environments,

especially when all presented sensors are used concurrently. Unfortunately the relative instability of SIFT

features under changes in environmental lighting conditions may preclude generated maps from being used

for navigation at drastically different times of the day. Low lighting conditions are likely to prevent this

approach from being used as an effective mapping tool altogether. However, the pixpro[51] omnidirectional

camera used in this research is a phenomenal sensor that provides panoramic visual information and a

wide FOV. A single visual sensor that can provide panoramic images is much more desirable than a set

of cameras that must be meticulously calibrated and stitched together to provide a similar panorama at a

higher resolution.

When the compass on board the Kingfisher is integrated within the SLAM process it always resulted in

an improved estimate of the robot’s motion within the environment. The navigational information provided

by this sensor is extremely valuable as long as electro-magnetic interference does not disrupt the output

from the compass. A compass is also a valuable addition to the repertoire of any robot due to its ability to

estimate the orientation of the robot on a global scale.



The depth sensor installed on the Kingfisher and utilized by this research was instrumental in properly

determining the robot’s linear motion in data sets presented in this thesis. Given the relatively low cost of

the sensor, the expense can absolutely be justified given its benefits. This given the shortcomings of the

sensor are properly taken in account. The primary shortcomings of the sensor are its inability to produce

raw data and wide beam angle. In addition to the sensor’s benefit to SLAM it can also provide information

useful for a variety of other applications such as navigating away from the lakebed features that may pose a

risk to the robot.

6.2 Future work

Future work will seek to further quantify the relative significance of added sensors in improving SLAM results.

Critical here is repeated experiments in the same environment using different exploration strategies, under

differing weather/seasonal conditions to account for due lighting and other seasonal changes. To determine

weather the inclusion of a sensor into the SLAM process provides an improvement that is statistically

significant, requires large sampling of RMS errors for each combination of sensors under varying conditions.

As a result of the stochastic nature of FastSLAM2.0 multiple runs of the algorithm using the same data set

can increase the sample size without the need for excessive amounts of data collection.

6.2.1 Applications

The ability to map aquatic environments without the express need for a GPS sensor or compass opens up a

wide variety of applications. Three applications of particular interest are (i) mapping the volume of tailing

ponds where materials may interfere with the accuracy of an onboard compass (ii) underground or ground

water caverns where GPS sensors are rendered inert (iii) non-terrestrial environments that lack a stable

magnetic field or orbital position satellites. These are described in detail below.



(a) Aerial view of a tailing pond in Elko, Nevada. (b) Terrestrial view of s tailing pond in Elko,
Nevada.

Figure 6.1: Tailing ponds
Tailing ponds contain materials leftover after the mining process. A portion of these material
can adversely effect the performance of a compass.

Tailing ponds

Tailing ponds are remnants of the process of mining. In many countries tailings ponds and their upkeep are

subject to strict environmental regulations. Upkeep of these tailing ponds requires accurately maintaining

the ratio of tailings to water. Tailings by nature are more dense than water and therefor settle at the bottom

of the pond. Since tailing ponds are manually constructed their dimensions are known although shifts in

the ground and the pressure caused by the material stored in the pond can lead to substantive changes in

pond geometry. A SONAR sensor that can measure the depth of the water column below the sensor can

used to measure the volume water in the pond. The total volume of materials in the pond minus the volume

of water can be used to calculate the volume of tailings in the ponds. The current method to perform this

calculation requires commercial divers to manually measure the depth of the water in a number of positions

within the pond. The current process is inexact, expensive and dangerous as it subjects divers to chemical

runoff from the mining process. Automated solutions are clearly desired. In such a situations it likely is

possible to place beacons on the shore to aide in navigation at the expense of numerous beacons for each

site and cost attributed to their maintenance.



Aquatic terrestrial caverns

Terrestrial ground water and underground aquatic caverns are two environments where GPS sensors are

unable to provide global positioning data. Some of these environments may also interfere with the accuracy

of compass data due to deposits of ferrous metals. As long as there is enough ambient lighting to detect

visual features in the environment and the lakebed environment has a enough variability the SLAM algorithm

developed here can be of use to mapping these environments. In the event where there is not enough ambient

light to properly detect visual features a high powered diffuse light source may be useful to detect visual

features.

