8,116 research outputs found

    Multi-modal dictionary learning for image separation with application in art investigation

    Get PDF
    In support of art investigation, we propose a new source separation method that unmixes a single X-ray scan acquired from double-sided paintings. In this problem, the X-ray signals to be separated have similar morphological characteristics, which brings previous source separation methods to their limits. Our solution is to use photographs taken from the front and back-side of the panel to drive the separation process. The crux of our approach relies on the coupling of the two imaging modalities (photographs and X-rays) using a novel coupled dictionary learning framework able to capture both common and disparate features across the modalities using parsimonious representations; the common component models features shared by the multi-modal images, whereas the innovation component captures modality-specific information. As such, our model enables the formulation of appropriately regularized convex optimization procedures that lead to the accurate separation of the X-rays. Our dictionary learning framework can be tailored both to a single- and a multi-scale framework, with the latter leading to a significant performance improvement. Moreover, to improve further on the visual quality of the separated images, we propose to train coupled dictionaries that ignore certain parts of the painting corresponding to craquelure. Experimentation on synthetic and real data - taken from digital acquisition of the Ghent Altarpiece (1432) - confirms the superiority of our method against the state-of-the-art morphological component analysis technique that uses either fixed or trained dictionaries to perform image separation.Comment: submitted to IEEE Transactions on Images Processin

    ESTIMATION AND ASYMPTOTIC THEORY FOR A NEW CLASS OF MIXTURE MODELS

    Get PDF
    In this paper a new model of mixture of distributions is proposed, where the mixing structure is determined by a smooth transition tree architecture. Models based on mixture of distributions are useful in order to approximate unknown conditional distributions of multivariate data. The tree structure yields a model that is simpler, and in some cases more interpretable, than previous proposals in the literature. Based on the Expectation-Maximization (EM) algorithm a quasi-maximum likelihood estimator is derived and its asymptotic properties are derived under mild regularity conditions. In addition, a specific-to-general model building strategy is proposed in order to avoid possible identification problems. Both the estimation procedure and the model building strategy are evaluated in a Monte Carlo experiment, which give strong support for the theory developed in small samples. The approximation capabilities of the model is also analyzed in a simulation experiment. Finally, two applications with real datasets are considered. KEYWORDS: Mixture models, smooth transition, EM algorithm, asymptotic properties, time series, conditional distribution.

    Knowledge integration in One Health policy formulation, implementation and evaluation

    Get PDF
    The One Health concept covers the interrelationship between human, animal and environmental health and requires multistakeholder collaboration across many cultural, disciplinary, institutional and sectoral boundaries. Yet, the implementation of the One Health approach appears hampered by shortcomings in the global framework for health governance. Knowledge integration approaches, at all stages of policy development, could help to address these shortcomings. The identification of key objectives, the resolving of trade-offs and the creation of a common vision and a common direction can be supported by multicriteria analyses. Evidence-based decision-making and transformation of observations into narratives detailing how situations emerge and might unfold in the future can be achieved by systems thinking. Finally, transdisciplinary approaches can be used both to improve the effectiveness of existing systems and to develop novel networks for collective action. To strengthen One Health governance, we propose that knowledge integration becomes a key feature of all stages in the development of related policies. We suggest several ways in which such integration could be promoted
    corecore