Non-terrestrial aquatic environments

Non-terrestrial aquatic environments fit a unique category where there is no stable magnetic field to determine

absolute orientation and the infrastructure for a global positioning system does not exsist. Titan[11] is the

only known celestial object with bodies of surface liquid[7] other than Earth in our own solar system. If

the ethane and methane lakes of Titan[10] are not frozen below a certain depth and the lakebed topology

can be measured using a SONAR sensors this algorithm can be instrumental in mapping these types of

environments.

This research has addressed how the inclusion of the depth the water column can be used to improve

localization and mapping using an aquatic surface vehicle. The most obvious extension to this research

is to upgrade the single-beam SONAR sensor in favour of either a multi-beam or side-scanning SONAR

sensor. These sensors provide measurements of the lakebed at much higher resolution and wider field of

view. Integrating these sensors into a appropriate SLAM algorithm would allow for higher fidelity mapping

of the lakebed and the ability perform scan matching between scans and/or the environment. There are

additional sensors that can be added to the robot to provide increased situational awareness. LiDAR sensors



can be effective for detecting environmental landmarks at moderate distances. RADAR sensors are effective

for moderate to long range detection of other vehicles, terrain and even weather patterns. The addition of

these sensor types would help offset mapping performance under adverse conditions such as poor lighting

conditions and fog, both of which prevent visual sensors obtaining accurate measurements. LiDAR can still

operate effectively without ambient light and RADAR remains unaffected by all but the most severe weather.

There are also many other avenues that can be explored from an algorithmic standpoint. One such

adjustment that could be made changes the assumption made about the sparsity of depth measurements.

In the current formulation the environment is assumed to be sparsely populated by landmarks above and

below the surface of the water. The visual landmarks within the scene can be modelled as sparse so long

as they are differentiable by a means other than their location. However SONAR measurements can be

obtained from every location within the environment and may be more effective modelled as densely packed

landmarks. This would require a reformulation of the SLAM algorithm introducing increased complexity

with the benefit a better model of the lakebed.

The un-delayed initialization of bearing-only landmarks adopted in this implementation is sufficient

given the employed exploration strategy. However, delayed initialization approaches offer a much more

robust way of calculating the position of new landmarks at the expense of increased algorithmic complexity.

The delayed initialization approach used in [59] requires that landmarks can be differentiated solely via

some sort of descriptor which can introduce errors from visually similar landmarks from different locations

within the environment. The most promising delayed initialization approach[63] employs a Gaussian sum

filter to represent the initial uncertainty of a new measurement using multiple hypotheses, after numerous

measurements one estimate within the filter eventually wins out over the others.

Modern SLAM algorithms such as PTAM[23] and DTAM[35] are very effective at mapping visual envi-

ronments while estimating the 6DOF pose of the mapping agent. These algorithms would be very effective

mapping the shore but would become less effective further from shore. The caveat with these algorithms



is they can only process images, investigating whether high resolution SONAR scans can be interpreted as

images to conform to requirements of either PTAM or DTAM is of particular interest. If a SONAR scan can

be interpreted as an image and integrated into either algorithm this would provide valuable information at

locations in the environment where visual features are sparse.

This research can be used in a variety of applications some of which have been previously discussed.

Terrestrial applications of this work include the exploration of aqueous caverns of water and mapping tailing

pond with deposits of ferrous material. Non-terrestrial applications include the exploration of lakes on

different celestial objects, currently the only known celestial body with lakes on its surface is Saturn’s moon

Titan. Each of these applications include limiting environmental features that limit the reliability of either

a compass or GPS sensor. Underground or surface accessible caverns of water restrict communication with

overhead satellites rending GPS sensors useless and the possibility of ferrous material in the surrounding

environment limits the accuracy of a compass. Tailing ponds are placed in ideal locations for acquiring

accurate GPS data; however, the slurry of materials settling at the basin might disrupt compass readings.

Celestial bodies with surface accessible lakes are devoid of the infrastructure required global positioning and

a strong and stable magnetic field is not always present. Using the method presented here can be used to

map such environments despite such sensor limitations.
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